1
|
Xue H, Zhu C, Wang Y, Gu Q, Shao Y, Jin A, Zhang X, Lei L, Li Y. Stimulus-responsive cellulose hydrogels in biomedical applications and challenges. Mater Today Bio 2025; 32:101814. [PMID: 40416785 PMCID: PMC12098173 DOI: 10.1016/j.mtbio.2025.101814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/21/2025] [Accepted: 04/28/2025] [Indexed: 05/13/2025] Open
Abstract
Stimuli-responsive cellulose hydrogels have garnered significant attention in the biomedical field owing to their extensive applications in tissue engineering and controlled drug delivery systems. Derived from cellulose and its derivatives, they are synthesized through physical or chemical cross-linking techniques, offering notable advantages such as cost-effectiveness and excellent biocompatibility. These hydrogels can respond to environmental stimuli, including pH variations, temperature fluctuations, and light exposure, enabling targeted drug release and promoting tissue regeneration. In tissue engineering, Stimuli-responsive cellulose hydrogels are used for the repair and regeneration of skin, bone, and other critical tissues. In drug delivery, they are optimized for oral, nasal, and ocular administration, as well as advanced cancer therapies. In addition, Stimuli-responsive cellulose hydrogels exhibit significant potential in disease diagnostics, particularly their conductive variants, which show promise in biosensing and diagnostic applications. However, despite their potential, challenges such as immune compatibility, long-term stability, and scalability in production remain barriers to clinical translation. Future research efforts should focus on multifunctional integration, advanced intelligent design, and enhanced stimulus responsiveness to fully unlock their potential in biomedical applications and facilitate their transition from laboratory research to practical use.
Collapse
Affiliation(s)
- Huaqian Xue
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Cong Zhu
- School of Stomatology, Hunan University of Traditional Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yifan Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Qiancheng Gu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Yunyuan Shao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Anqi Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Xiaofen Zhang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Yongliang Li
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| |
Collapse
|
2
|
Sepe F, Valentino A, Marcolongo L, Petillo O, Calarco A, Margarucci S, Peluso G, Conte R. Polysaccharide Hydrogels as Delivery Platforms for Natural Bioactive Molecules: From Tissue Regeneration to Infection Control. Gels 2025; 11:198. [PMID: 40136903 PMCID: PMC11942403 DOI: 10.3390/gels11030198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Polysaccharide-based hydrogels have emerged as indispensable materials in tissue engineering and wound healing, offering a unique combination of biocompatibility, biodegradability, and structural versatility. Indeed, their three-dimensional polymeric network and high water content closely resemble the natural extracellular matrix, creating a microenvironment for cell growth, differentiation, and tissue regeneration. Moreover, their intrinsic biodegradability, tunable chemical structure, non-toxicity, and minimal immunogenicity make them optimal candidates for prolonged drug delivery systems. Notwithstanding numerous advantages, these polysaccharide-based hydrogels are confronted with setbacks such as variability in material qualities depending on their source, susceptibility to microbial contamination, unregulated water absorption, inadequate mechanical strength, and unpredictable degradation patterns which limit their efficacy in real-world applications. This review summarizes recent advancements in the application of polysaccharide-based hydrogels, including cellulose, starch, pectin, zein, dextran, pullulan and hyaluronic acid as innovative solutions in wound healing, drug delivery, tissue engineering, and regenerative medicine. Future research should concentrate on optimizing hydrogel formulations to enhance their effectiveness in regenerative medicine and antimicrobial therapy.
Collapse
Affiliation(s)
- Fabrizia Sepe
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (F.S.); (A.V.); (L.M.); (O.P.); (S.M.); (G.P.); (R.C.)
| | - Anna Valentino
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (F.S.); (A.V.); (L.M.); (O.P.); (S.M.); (G.P.); (R.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Loredana Marcolongo
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (F.S.); (A.V.); (L.M.); (O.P.); (S.M.); (G.P.); (R.C.)
| | - Orsolina Petillo
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (F.S.); (A.V.); (L.M.); (O.P.); (S.M.); (G.P.); (R.C.)
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (F.S.); (A.V.); (L.M.); (O.P.); (S.M.); (G.P.); (R.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Sabrina Margarucci
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (F.S.); (A.V.); (L.M.); (O.P.); (S.M.); (G.P.); (R.C.)
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (F.S.); (A.V.); (L.M.); (O.P.); (S.M.); (G.P.); (R.C.)
- Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| | - Raffaele Conte
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (F.S.); (A.V.); (L.M.); (O.P.); (S.M.); (G.P.); (R.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
3
|
Alam A, Kalyani P, Khan A, Khandelwal M. Bacterial cellulose in transdermal drug delivery systems: Expanding horizons in multi-scale therapeutics and patient-centric approach. Int J Pharm 2025; 671:125254. [PMID: 39890087 DOI: 10.1016/j.ijpharm.2025.125254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/08/2025] [Accepted: 01/19/2025] [Indexed: 02/03/2025]
Abstract
This review explores the transformative potential of Bacterial cellulose (BC) in an increasingly vital avenue of transdermal drug delivery systems (TDDS) for multi-scale therapeutic applications with patient-centric approach. In this review, we have not only highlighted the role of BC as the main matrix material for TDDS but emphasized the other possible role that BC can play in TDDS. For this purpose, we have delved into the avenues of the physico-chemical interactions that BC can offer in governing the incorporation of different length-scales of therapeutics as well as tuning their extent of loading. Furthermore, this review underscores BC's potential in developing need-specific drug release profiles and stimuli-responsive release platforms, enabling their application in TDDS for wound healing, pain management, and targeted delivery for chronic diseases. Apart from the existing literature, this review focuses on patient comfort, which is an often-overlooked aspect, and highlights how BC's unique physicochemical properties enhance user experience. Additionally, this review justifies the potential of BC in compliance with the other parameters of the TDDS, including shelf-life, design requirements, and evaluation strategies in ensuring their clinical translation and user acceptance. To harness BC's potential in the new era of personalized TDDS, this review also sheds light on the challenges of standardizing BC production processes with appropriate data disclosure, ensuring adhesion and anti-microbial actions, along with the integration of passive and active technologies.
Collapse
Affiliation(s)
- Aszad Alam
- Cellulose & Composites Research Group, Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Sangareddy 502284, India; Department of Chemistry and Biotechnology, School of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.
| | - Peddapapannagari Kalyani
- Cellulose & Composites Research Group, Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Sangareddy 502284, India
| | - Arif Khan
- Cellulose & Composites Research Group, Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Sangareddy 502284, India
| | - Mudrika Khandelwal
- Cellulose & Composites Research Group, Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Sangareddy 502284, India
| |
Collapse
|
4
|
Dar MA, Xie R, Liu J, Ali S, Pawar KD, Sudiana IM, Sun J. Current Paradigms and Future Challenges in Harnessing Nanocellulose for Advanced Applications in Tissue Engineering: A Critical State-of-the-Art Review for Biomedicine. Int J Mol Sci 2025; 26:1449. [PMID: 40003914 PMCID: PMC11855852 DOI: 10.3390/ijms26041449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Nanocellulose-based biomaterials are at the forefront of biomedicine, presenting innovative solutions to longstanding challenges in tissue engineering and wound repair. These advanced materials demonstrate enhanced mechanical properties and improved biocompatibility while allowing for precise tuning of drug release profiles. Recent progress in the design, fabrication, and characterization of these biomaterials underscores their transformative potential in biomedicine. Researchers are employing strategic methodologies to investigate and characterize the structure and functionality of nanocellulose in tissue engineering and wound repair. In tissue engineering, nanocellulose-based scaffolds offer transformative opportunities to replicate the complexities of native tissues, facilitating the study of drug effects on the metabolism, vascularization, and cellular behavior in engineered liver, adipose, and tumor models. Concurrently, nanocellulose has gained recognition as an advanced wound dressing material, leveraging its ability to deliver therapeutic agents via precise topical, transdermal, and systemic pathways while simultaneously promoting cellular proliferation and tissue regeneration. The inherent transparency of nanocellulose provides a unique advantage, enabling real-time monitoring of wound healing progress. Despite these advancements, significant challenges remain in the large-scale production, reproducibility, and commercial viability of nanocellulose-based biomaterials. This review not only underscores these hurdles but also outlines strategic directions for future research, including the need for bioengineering of nanocellulose-based wound dressings with scalable production and the incorporation of novel functionalities for clinical translation. By addressing these key challenges, nanocellulose has the potential to redefine biomedical material design and offer transformative solutions for unmet clinical needs in tissue engineering and beyond.
Collapse
Affiliation(s)
- Mudasir A. Dar
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.A.D.); (J.L.); (S.A.)
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Rongrong Xie
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.A.D.); (J.L.); (S.A.)
| | - Jun Liu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.A.D.); (J.L.); (S.A.)
| | - Shehbaz Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.A.D.); (J.L.); (S.A.)
| | - Kiran D. Pawar
- School of Nanoscience and Biotechnology, Shivaji University, Vidyanagar, Kolhapur 416004, India;
| | - I Made Sudiana
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta-Bogor KM. 46, KST Soekarno, Cibinong, Bogor 16911, Indonesia;
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.A.D.); (J.L.); (S.A.)
| |
Collapse
|
5
|
Sepe F, Valentino A, Marcolongo L, Petillo O, Conte R, Margarucci S, Peluso G, Calarco A. Marine-Derived Polysaccharide Hydrogels as Delivery Platforms for Natural Bioactive Compounds. Int J Mol Sci 2025; 26:764. [PMID: 39859476 PMCID: PMC11766179 DOI: 10.3390/ijms26020764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Marine polysaccharide hydrogels have emerged as an innovative platform for regulating the in vivo release of natural bioactive compounds for medical purposes. These hydrogels, which have exceptional biocompatibility, biodegradability, and high water absorption capacity, create effective matrices for encapsulating different bioactive molecules. In addition, by modifying the physical and chemical properties of marine hydrogels, including cross-linking density, swelling behavior, and response to external stimuli like pH, temperature, or ionic strength, the release profile of encapsulated bioactive compounds is strictly regulated, thus maximizing therapeutic efficacy and minimizing side effects. Finally, by using naturally sourced polysaccharides in hydrogel formulations, sustainability is promoted by reducing dependence on synthetic polymers, meeting the growing demand for eco-friendly materials. This review analyzes the interaction between marine polysaccharide hydrogels and encapsulating compounds and offers examples of how bioactive molecules can be encapsulated, released, and stabilized.
Collapse
Affiliation(s)
- Fabrizia Sepe
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Anna Valentino
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Loredana Marcolongo
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Orsolina Petillo
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Raffaele Conte
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Sabrina Margarucci
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy
- Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
6
|
Gade L, Boyd BJ, Malmsten M, Heinz A. Stimuli-responsive drug delivery systems for inflammatory skin conditions. Acta Biomater 2024; 187:1-19. [PMID: 39209132 DOI: 10.1016/j.actbio.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/26/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Inflammatory skin conditions highly influence the quality of life of the patients suffering from these disorders. Symptoms include red, itchy and painful skin lesions, which are visible to the rest of the world, causing stigmatization and a significantly lower mental health of the patients. Treatment options are often unsatisfactory, as they suffer from either low patient adherence or the risk of severe side effects. Considering this, there is a need for new treatments, and notably of new ways of delivering the drugs. Stimuli-responsive drug delivery systems are able to deliver their drug cargo in response to a given stimulus and are, thus, promising for the treatment of inflammatory skin conditions. For example, the use of external stimuli such as ultraviolet light, near infrared radiation, or alteration of magnetic field enables drug release to be precisely controlled in space and time. On the other hand, internal stimuli induced by the pathological condition, including pH alteration in the skin or upregulation of reactive oxygen species or enzymes, can be utilized to create drug delivery systems that specifically target the diseased skin to achieve a better efficacy and safety. In the latter context, however, it is of key importance to match the trigger mechanism of the drug delivery system to the actual pathological features of the specific skin condition. Hence, the focus of this article is placed not only on reviewing stimuli-responsive drug delivery systems developed to treat specific inflammatory skin conditions, but also on critically evaluating their efficacy in the context of specific skin diseases. STATEMENT OF SIGNIFICANCE: Skin diseases affect one-third of the world's population, significantly lowering the quality of life of the patients, who deal with symptoms such as painful and itchy skin lesions, as well as stigmatization due to the visibility of their symptoms. Current treatments for inflammatory skin conditions are often hampered by low patient adherence or serious drug side effects. Therefore, more emphasis should be placed on developing innovative formulations that provide better efficacy and safety for patients. Stimuli-responsive drug delivery systems hold considerable promise in this regard, as they can deliver their cargo precisely where and when it is needed, reducing adverse effects and potentially offering better treatment outcomes.
Collapse
Affiliation(s)
- Luna Gade
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Ben J Boyd
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark; Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Martin Malmsten
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark; Department of Physical Chemistry 1, Lund University, Lund, Sweden
| | - Andrea Heinz
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark.
| |
Collapse
|
7
|
Deb D, Khatun B, M BD, Khan MR, Sen Sarma N, Sankaranarayanan K. Utilizing Silk Sericin as a Biomaterial for Drug Encapsulation in a Hydrogel Matrix with Polycaprolactone: Formulation and Evaluation of Antibacterial Activity. ACS OMEGA 2024; 9:32706-32716. [PMID: 39100358 PMCID: PMC11292657 DOI: 10.1021/acsomega.4c02453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 08/06/2024]
Abstract
Hydrogels have emerged as a potential tool for enhancing bioavailability and regulating the controlled release of therapeutic agents. Owing to its excellent biocompatibility, silk sericin-based hydrogels have garnered interest in biomedical applications. This study focuses on synthesizing a soft hydrogel by blending silk sericin (SS) and polycaprolactone (PCL) at room temperature. The physicochemical characteristics of the hydrogels have been estimated by different analytical techniques such as UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The rheological studies demonstrate the non-Newtonian behavior of the hydrogels. Further, the porosity analysis indicates a commendable absorption capacity of the hydrogels. The swelling degree of the hydrogels has been checked in both distilled water and buffer solutions of different pHs (2-10). Moreover, the drug release profile of the hydrogels, using diclofenac sodium (DS) as a model drug, has revealed a substantial release of approximately 67% within the first 130 min with a drug encapsulation efficiency of 60.32%. Moreover, both the empty and the drug-loaded hydrogels have shown antibacterial properties against Gram-positive and Gram-negative bacteria, with the drug-loaded hydrogels displaying enhanced effectiveness. Additionally, the prepared hydrogels are biodegradable, demonstrating their future prospects in biomedical applications.
Collapse
Affiliation(s)
- Dona Deb
- Institute
of Advanced Study in Science and Technology (An Autonomous Institute
Under DST, Govt. of India), Vigyan Path, Paschim Boragaon,
Garchuk, Guwahati 781035, Assam, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bably Khatun
- Institute
of Advanced Study in Science and Technology (An Autonomous Institute
Under DST, Govt. of India), Vigyan Path, Paschim Boragaon,
Garchuk, Guwahati 781035, Assam, India
| | - Bidyarani Devi M
- Institute
of Advanced Study in Science and Technology (An Autonomous Institute
Under DST, Govt. of India), Vigyan Path, Paschim Boragaon,
Garchuk, Guwahati 781035, Assam, India
| | - Mojibur R. Khan
- Institute
of Advanced Study in Science and Technology (An Autonomous Institute
Under DST, Govt. of India), Vigyan Path, Paschim Boragaon,
Garchuk, Guwahati 781035, Assam, India
| | - Neelotpal Sen Sarma
- Institute
of Advanced Study in Science and Technology (An Autonomous Institute
Under DST, Govt. of India), Vigyan Path, Paschim Boragaon,
Garchuk, Guwahati 781035, Assam, India
| | - Kamatchi Sankaranarayanan
- Institute
of Advanced Study in Science and Technology (An Autonomous Institute
Under DST, Govt. of India), Vigyan Path, Paschim Boragaon,
Garchuk, Guwahati 781035, Assam, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Do UT, Nguyen QT, Kim J, Luu QS, Park Y, Song M, Yang S, Choi J, Yun S, Kang DK, Lee Y. Tailored synthesis of pH-responsive biodegradable microcapsules incorporating gelatin, alginate, and hyaluronic acid for effective-controlled release. Int J Biol Macromol 2024; 270:132178. [PMID: 38735614 DOI: 10.1016/j.ijbiomac.2024.132178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/27/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
In response to escalating environmental concerns and the urgent need for sustainable drug delivery systems, this study introduces biodegradable pH-responsive microcapsules synthesized from a blend of gelatin, alginate, and hyaluronic acid. Employing the coacervation process, capsules were created with a spherical shape, multicore structure, and small sizes ranging from 10 to 20 μm, which exhibit outstanding vitamin E encapsulation efficiency. With substantial incorporation of hyaluronic acid, a pH-responsive component, the resulting microcapsules displayed noteworthy swelling behavior, facilitating proficient core ingredient release at pH 5.5 and 7.4. Notably, these capsules can effectively deliver active substances to the dermal layer under specific skin conditions, revealing promising applications in topical medications and cosmetics. Furthermore, the readily biodegradable nature of the designed capsules was demonstrated through Biochemical Oxygen Demand (BOD) testing, with over 80 % of microcapsules being degraded by microorganisms after one week of incubation. This research contributes to the development of responsive microcapsules and aligns with broader environmental initiatives, offering a promising pathway to mitigate the impact of microplastics while advancing various applications.
Collapse
Affiliation(s)
- Uyen Thi Do
- Department of Bionano Technology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, South Korea
| | - Quynh Thi Nguyen
- Department of Applied Chemistry, Hanyang University, Ansan 15588, South Korea
| | - Jiwon Kim
- Department of Bionano Technology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, South Korea
| | - Quy Son Luu
- Department of Bionano Technology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, South Korea
| | - Yeeun Park
- Department of Applied Chemistry, Hanyang University, Ansan 15588, South Korea
| | - Minji Song
- Department of Applied Chemistry, Hanyang University, Ansan 15588, South Korea
| | - Seyoung Yang
- Department of Applied Chemistry, Hanyang University, Ansan 15588, South Korea
| | - Jaehwa Choi
- Department of Applied Chemistry, Hanyang University, Ansan 15588, South Korea
| | - Seokki Yun
- Department of Applied Chemistry, Hanyang University, Ansan 15588, South Korea
| | - Dong-Ku Kang
- Department of Chemistry, Incheon National University, Incheon 22012, South Korea.
| | - Youngbok Lee
- Department of Bionano Technology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, South Korea; Department of Applied Chemistry, Hanyang University, Ansan 15588, South Korea.
| |
Collapse
|
9
|
Hou X, Lin L, Li K, Jiang F, Qiao D, Zhang B, Xie F. Towards superior biopolymer gels by enabling interpenetrating network structures: A review on types, applications, and gelation strategies. Adv Colloid Interface Sci 2024; 325:103113. [PMID: 38387158 DOI: 10.1016/j.cis.2024.103113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Gels derived from single networks of natural polymers (biopolymers) typically exhibit limited physical properties and thus have seen constrained applications in areas like food and medicine. In contrast, gels founded on a synergy of multiple biopolymers, specifically polysaccharides and proteins, with intricate interpenetrating polymer network (IPN) structures, represent a promising avenue for the creation of novel gel materials with significantly enhanced properties and combined advantages. This review begins with the scrutiny of newly devised IPN gels formed through a medley of polysaccharides and/or proteins, alongside an introduction of their practical applications in the realm of food, medicine, and environmentally friendly solutions. Finally, based on the fact that the IPN gelation process and mechanism are driven by different inducing factors entwined with a diverse amalgamation of polysaccharides and proteins, our survey underscores the potency of physical, chemical, and enzymatic triggers in orchestrating the construction of crosslinked networks within these biomacromolecules. In these mixed systems, each specific inducer aligns with distinct polysaccharides and proteins, culminating in the generation of semi-IPN or fully-IPN gels through the intricate interpenetration between single networks and polymer chains or between two networks, respectively. The resultant IPN gels stand as paragons of excellence, characterized by their homogeneity, dense network structures, superior textural properties (e.g., hardness, elasticity, adhesion, cohesion, and chewability), outstanding water-holding capacity, and heightened thermal stability, along with guaranteed biosafety (e.g., nontoxicity and biocompatibility) and biodegradability. Therefore, a judicious selection of polymer combinations allows for the development of IPN gels with customized functional properties, adept at meeting precise application requirements.
Collapse
Affiliation(s)
- Xinran Hou
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Lisong Lin
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Kexin Li
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Fatang Jiang
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Dongling Qiao
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China.
| | - Binjia Zhang
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Fengwei Xie
- School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK; Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
10
|
Vegad U, Patel M, Khunt D, Zupančič O, Chauhan S, Paudel A. pH stimuli-responsive hydrogels from non-cellulosic biopolymers for drug delivery. Front Bioeng Biotechnol 2023; 11:1270364. [PMID: 37781530 PMCID: PMC10540072 DOI: 10.3389/fbioe.2023.1270364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
Over the past several decades, there has been significant growth in the design and development of more efficient and advanced biomaterials based on non-cellulosic biological macromolecules. In this context, hydrogels based on stimuli-responsive non-cellulosic biological macromolecules have garnered significant attention because of their intrinsic physicochemical properties, biological characteristics, and sustainability. Due to their capacity to adapt to physiological pHs with rapid and reversible changes, several researchers have investigated pH-responsive-based non-cellulosic polymers from various materials. pH-responsive hydrogels release therapeutic substances in response to pH changes, providing tailored administration, fewer side effects, and improved treatment efficacy while reducing tissue damage. Because of these qualities, they have been shown to be useful in a wide variety of applications, including the administration of chemotherapeutic drugs, biological material, and natural components. The pH-sensitive biopolymers that are utilized most frequently include chitosan, alginate, hyaluronic acid, guar gum, and dextran. In this review article, the emphasis is placed on pH stimuli-responsive materials that are based on biological macromolecules for the purposes of drug administration.
Collapse
Affiliation(s)
- Udaykumar Vegad
- Graduate School of Pharmacy, Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Megha Patel
- Graduate School of Pharmacy, Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Dignesh Khunt
- Graduate School of Pharmacy, Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Ožbej Zupančič
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz, Austria
| | - Sanjay Chauhan
- Graduate School of Pharmacy, Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz, Austria
- Institute of Process and Particle Engineering, Graz University of Technology, Graz, Austria
| |
Collapse
|
11
|
Gong J, Borecki A, Gillies ER. Self-Immolative Hydrogels with Stimulus-Mediated On-Off Degradation. Biomacromolecules 2023; 24:3629-3637. [PMID: 37418699 DOI: 10.1021/acs.biomac.3c00382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Hydrogels are of interest for a wide range of applications from sensors to drug delivery and tissue engineering. Self-immolative polymers, which depolymerize from end-to-end following a single backbone or end-cap cleavage, offer advantages such as amplification of the stimulus-mediated cleavage event through a cascade degradation process. It is also possible to change the active stimulus by changing only a single end-cap or linker unit. However, there are very few examples of self-immolative polymer hydrogels, and the reported examples exhibited relatively poor stability in their nontriggered state or slow degradation after triggering. Described here is the preparation of hydrogels composed of self-immolative poly(ethyl glyoxylate) (PEtG) and poly(ethylene glycol) (PEG). Hydrogels formed from 2 kg/mol 4-arm PEG and 1.2 kg/mol PEtG with a light-responsive linker end-cap had high gel content (90%), an equilibrium water content of 89%, and a compressive modulus of 26 kPa. The hydrogel degradation could be turned on and off repeatedly through alternating cycles of irradiation and dark storage. Similar cycles could also be used to control the release of the anti-inflammatory drug celecoxib. These results demonstrate the potential for self-immolative hydrogels to afford a high degree of control over responses to stimuli in the context of smart materials for a variety of applications.
Collapse
Affiliation(s)
- Jue Gong
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Aneta Borecki
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Elizabeth R Gillies
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B9, Canada
| |
Collapse
|
12
|
Mikhailidi A, Volf I, Belosinschi D, Tofanica BM, Ungureanu E. Cellulose-Based Metallogels-Part 2: Physico-Chemical Properties and Biological Stability. Gels 2023; 9:633. [PMID: 37623088 PMCID: PMC10453698 DOI: 10.3390/gels9080633] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
Metallogels represent a class of composite materials in which a metal can be a part of the gel network as a coordinated ion, act as a cross-linker, or be incorporated as metal nanoparticles in the gel matrix. Cellulose is a natural polymer that has a set of beneficial ecological, economic, and other properties that make it sustainable: wide availability, renewability of raw materials, low-cost, biocompatibility, and biodegradability. That is why metallogels based on cellulose hydrogels and additionally enriched with new properties delivered by metals offer exciting opportunities for advanced biomaterials. Cellulosic metallogels can be either transparent or opaque, which is determined by the nature of the raw materials for the hydrogel and the metal content in the metallogel. They also exhibit a variety of colors depending on the type of metal or its compounds. Due to the introduction of metals, the mechanical strength, thermal stability, and swelling ability of cellulosic materials are improved; however, in certain conditions, metal nanoparticles can deteriorate these characteristics. The embedding of metal into the hydrogel generally does not alter the supramolecular structure of the cellulose matrix, but the crystallinity index changes after decoration with metal particles. Metallogels containing silver (0), gold (0), and Zn(II) reveal antimicrobial and antiviral properties; in some cases, promotion of cell activity and proliferation are reported. The pore system of cellulose-based metallogels allows for a prolonged biocidal effect. Thus, the incorporation of metals into cellulose-based gels introduces unique properties and functionalities of this material.
Collapse
Affiliation(s)
- Aleksandra Mikhailidi
- Higher School of Printing and Media Technologies, St. Petersburg State University of Industrial Technologies and Design, 18 Bolshaya Morskaya Street, 191186 St. Petersburg, Russia;
| | - Irina Volf
- “Gheorghe Asachi” Technical University of Iasi, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
| | - Dan Belosinschi
- Département de Chimie-Biologie/Biologie Medicale, Université du Québec à Trois-Rivières, Trois-Rivieres, QC G8Z 4M3, Canada;
| | - Bogdan-Marian Tofanica
- “Gheorghe Asachi” Technical University of Iasi, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
- IF2000 Academic Foundation, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
| | - Elena Ungureanu
- “Ion Ionescu de la Brad” University of Life Sciences Iasi, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania;
| |
Collapse
|
13
|
Chen X, Xiao H, Shi X, Zhao Q, Xu X, Fan P, Xiao D. Bibliometric analysis and visualization of transdermal drug delivery research in the last decade: global research trends and hotspots. Front Pharmacol 2023; 14:1173251. [PMID: 37397493 PMCID: PMC10313210 DOI: 10.3389/fphar.2023.1173251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/08/2023] [Indexed: 07/04/2023] Open
Abstract
Background: Transdermal delivery has become a crucial field in pharmaceutical research. There has been a proliferation of innovative methods for transdermal drug delivery. In recent years, the number of publications regarding transdermal drug delivery has been rising rapidly. To investigate the current research trends and hotspots in transdermal drug delivery, a comprehensive bibliometric analysis was performed. Methods: An extensive literature review was conducted to gather information on transdermal drug delivery that had been published between 2003 and 2022. The articles were obtained from the Web of Science (WOS) and the National Center for Biotechnology Information (NCBI) databases. Subsequently, the collected data underwent analysis and visualization using a variety of software tools. This approach enables a deeper exploration of the hotspots and emerging trends within this particular research domain. Results: The results showed that the number of articles published on transdermal delivery has increased steadily over the years, with a total of 2,555 articles being analyzed. The most frequently cited articles were related to the optimization of drug delivery and the use of nanotechnology in transdermal drug delivery. The most active countries in the field of transdermal delivery research were the China, United States, and India. Furthermore, the hotspots over the past 2 decades were identified (e.g., drug therapy, drug delivery, and pharmaceutical preparations and drug design). The shift in research focus reflects an increasing emphasis on drug delivery and control release, rather than simply absorption and penetration, and suggests a growing interest in engineering approaches to transdermal drug delivery. Conclusion: This study provided a comprehensive overview of transdermal delivery research. The research indicated that transdermal delivery would be a rapidly evolving field with many opportunities for future research and development. Moreover, this bibliometric analysis will help researchers gain insights into transdermal drug delivery research's hotspots and trends accurately and quickly.
Collapse
Affiliation(s)
- Xinghan Chen
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Burns and Plastic Surgery, West China Hospital Sichuan University, Chengdu, Sichuan, China
| | - Haitao Xiao
- Department of Burns and Plastic Surgery, West China Hospital Sichuan University, Chengdu, Sichuan, China
| | - Xiujun Shi
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qiao Zhao
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xuewen Xu
- Department of Burns and Plastic Surgery, West China Hospital Sichuan University, Chengdu, Sichuan, China
| | - Ping Fan
- Department of Pharmacy, West China Hospital Sichuan University, Chengdu, Sichuan, China
| | - Dongqin Xiao
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
14
|
Zhivkov AM, Popov TT, Hristova SH. Composite Hydrogels with Included Solid-State Nanoparticles Bearing Anticancer Chemotherapeutics. Gels 2023; 9:gels9050421. [PMID: 37233012 DOI: 10.3390/gels9050421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Hydrogels have many useful physicochemical properties which, in combination with their biocompatibility, suggest their application as a drug delivery system for the local and prorogated release of drugs. However, their drug-absorption capacity is limited because of the gel net's poor adsorption of hydrophilic molecules and in particular, hydrophobic molecules. The absorption capacity of hydrogels can be increased with the incorporation of nanoparticles due to their huge surface area. In this review, composite hydrogels (physical, covalent and injectable) with included hydrophobic and hydrophilic nanoparticles are considered as suitable for use as carriers of anticancer chemotherapeutics. The main focus is given to the surface properties of the nanoparticles (hydrophilicity/hydrophobicity and surface electric charge) formed from metal and dielectric substances: metals (gold, silver), metal-oxides (iron, aluminum, titanium, zirconium), silicates (quartz) and carbon (graphene). The physicochemical properties of the nanoparticles are emphasized in order to assist researchers in choosing appropriate nanoparticles for the adsorption of drugs with hydrophilic and hydrophobic organic molecules.
Collapse
Affiliation(s)
- Alexandar M Zhivkov
- Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 11, 1113 Sofia, Bulgaria
| | - Trifon T Popov
- Medical Faculty, Medical University-Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
| | - Svetlana H Hristova
- Department of Medical Physics and Biophysics, Medical Faculty, Medical University-Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
| |
Collapse
|
15
|
Salathia S, Gigliobianco MR, Casadidio C, Di Martino P, Censi R. Hyaluronic Acid-Based Nanosystems for CD44 Mediated Anti-Inflammatory and Antinociceptive Activity. Int J Mol Sci 2023; 24:ijms24087286. [PMID: 37108462 PMCID: PMC10138575 DOI: 10.3390/ijms24087286] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The nervous and immune systems go hand in hand in causing inflammation and pain. However, the two are not mutually exclusive. While some diseases cause inflammation, others are caused by it. Macrophages play an important role in modulating inflammation to trigger neuropathic pain. Hyaluronic acid (HA) is a naturally occurring glycosaminoglycan that has a well-known ability to bind with the cluster of differentiation 44 (CD44) receptor on classically activated M1 macrophages. Resolving inflammation by varying the molecular weight of HA is a debated concept. HA-based drug delivery nanosystems such as nanohydrogels and nanoemulsions, targeting macrophages can be used to relieve pain and inflammation by loading antinociceptive drugs and enhancing the effect of anti-inflammatory drugs. This review will discuss the ongoing research on HA-based drug delivery nanosystems regarding their antinociceptive and anti-inflammatory effects.
Collapse
Affiliation(s)
- Saniya Salathia
- School of Pharmacy, Università di Camerino, 62032 Camerino, Italy
| | | | | | - Piera Di Martino
- School of Pharmacy, Università di Camerino, 62032 Camerino, Italy
- Department of Pharmacy, Università "G. d'Annunzio" di Chieti e Pescara, 66100 Chieti, Italy
| | - Roberta Censi
- School of Pharmacy, Università di Camerino, 62032 Camerino, Italy
| |
Collapse
|
16
|
Su Z, Zhang Y, Cao J, Sun Y, Cai Y, Zhang B, He L, Zhang Z, Xie J, Meng Q, Luo L, Li F, Li J, Zhang J, Chen X, Hong A. Hyaluronic acid-FGF2-derived peptide bioconjugates for suppression of FGFR2 and AR simultaneously as an acne antagonist. J Nanobiotechnology 2023; 21:55. [PMID: 36803994 PMCID: PMC9938603 DOI: 10.1186/s12951-023-01812-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Acne is a chronic skin condition that has serious consequences for mental and social well-being because it frequently occurs on the face. Several acne treatment approaches have commonly been used but have been hampered by side effects or weak activity. Thus, the investigation of the safety and efficacy of anti-acne compounds is of considerable medical importance. Herein, an endogenous peptide (P5) derived from fibroblast growth factors 2 (FGF2) was conjugated to the polysaccharide hyaluronic acid (HA) to generate the bioconjugate nanoparticle HA-P5, which suppresses fibroblast growth factor receptors (FGFRs) to significantly rehabilitate acne lesions and reduce sebum accumulation in vivo and in vitro. Moreover, our results show that HA-P5 inhibits both fibroblast growth factor receptor 2 (FGFR2) and androgen receptor (AR) signalling in SZ95 cells, reverses the acne-prone transcriptome, and decreases sebum secretion. Furthermore, the cosuppression mechanism revealed that HA-P5 blocks FGFR2 activation, as well as the YTH N6-methyladenosine RNA binding protein F3 (YTHDF3) downstream molecules, including an N6-methyladenosine (m6A) reader that facilitates AR translation. More importantly, a significant difference between HA-P5 and the commercial FGFR inhibitor AZD4547 is that HA-P5 does not trigger the overexpression of aldo-keto reductase family 1 member C3 (AKR1C3), which blocks acne treatment by catalyzing the synthesis of testosterone. Overall, we demonstrate that a polysaccharide-conjugated and naturally derived oligopeptide HA-P5 can alleviate acne and act as an optimal FGFR2 inhibitor and reveal that YTHDF3 plays a crucial role in signalling between FGFR2 and AR.
Collapse
Affiliation(s)
- Zijian Su
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Yibo Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jieqiong Cao
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
- The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yuanmeng Sun
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Yuling Cai
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Bihui Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Liu He
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zilei Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Junye Xie
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qilin Meng
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Lin Luo
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Fu Li
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jingsheng Li
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jinting Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiaojia Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - An Hong
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
17
|
Zhou S, Yang D, Yang D, Guo Y, Hu R, Li Y, Zan X, Zhang X. Injectable, Self-Healing and Multiple Responsive Histamine Modified Hyaluronic Acid Hydrogels with Potentialities in Drug Delivery, Antibacterial and Tissue Engineering. Macromol Rapid Commun 2023; 44:e2200674. [PMID: 36205697 DOI: 10.1002/marc.202200674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/25/2022] [Indexed: 11/08/2022]
Abstract
Hydrogels are 3D network structures composed of physically or chemically crosslinked, hydrophilic molecules. Compared with conventional hydrogels with static and permanent network structures, injectable and responsive hydrogels generated from dynamic networks, have attracted increasing attention from various disciplines due to their wide-ranging applications in tissue engineering, drug delivery, soft robotics, etc. Herein, an injectable self-healing and multiple-responsive hyaluronic acid (HA)- histamine (His)/metal hydrogel is developed by modifying His onto HA and the subsequent, dynamic coordination between imidazole and metal ions. The pH-responsive and mechanical behaviors exhibited by the HA-His/metal hydrogels are tunable with the kinds and the concentrations of metal ions. The HA-His/Zr4+ hydrogels demonstrate a moldable capability at a neutral pH and a multi-stimulus-responsive capability when exposed to a weak alkaline environment and hyaluronidase, which inhibits bacterial growth and biofilm formation. Biocompatibilities and accelerated wound healing are demonstrated in vitro and in vivo and are thoroughly investigated and well characterized. The HA-His/Zr4+ hydrogel has great potential in various biomedical applications, such as pH- and hyaluronidase-responsive sustained release, antibacterial, and implantable materials for tissue engineering.
Collapse
Affiliation(s)
- Sijie Zhou
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, P. R. China.,Oujiang Laboratory, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China
| | - Dejun Yang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, P. R. China.,Oujiang Laboratory, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China
| | - Dong Yang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, P. R. China
| | - Yan Guo
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Hunan, 411201, P. R. China
| | - Ronggui Hu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Yuan Li
- Burn and Wound Healing Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, P. R. China.,Oujiang Laboratory, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China
| | - Xingxing Zhang
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, P. R. China
| |
Collapse
|
18
|
Novel Crosslinked HA Hydrogel Films for the Immediate Release of Active Ingredients. COSMETICS 2022. [DOI: 10.3390/cosmetics10010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Novel crosslinked hyaluronic acid (HA) hydrogel films were previously invented by reacting the HA polymer with the PT (Pentaerythritol Tetra-acrylate) crosslinker over basic pH conditions in the oven. HA is considered a natural polymer present in cosmetic as well as pharmaceutical formulations. This current study aimed to highlight the effect of loading method (post-loading and in situ) of selected actives (salicylic acid and niacinamide B3) in the hydrogel films and then study their release kinetics. Differential scanning colometry (DSC) and Fourier transform infrared spectroscopy (FTIR) analysis evidenced the loading of the actives and full release from the HA hydrogel films, while the scanning electron microscopy (SEM) demonstrated the morphological changes to the films during the study by comparing the average molecular weight between crosslinks (M¯c), gel fraction, crosslinking density (Ve) and mesh size (ξ) of the films. The loading percentage of the SA and B3 showed high percentage loading of actives via both loading methods. In conclusion, the (95–100%) release of the actives achieved from the HA hydrogel films within 10 min revealed that the films are an efficient immediate release system of actives.
Collapse
|
19
|
Revete A, Aparicio A, Cisterna BA, Revete J, Luis L, Ibarra E, Segura González EA, Molino J, Reginensi D. Advancements in the Use of Hydrogels for Regenerative Medicine: Properties and Biomedical Applications. Int J Biomater 2022; 2022:3606765. [PMID: 36387956 PMCID: PMC9663251 DOI: 10.1155/2022/3606765] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/29/2022] [Accepted: 10/05/2022] [Indexed: 07/29/2023] Open
Abstract
Due to their particular water absorption capacity, hydrogels are the most widely used scaffolds in biomedical studies to regenerate damaged tissue. Hydrogels can be used in tissue engineering to design scaffolds for three-dimensional cell culture, providing a novel alternative to the traditional two-dimensional cell culture as hydrogels have a three-dimensional biomimetic structure. This material property is crucial in regenerative medicine, especially for the nervous system, since it is a highly complex and delicate structure. Hydrogels can move quickly within the human body without physically disturbing the environment and possess essential biocompatible properties, as well as the ability to form a mimetic scaffold in situ. Therefore, hydrogels are perfect candidates for biomedical applications. Hydrogels represent a potential alternative to regenerating tissue lost after removing a brain tumor and/or brain injuries. This reason presents them as an exciting alternative to highly complex human physiological problems, such as injuries to the central nervous system and neurodegenerative disease.
Collapse
Affiliation(s)
- Andrea Revete
- Biological Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Americas (UDELAS), Panama City, Panama
- Biomedical Engineering, Faculty of Health Sciences and Engineering, Universidad Latina de Panama (ULATINA), Panama City, Panama
| | - Andrea Aparicio
- Biological Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Americas (UDELAS), Panama City, Panama
| | - Bruno A. Cisterna
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Javier Revete
- Experimentia S.A, Development of Innovative Strategies in Biomedicine and Sustainable Development, Panama, Panama
| | - Luis Luis
- Experimentia S.A, Development of Innovative Strategies in Biomedicine and Sustainable Development, Panama, Panama
| | - Ernesto Ibarra
- Biomedical Engineering, Faculty of Health Sciences and Engineering, Universidad Latina de Panama (ULATINA), Panama City, Panama
| | | | - Jay Molino
- Biological Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Americas (UDELAS), Panama City, Panama
| | - Diego Reginensi
- Biological Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Americas (UDELAS), Panama City, Panama
- Biomedical Engineering, Faculty of Health Sciences and Engineering, Universidad Latina de Panama (ULATINA), Panama City, Panama
- Integrative Neurobiology, School of Medicine, Universidad de Panama (UP), Panama, Panama
- Center for Biodiversity and Drug Discovery, INDICASAT-AIP, City of Knowledge, Panama, Panama
| |
Collapse
|
20
|
Natural polysaccharide-based biodegradable polymeric platforms for transdermal drug delivery system: a critical analysis. Drug Deliv Transl Res 2022; 12:2649-2666. [PMID: 35499715 DOI: 10.1007/s13346-022-01152-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
Natural biodegradable polymers generally include polysaccharides (starch, alginate, chitin/chitosan, hyaluronic acid derivatives, etc.) and proteins (collagen, gelatin, fibrin, etc.). In transdermal drug delivery systems (TDDS), these polymers play a vital role in controlling the device's drug release. It is possible that natural polymers can be used for TDDS to attain predetermined drug delivery rates due to their physicochemical properties. These polymers can be employed to market products and scale production because they are readily available and inexpensive. As a result of these polymers, new pharmaceutical delivery systems can be developed that is both regulated and targeted. The focus of this article is the application of a biodegradable polymeric platform based on natural polymers for TDDS. Due to their biocompatibility and biodegradability, natural biodegradable polymers are frequently used in biomedical applications. Additionally, these natural biodegradable polymers are being studied for their characteristics and behaviors.
Collapse
|
21
|
Odinotski S, Dhingra K, GhavamiNejad A, Zheng H, GhavamiNejad P, Gaouda H, Mohammadrezaei D, Poudineh M. A Conductive Hydrogel-Based Microneedle Platform for Real-Time pH Measurement in Live Animals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200201. [PMID: 36166698 DOI: 10.1002/smll.202200201] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/22/2022] [Indexed: 06/16/2023]
Abstract
Conventional microneedles (MNs) have been extensively reported and applied toward a variety of biosensing and drug delivery applications. Hydrogel forming MNs with the added ability to electrically track health conditions in real-time is an area yet to be explored. The first conductive hydrogel microneedle (HMN) electrode that is capable of on-needle pH detection with no postprocessing required is presented here. The HMN array is fabricated using a swellable dopamine (DA) conjugated hyaluronic acid (HA) hydrogel, and is embedded with poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) to increase conductivity. The catechol-quinone chemistry intrinsic to DA is used to measure pH in interstitial fluid (ISF). The effect of PEDOT:PSS on the characteristics of the HMN array such as swelling capability and mechanical strength is fully studied. The HMN's capability for pH measurement is first demonstrated using porcine skin equilibrated with different pH solutions ranging from 3.5 to 9. Furthermore, the HMN-pH meter is capable of in vivo measurements with a 93% accuracy compared to a conventional pH probe meter. This HMN technology bridges the gap between traditional metallic electrochemical biosensors and the direct extraction of ISF, and introduces a platform for the development of polymeric wearable sensors capable of on-needle detection.
Collapse
Affiliation(s)
- Sarah Odinotski
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, N2L, Canada
| | - Karan Dhingra
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, N2L, Canada
| | - Amin GhavamiNejad
- Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S, Canada
| | - Hanjia Zheng
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, N2L, Canada
| | - Peyman GhavamiNejad
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, N2L, Canada
| | - Hager Gaouda
- Department of Systems Design Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, N2L, Canada
| | - Dorsa Mohammadrezaei
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, N2L, Canada
| | - Mahla Poudineh
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, N2L, Canada
| |
Collapse
|
22
|
Vanoli V, Delleani S, Casalegno M, Pizzetti F, Makvandi P, Haugen H, Mele A, Rossi F, Castiglione F. Hyaluronic acid-based hydrogels: Drug diffusion investigated by HR-MAS NMR and release kinetics. Carbohydr Polym 2022; 301:120309. [DOI: 10.1016/j.carbpol.2022.120309] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022]
|
23
|
Manzoor A, Dar AH, Pandey VK, Shams R, Khan S, Panesar PS, Kennedy JF, Fayaz U, Khan SA. Recent insights into polysaccharide-based hydrogels and their potential applications in food sector: A review. Int J Biol Macromol 2022; 213:987-1006. [PMID: 35705126 DOI: 10.1016/j.ijbiomac.2022.06.044] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 12/16/2022]
Abstract
Hydrogels are ideal for various food applications because of their softness, elasticity, absorbent nature, flexibility, and hygroscopic nature. Polysaccharide hydrogels are particularly suitable because of the hydrophilic nature, their food compatibility, and their non-immunogenic character. Such hydrogels offer a wide range of successful applications such as food preservation, pharmaceuticals, agriculture, and food packaging. Additionally, polysaccharide hydrogels have proven to play a significant role in the formulation of food flavor carrier systems, thus diversifying the horizons of newer developments in food processing sector. Polysaccharide hydrogels are comprised of natural polymers such as alginate, chitosan, starch, pectin and hyaluronic acid when crosslinked physically or chemically. Hydrogels with interchangeable, antimicrobial and barrier properties are referred to as smart hydrogels. This review brings together the recent and relevant polysaccharide research in these polysaccharide hydrogel applications areas and seeks to point the way forward for future research and interventions. Applications in carrying out the process of flavor carrier system directly through their incorporation in food matrices, broadening the domain for food application innovations. The classification and important features of polysaccharide-based hydrogels in food processing are the topics of the current review study.
Collapse
Affiliation(s)
- Arshied Manzoor
- Department of Post-Harvest Engineering and Technology, Faculty of Agricultural Sciences, A.M.U., Aligarh, 202002, UP, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir 1921222, India.
| | - Vinay Kumar Pandey
- Department of Bioengineering, Integral University, Lucknow, 226026, UP, India
| | - Rafeeya Shams
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, 180009, India
| | - Sadeeya Khan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Parmjit S Panesar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology Longowal, 148106, Punjab, India
| | - John F Kennedy
- Chembiotech Laboratories, Kyrewood House, Tenbury Wells, Worcestershire WR15 8SG, United Kingdom
| | - Ufaq Fayaz
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir 190025, India
| | - Shafat Ahmad Khan
- Department of Food Technology, Islamic University of Science and Technology, Kashmir 1921222, India
| |
Collapse
|
24
|
Hu Y, Kim Y, Jeong JP, Park S, Shin Y, Ki Hong I, Sung Kim M, Jung S. Novel temperature/pH-responsive hydrogels based on succinoglycan/poly(N-isopropylacrylamide) with improved mechanical and swelling properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
Khorshid S, Montanari M, Benedetti S, Moroni S, Aluigi A, Canonico B, Papa S, Tiboni M, Casettari L. A microfluidic approach to fabricate sucrose decorated liposomes with increased uptake in breast cancer cells. Eur J Pharm Biopharm 2022; 178:53-64. [DOI: 10.1016/j.ejpb.2022.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/04/2022]
|
26
|
Chitosan/guar gum-based thermoreversible hydrogels loaded with pullulan nanoparticles for enhanced nose-to-brain drug delivery. Int J Biol Macromol 2022; 215:579-595. [PMID: 35779651 DOI: 10.1016/j.ijbiomac.2022.06.161] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/02/2022] [Accepted: 06/25/2022] [Indexed: 11/21/2022]
Abstract
The biopolymers-based two-fold system could provide a sustained release platform for drug delivery to the brain resisting the mucociliary clearance, enzymatic degradation, bypassing the first-pass hepatic metabolism, and BBB thus providing superior bioavailability through intranasal administration. In this study, poloxamers PF-127/PF-68 grafted chitosan HCl-co-guar gum-based thermoresponsive hydrogel loaded with eletriptan hydrobromide laden pullulan nanoparticles was synthesized and subjected to dynamic light scattering, Fourier transform infrared spectroscopy, thermal analysis, x-ray diffraction, scanning electron microscopy, stability studies, mucoadhesive strength and time, gel strength, cloud point assessment, rheological assessment, ex-vivo permeation, cell viability assay, histology studies, and in-vivo Pharmacokinetics studies, etc. It is quite evident that CSG-EH-NPs T-Hgel has an enhanced sustained release drug profile where approximately 86 % and 84 % of drug released in phosphate buffer saline and simulated nasal fluid respectively throughout 48 h compared to EH-NPs where 99.44 % and 97.53 % of the drug was released in PBS and SNF for 8 h. In-vivo PKa parameters i.e., mean residence time (MRT) of 11.9 ± 0.83 compared to EH-NPs MRT of 10.2 ± 0.92 and area under the curve (AUCtot) of 42,540.5 ± 5314.14 comparing to AUCtot of EH-NPs 38,026 ± 6343.1 also establish the superiority of CSG-EH-NPs T-Hgel.
Collapse
|
27
|
Ding YW, Wang ZY, Ren ZW, Zhang XW, Wei DX. Advances in modified hyaluronic acid-based hydrogels for skin wound healing. Biomater Sci 2022; 10:3393-3409. [PMID: 35575243 DOI: 10.1039/d2bm00397j] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Hyaluronic acid (HA) is a natural linear anionic polysaccharide with many unique characteristics such as excellent biocompatibility and biodegradability, native biofunctionality, hydrophilicity, and non-immunoreactivity. HA plays crucial roles in numerous biological processes, including the inflammatory response, cell adhesion, migration, proliferation, differentiation, angiogenesis, and tissue regeneration. All these properties and biological functions of HA make it an appealing material for the synthesis of biomedical hydrogels for skin wound healing. Since HA is not able to be gelate alone, it must be processed and functionalized through chemical modifications and crosslinking to generate versatile HA-based hydrogels. In recent years, different physical and chemical crosslinking strategies for HA-based hydrogels have been developed and designed, such as radical polymerization, Schiff-base crosslinking, enzymatic crosslinking, and dynamic covalent crosslinking, and they have broad and promising applications in skin wound healing and tissue engineering. In this review, we focus on chemical modification and crosslinking strategies for HA-based hydrogels, aiming to provide an overview of the latest advances in the development of HA-based hydrogels for skin wound healing. We summarize and propose feasible measures for the application of HA-based hydrogels for skin treatment, and discuss future application trends, which may ultimately promote HA-based hydrogels as a promising biomaterial for clinical applications.
Collapse
Affiliation(s)
- Yan-Wen Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of life sciences and medicine, Northwest University, Xi'an, China.
| | - Ze-Yu Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of life sciences and medicine, Northwest University, Xi'an, China.
| | - Zi-Wei Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of life sciences and medicine, Northwest University, Xi'an, China.
| | - Xu-Wei Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of life sciences and medicine, Northwest University, Xi'an, China.
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of life sciences and medicine, Northwest University, Xi'an, China.
| |
Collapse
|
28
|
Qiao N, Zhang Y, Fang Y, Deng H, Zhang D, Lin H, Chen Y, Yong KT, Xiong J. Silk Fabric Decorated with Thermo-Sensitive Hydrogel for Sustained Release of Paracetamol. Macromol Biosci 2022; 22:e2200029. [PMID: 35598095 DOI: 10.1002/mabi.202200029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/09/2022] [Indexed: 01/09/2023]
Abstract
Paracetamol is a safe and widely used antipyretic and analgesic drug, however, with the drawbacks of gastrointestinal first-pass effect and short intervals of administration. Transdermal drug delivery system can effectively avoid the liver metabolism caused by excess oral ingestion of Paracetamol. Herein, we propose a silk fabric-based medical dressing decorated by a thermo-responsive hydrogel for sustained release of paracetamol. Genipin as a bio-safe cross-linker was applied to assist gelation of a thermo-responsive hydrogel system coupled of chitosan and glycerol-phosphate disodium salt (GP) around body temperature (37 °C), as well as densify the microporous gel to improve mechanical strength. The in-situ sol-gel transition enabled hydrogel well penetrate and coat the silk fabric, forming a hierarchical hydrogel structure capable of prolonging sustained release of drug to 12 h, twice as long as a blank fabric. The silk fabric with a thin gel coating maintains good water vapor transmission rate (WVTR), compatible for skin contact application. The drug release properties can be tuned by regulating the genipin content and fabric braiding structure. The silk fabric dressing exhibits temperature-dependent instant release behavior within the first two hours. The sustained release mechanism of paracetamol well matches with the Korsmeyer-Peppas model in a non-Fickian diffusion. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Na Qiao
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Yufan Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Ying Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Heli Deng
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Desuo Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China.,National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China
| | - Hong Lin
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Yuyue Chen
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Ken Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jiaqing Xiong
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
29
|
Li J, Xiang H, Zhang Q, Miao X. Polysaccharide-Based Transdermal Drug Delivery. Pharmaceuticals (Basel) 2022; 15:ph15050602. [PMID: 35631428 PMCID: PMC9146969 DOI: 10.3390/ph15050602] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022] Open
Abstract
Materials derived from natural plants and animals have great potential for transdermal drug delivery. Polysaccharides are widely derived from marine, herbal, and microbial sources. Compared with synthetic polymers, polysaccharides have the advantages of non-toxicity and biodegradability, ease of modification, biocompatibility, targeting, and antibacterial properties. Currently, polysaccharide-based transdermal drug delivery vehicles, such as hydrogel, film, microneedle (MN), and tissue scaffolds are being developed. The addition of polysaccharides allows these vehicles to exhibit better-swelling properties, mechanical strength, tensile strength, etc. Due to the stratum corneum’s resistance, the transdermal drug delivery system cannot deliver drugs as efficiently as desired. The charge and hydration of polysaccharides allow them to react with the skin and promote drug penetration. In addition, polysaccharide-based nanotechnology enhances drug utilization efficiency. Various diseases are currently treated by polysaccharide-based transdermal drug delivery devices and exhibit promising futures. The most current knowledge on these excellent materials will be thoroughly discussed by reviewing polysaccharide-based transdermal drug delivery strategies.
Collapse
Affiliation(s)
- Jingyuan Li
- Marine College, Shandong University, Weihai 264209, China; (J.L.); (H.X.); (Q.Z.)
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Hong Xiang
- Marine College, Shandong University, Weihai 264209, China; (J.L.); (H.X.); (Q.Z.)
| | - Qian Zhang
- Marine College, Shandong University, Weihai 264209, China; (J.L.); (H.X.); (Q.Z.)
| | - Xiaoqing Miao
- Marine College, Shandong University, Weihai 264209, China; (J.L.); (H.X.); (Q.Z.)
- Weihai Changqing Ocean Science Technology Co., Ltd., Weihai 264209, China
- Correspondence: ; Tel.: +86-19806301068
| |
Collapse
|
30
|
Derakhshani A, Hesaraki S, Nezafati N, Azami M. Wound closure, angiogenesis and antibacterial behaviors of tetracalcium phosphate/hydroxyethyl cellulose/hyaluronic acid/gelatin composite dermal scaffolds. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:605-626. [PMID: 34844507 DOI: 10.1080/09205063.2021.2008786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Polymeric and tetracalcium phosphate (TTCP)-containing polymeric scaffolds were fabricated using a freeze-drying technique, with a homogenous solution of hydroxyethyl cellulose (HEC)/hyaluronic acid (HA)/gelatin (G) or suspension of 15 or 20% TTCP) particles in HEC/HA/G solution. The morphology, phase composition, chemical bands, and swelling behavior of the scaffold were determined. In vitro fibroblast cell viability and migration potential of the scaffolds were determined by MTT, live/dead staining, and scratch assay for wound healing. The in vivo chick embryo angiogenesis test was also carried out. Finally, the initial antibacterial activity of the scaffolds was determined using Staphylococcus aureus. The scaffolds exhibited an enormous porous structure in which the size of pores increased by the presence of TTCP particles. While the polymeric scaffold was amorphous, the formation of low crystalline hydroxyapatite phase and the initial TTCP particles was determined in the composition of TTCP-added scaffolds. TTCP increased swelling behavior of the polymeric scaffold in PBS. The results demonstrated that the amount of TTCP was a crucial factor in cell life. A high concentration of TTCP could restrict cell viability, although all the scaffolds were nontoxic. The scratch assessments determined better cell migration and wound closure in treating with TTCP-containing scaffolds so that after 24 h, a wound closure of 100% was observed. Furthermore, TTCP-incorporated scaffolds significantly improved the angiogenesis, in the chick embryo test. The presence of TTCP had a significant effect on reducing the bacterial activity and 20% TTCP-containing scaffold exhibited better antibacterial activity than the others.
Collapse
Affiliation(s)
- Atefeh Derakhshani
- Biomaterials Group, Department of Nanotechnology & Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Saeed Hesaraki
- Biomaterials Group, Department of Nanotechnology & Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Nader Nezafati
- Biomaterials Group, Department of Nanotechnology & Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Ruan SF, Hu Y, Wu WF, Du QQ, Wang ZX, Chen TT, Shen Q, Liu L, Jiang CP, Li H, Yi Y, Shen CY, Zhu HX, Liu Q. Explore the Anti-Acne Mechanism of Licorice Flavonoids Based on Metabonomics and Microbiome. Front Pharmacol 2022; 13:832088. [PMID: 35211023 PMCID: PMC8861462 DOI: 10.3389/fphar.2022.832088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Acne vulgaris is one of the most common inflammatory dermatoses in dermatological practice and can affect any gender or ethnic group. Although in previous studies, we had found that licorice flavonoids (LCF) play an anti-acne role by inhibiting PI3K-Akt signaling pathways and mitochondrial activity, the mechanism of LCF regulating skin metabolism, serum metabolism and skin microbes is still unclear. Here, we performed a full spectrum analysis of metabolites in the skin and serum using UHPLC-Triple TOF-MS. The results showed that LCF could treat acne by regulating the metabolic balance of amino acids, lipids and fatty acids in serum and skin. Similarly, we performed Illumina Hiseq sequencing of DNA from the skin microbes using 16S ribosomal DNA identification techniques. The results showed that LCF could treat acne by regulating the skin microbes to interfere with acne and make the microecology close to the normal skin state of rats. In summary, this study confirmed the anti-acne mechanism of LCF, namely by regulating metabolic balance and microbial balance. Therefore, this discovery will provide theoretical guidance for the preparation development and clinical application of the drug.
Collapse
Affiliation(s)
- Shi-Fa Ruan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yi Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wen-Feng Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qun-Qun Du
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhu-Xian Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ting-Ting Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qun Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Cui-Ping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hui Li
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Guangzhou, China
| | - Yankui Yi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chun-Yan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hong-Xia Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
32
|
Bao Y, He J, Song K, Guo J, Zhou X, Liu S. Functionalization and Antibacterial Applications of Cellulose-Based Composite Hydrogels. Polymers (Basel) 2022; 14:polym14040769. [PMID: 35215680 PMCID: PMC8879376 DOI: 10.3390/polym14040769] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Pathogens, especially drug-resistant pathogens caused by the abuse of antibiotics, have become a major threat to human health and public health safety. The exploitation and application of new antibacterial agents is extremely urgent. As a natural biopolymer, cellulose has recently attracted much attention due to its excellent hydrophilicity, economy, biocompatibility, and biodegradability. In particular, the preparation of cellulose-based hydrogels with excellent structure and properties from cellulose and its derivatives has received increasing attention thanks to the existence of abundant hydrophilic functional groups (such as hydroxyl, carboxy, and aldehyde groups) within cellulose and its derivatives. The cellulose-based hydrogels have broad application prospects in antibacterial-related biomedical fields. The latest advances of preparation and antibacterial application of cellulose-based hydrogels has been reviewed, with a focus on the antibacterial applications of composite hydrogels formed from cellulose and metal nanoparticles; metal oxide nanoparticles; antibiotics; polymers; and plant extracts. In addition, the antibacterial mechanism and antibacterial characteristics of different cellulose-based antibacterial hydrogels were also summarized. Furthermore, the prospects and challenges of cellulose-based antibacterial hydrogels in biomedical applications were also discussed.
Collapse
Affiliation(s)
- Yunhui Bao
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
| | - Jian He
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Ke Song
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Jie Guo
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Xianwu Zhou
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Shima Liu
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
- Correspondence: ; Tel.: +86-0744-8231386
| |
Collapse
|
33
|
Parhi R, Sahoo SK, Das A. Applications of polysaccharides in topical and transdermal drug delivery: A recent update of literature. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
| | | | - Anik Das
- GITAM Deemed to be University, India
| |
Collapse
|
34
|
Abuelella KE, Abd-Allah H, Soliman SM, Abdel-Mottaleb MMA. Polysaccharide Based Biomaterials for Dermal Applications. FUNCTIONAL BIOMATERIALS 2022:105-127. [DOI: 10.1007/978-981-16-7152-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
35
|
Tudoroiu EE, Dinu-Pîrvu CE, Albu Kaya MG, Popa L, Anuța V, Prisada RM, Ghica MV. An Overview of Cellulose Derivatives-Based Dressings for Wound-Healing Management. Pharmaceuticals (Basel) 2021; 14:1215. [PMID: 34959615 PMCID: PMC8706040 DOI: 10.3390/ph14121215] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022] Open
Abstract
Presently, notwithstanding the progress regarding wound-healing management, the treatment of the majority of skin lesions still represents a serious challenge for biomedical and pharmaceutical industries. Thus, the attention of the researchers has turned to the development of novel materials based on cellulose derivatives. Cellulose derivatives are semi-synthetic biopolymers, which exhibit high solubility in water and represent an advantageous alternative to water-insoluble cellulose. These biopolymers possess excellent properties, such as biocompatibility, biodegradability, sustainability, non-toxicity, non-immunogenicity, thermo-gelling behavior, mechanical strength, abundance, low costs, antibacterial effect, and high hydrophilicity. They have an efficient ability to absorb and retain a large quantity of wound exudates in the interstitial sites of their networks and can maintain optimal local moisture. Cellulose derivatives also represent a proper scaffold to incorporate various bioactive agents with beneficial therapeutic effects on skin tissue restoration. Due to these suitable and versatile characteristics, cellulose derivatives are attractive and captivating materials for wound-healing applications. This review presents an extensive overview of recent research regarding promising cellulose derivatives-based materials for the development of multiple biomedical and pharmaceutical applications, such as wound dressings, drug delivery devices, and tissue engineering.
Collapse
Affiliation(s)
- Elena-Emilia Tudoroiu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Mădălina Georgiana Albu Kaya
- Department of Collagen, Division Leather and Footwear Research Institute, National Research and Development Institute for Textile and Leather, 93 Ion Minulescu Str., 031215 Bucharest, Romania
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Răzvan Mihai Prisada
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| |
Collapse
|
36
|
Bami MS, Raeisi Estabragh MA, Khazaeli P, Ohadi M, Dehghannoudeh G. pH-responsive drug delivery systems as intelligent carriers for targeted drug therapy: Brief history, properties, synthesis, mechanism and application. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102987] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Wang M, Li W, Tang G, Garciamendez-Mijares CE, Zhang YS. Engineering (Bio)Materials through Shrinkage and Expansion. Adv Healthc Mater 2021; 10:e2100380. [PMID: 34137213 PMCID: PMC8295236 DOI: 10.1002/adhm.202100380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/27/2021] [Indexed: 12/12/2022]
Abstract
Although various (bio)fabrication technologies have achieved revolutionary progress in the past decades, engineered constructs still fall short of expectations owing to their inability to attain precisely designable functions. Shrinkable and expandable (bio)materials feature unique characteristics leading to size-/shape-shifting and thus have exhibited a strong potential to equip current engineering technologies with promoted capacities toward applications in biomedicine. In this progress report, the advances of size-/shape-shifting (bio)materials enabled by various stimuli, are evaluated; furthermore, representative biomedical applications associated with size-/shape-shifting (bio)materials are also exemplified. Toward the future, the combination of size-/shape-shifting (bio)materials and 3D/4D fabrication technologies presents a wide range of possibilities for further development of intricate functional architectures.
Collapse
Affiliation(s)
- Mian Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Wanlu Li
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Guosheng Tang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Carlos Ezio Garciamendez-Mijares
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| |
Collapse
|
38
|
Therapeutic Effect of a Newly Isolated Lytic Bacteriophage against Multi-Drug-Resistant Cutibacterium acnes Infection in Mice. Int J Mol Sci 2021; 22:ijms22137031. [PMID: 34209998 PMCID: PMC8268795 DOI: 10.3390/ijms22137031] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/24/2022] Open
Abstract
Acne vulgaris, which is mostly associated with the colonization of Cutibacterium acnes (C. acnes), is a common skin inflammatory disease in teenagers. However, over the past few years, the disease has extended beyond childhood to chronically infect approximately 40% of adults. While antibiotics have been used for several decades to treat acne lesions, antibiotic resistance is a growing crisis; thus, finding a new therapeutic target is urgently needed. Studies have shown that phage therapy may be one alternative for treating multi-drug-resistant bacterial infections. In the present study, we successfully isolated a C. acnes phage named TCUCAP1 from the skin of healthy volunteers. Morphological analysis revealed that TCUCAP1 belongs to the family Siphoviridae with an icosahedral head and a non-contractile tail. Genome analysis found that TCUCAP1 is composed of 29,547 bp with a G+C content of 53.83% and 56 predicted open reading frames (ORFs). The ORFs were associated with phage structure, packing, host lysis, DNA metabolism, and additional functions. Phage treatments applied to mice with multi-drug-resistant (MDR) C.-acnes-induced skin inflammation resulted in a significant decrease in inflammatory lesions. In addition, our attempt to formulate the phage into hydroxyethyl cellulose (HEC) cream may provide new antibacterial preparations for human infections. Our results demonstrate that TCUCAP1 displays several features that make it an ideal candidate for the control of C. acnes infections.
Collapse
|
39
|
Seiler ERD, Koyama K, Iijima T, Saito T, Takeoka Y, Rikukawa M, Yoshizawa-Fujita M. Simple and Fast One-Pot Cellulose Gel Preparation in Aqueous Pyrrolidinium Hydroxide Solution-Cellulose Solvent and Antibacterial Agent. Polymers (Basel) 2021; 13:1942. [PMID: 34208065 PMCID: PMC8230700 DOI: 10.3390/polym13121942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
Cellulose is the main component of biomass and is the most abundant biopolymer on earth; it is a non-toxic, low-cost material that is biocompatible and biodegradable. Cellulose gels are receiving increasing attention as medical products, e.g., as wound dressings. However, the preparation of cellulose hydrogels employing unmodified cellulose is scarcely reported because of the cumbersome dissolution of cellulose. In previous studies, we developed the new promising cellulose solvent N-butyl-N-methylpyrrolidinium hydroxide in an aqueous solution, which can dissolve up to 20 wt% cellulose within a short time at room temperature. In this study, we employed this solvent system and investigated the gelation behavior of cellulose after crosslinker addition. The swelling behavior in water (swelling ratio, water uptake), the mechanical properties under compression, and the antibacterial activity against Escherichia coli and Bacillus subtilis were investigated. We have developed a simple and fast one-pot method for the preparation of cellulose gels, in which aqueous pyrrolidinium hydroxide solution was acting as the solvent and as an antibacterial reagent. The pyrrolidinium hydroxide content of the gels was controlled by adjustment of the water volume employed for swelling. Simple recovery of the solvent system was also possible, which makes this preparation method environmentally benign.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Masahiro Yoshizawa-Fujita
- Department of Materials and Life Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (E.R.D.S.); (K.K.); (T.I.); (T.S.); (Y.T.); (M.R.)
| |
Collapse
|
40
|
Van Gheluwe L, Chourpa I, Gaigne C, Munnier E. Polymer-Based Smart Drug Delivery Systems for Skin Application and Demonstration of Stimuli-Responsiveness. Polymers (Basel) 2021; 13:1285. [PMID: 33920816 PMCID: PMC8071137 DOI: 10.3390/polym13081285] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Progress in recent years in the field of stimuli-responsive polymers, whose properties change depending on the intensity of a signal, permitted an increase in smart drug delivery systems (SDDS). SDDS have attracted the attention of the scientific community because they can help meet two current challenges of the pharmaceutical industry: targeted drug delivery and personalized medicine. Controlled release of the active ingredient can be achieved through various stimuli, among which are temperature, pH, redox potential or even enzymes. SDDS, hitherto explored mainly in oncology, are now developed in the fields of dermatology and cosmetics. They are mostly hydrogels or nanosystems, and the most-used stimuli are pH and temperature. This review offers an overview of polymer-based SDDS developed to trigger the release of active ingredients intended to treat skin conditions or pathologies. The methods used to attest to stimuli-responsiveness in vitro, ex vivo and in vivo are discussed.
Collapse
Affiliation(s)
| | | | | | - Emilie Munnier
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37200 Tours, France; (L.V.G.); (I.C.); (C.G.)
| |
Collapse
|
41
|
Teixeira MO, Antunes JC, Felgueiras HP. Recent Advances in Fiber-Hydrogel Composites for Wound Healing and Drug Delivery Systems. Antibiotics (Basel) 2021; 10:248. [PMID: 33801438 PMCID: PMC8001440 DOI: 10.3390/antibiotics10030248] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
In the last decades, much research has been done to fasten wound healing and target-direct drug delivery. Hydrogel-based scaffolds have been a recurrent solution in both cases, with some reaching already the market, even though their mechanical stability remains a challenge. To overcome this limitation, reinforcement of hydrogels with fibers has been explored. The structural resemblance of fiber-hydrogel composites to natural tissues has been a driving force for the optimization and exploration of these systems in biomedicine. Indeed, the combination of hydrogel-forming techniques and fiber spinning approaches has been crucial in the development of scaffolding systems with improved mechanical strength and medicinal properties. In this review, a comprehensive overview of the recently developed fiber-hydrogel composite strategies for wound healing and drug delivery is provided. The methodologies employed in fiber and hydrogel formation are also highlighted, together with the most compatible polymer combinations, as well as drug incorporation approaches creating stimuli-sensitive and triggered drug release towards an enhanced host response.
Collapse
Affiliation(s)
| | | | - Helena P. Felgueiras
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (M.O.T.); (J.C.A.)
| |
Collapse
|
42
|
Extrusion bioprinting of hydroxyethylcellulose-based bioink for cervical tumor model. Carbohydr Polym 2021; 260:117793. [PMID: 33712141 DOI: 10.1016/j.carbpol.2021.117793] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 01/16/2023]
Abstract
The present study demonstrates the extrusion printing of highly viscous and thixotropic hydroxyethylcellulose-based bioinks blended with various concentrations of sodium alginate (SA) and embedded with HeLa cells. The cell viability is shown to be inversely proportional to the relative SA content and can be as high as 81.5 % following one day of incubation. Furthermore, the biocompatibility of the hydrogel matrix supports cell proliferation resulting in an order of magnitude larger number of cells after a 7-day incubation. The cell viability is negatively affected mostly by the extrusion printing itself with some cell death occurring during their embedding in the hydrogels. After embedding the HeLa cells in the blends containing 1 and 2.5 % SA, the cell viability is not significantly affected by the residence time of up to 90 min before the bioink extrusion. The printed constructs can be utilized as a cervical tumor model.
Collapse
|
43
|
Ofridam F, Tarhini M, Lebaz N, Gagnière É, Mangin D, Elaissari A. pH
‐sensitive polymers: Classification and some fine potential applications. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5230] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fabrice Ofridam
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 Villeurbanne France
| | - Mohamad Tarhini
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, ISA UMR 5280 Villeurbanne France
| | - Noureddine Lebaz
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 Villeurbanne France
| | - Émilie Gagnière
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 Villeurbanne France
| | - Denis Mangin
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 Villeurbanne France
| | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, ISA UMR 5280 Villeurbanne France
| |
Collapse
|
44
|
Chen Y, Chen N, Feng X. The role of internal and external stimuli in the rational design of skin-specific drug delivery systems. Int J Pharm 2021; 592:120081. [PMID: 33189810 DOI: 10.1016/j.ijpharm.2020.120081] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/15/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022]
Abstract
The concept of skin-specific drug delivery with a spatio-temporal control has just recently received concerns in dermatology. Inspired by the progress in smart materials and their perspective application in medicine science, development of stimuli responsive drug delivery systems with skin-specificity has become possible, which has led to a new era in the localized treatment of skin diseases. This review highlights both the internal and external stimuli that have been employed in this field, with a focus on their implication on the rational design of pharmaceutical formulations, especially those nanoscale drug carriers that are able to provide release of payloads with a precise spatio-temporal control in response to specific stimuli. Also, the strategy of dual stimuli responsive drug delivery systems will be discussed for further improvement of the efficacy of skin drug delivery. The prominent examples of the established approaches are described as comprehensive and current as possible. The review is expected to provide some inspiration for utilizing different stimuli for realizing the site-specific and on-demand drug delivery to the skin.
Collapse
Affiliation(s)
- Yang Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Naiying Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Xun Feng
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang 110034, China
| |
Collapse
|
45
|
Influence of pH-responsive compounds synthesized from chitosan and hyaluronic acid on dual-responsive (pH/temperature) hydrogel drug delivery systems of Cortex Moutan. Int J Biol Macromol 2020; 168:163-174. [PMID: 33309656 DOI: 10.1016/j.ijbiomac.2020.12.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/26/2020] [Accepted: 12/05/2020] [Indexed: 12/27/2022]
Abstract
The polysaccharide-based pH-responsive compounds, namely, N,N,N-trimethyl chitosan (TMC), polyethylene glycolated hyaluronic acid (PEG-HA), and polysaccharide-based nano-conjugate of hyaluronic acid, chitosan oligosaccharide and alanine [HA-Ala-Chito(oligo)] were chemically synthesized using biopolymers chitosan and hyaluronic acid, and applied here to observe the changes in morphology, pH-stability, mechanical and drug-release behavior, and cytotoxicity of thermo-responsive polymer: Poloxamer 407 (PF127)-based drug delivery systems for traditional Chinese medicine Cortex Moutan (CM). The thermo-responsive hydrogel of PF127 loaded with CM (GelC) was used as control. The dual-responsive (pH/temperature) hydrogels: PF127/TMC/PEG-HA (Gel1) and PF127/HA-Ala-Chito(oligo) (Gel2) showed improved mechanical behavior as obtained by rheology and mechanical agitation study, and pH-stability under various external pH conditions, and those improvements occurred due to the addition of polysaccharide-based pH-responsive compounds in the systems. Both, Gel1 and Gel2 showed better morphology than GelC as obtained by SEM or TEM suggesting that interaction of polysaccharide-based pH-responsive compounds with PF127 in either gel or sol state gave better porous network structure in the hydrogels or more dispersed micellar arrangements in sol-state, respectively. Gel1 showed the highest cumulative drug release (86.5%) after 5 days under mild acidic condition (pH 6.4) suggesting that release behavior of a hydrogel drug carrier was dependent on morphology, mechanical behavior, and pH-stability. The transdermal release (ex-vivo) results indicated that gallic acid, the active marker of CM passed through porcine ear skin and all the formulations showed more or less similar transdermal release properties. The hydrogels loaded with CM showed no cytotoxicity (cell viability >90.0%) on human HaCaT keratinocytes within concentration range of 0.0-20.0 μg/ml as obtained by MTT assay, and cell viability was more than 100% at a concentration of 20.0 μg/ml for Gel2. The formulations without loaded drug namely, Gel1-CM and Gel2-CM exhibited strong anti-bacterial action against gram positive bacteria Staphylococcus aureus.
Collapse
|
46
|
Ciolacu DE, Nicu R, Ciolacu F. Cellulose-Based Hydrogels as Sustained Drug-Delivery Systems. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5270. [PMID: 33233413 PMCID: PMC7700533 DOI: 10.3390/ma13225270] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
Hydrogels, three-dimensional (3D) polymer networks, present unique properties, like biocompatibility, biodegradability, tunable mechanical properties, sensitivity to various stimuli, the capacity to encapsulate different therapeutic agents, and the ability of controlled release of the drugs. All these characteristics make hydrogels important candidates for diverse biomedical applications, one of them being drug delivery. The recent achievements of hydrogels as safe transport systems, with desired therapeutic effects and with minimum side effects, brought outstanding improvements in this area. Moreover, results from the utilization of hydrogels as target therapy strategies obtained in clinical trials are very encouraging for future applications. In this regard, the review summarizes the general concepts related to the types of hydrogel delivery systems, their properties, the main release mechanisms, and the administration pathways at different levels (oral, dermal, ocular, nasal, gastrointestinal tract, vaginal, and cancer therapy). After a general presentation, the review is focused on recent advances in the design, preparation and applications of innovative cellulose-based hydrogels in controlled drug delivery.
Collapse
Affiliation(s)
| | - Raluca Nicu
- “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania;
| | - Florin Ciolacu
- Natural and Synthetic Polymers Department, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania
| |
Collapse
|
47
|
Gong X, Hou C, Zhang Q, Li Y, Wang H. Thermochromic Hydrogel-Functionalized Textiles for Synchronous Visual Monitoring of On-Demand In Vitro Drug Release. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51225-51235. [PMID: 33164509 DOI: 10.1021/acsami.0c14665] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In vitro drug release systems have recently received tremendous attention because they allow noninvasive, convenient, and prolonged administration of pharmacological agents. On-demand epidermal drug release systems can improve treatment efficiency, prevent multidrug resistance, and minimize drug toxicity to healthy cells. In addition, real-time monitoring of drug content is also essential for guiding the determination of drug dosage and replacing drug carriers in time. Therefore, it is important to integrate the above properties in one ideal epidermal patch. Herein, photonic crystals (PCs) based on Fe3O4@C nanoparticles were introduced into drug-loaded poly(N-isopropylacrylamide-co-acrylic acid) (P(NIPAM-AAc)) hydrogel-functionalized textiles. Drug loading and release depended on the expansion and contraction of the hydrogels. The lower critical solution temperature (LCST) of the hydrogels was adjusted to 40 °C, which is higher than the skin temperature, by varying the content of hydrophilic comonomer acrylic acid (AAc) to store the drug at room temperature, and on-demand release was achieved by mild thermal stimulation. Moreover, the lattice spacing (d) of PCs varied with the expansion and contraction of the hydrogels, which can cause the color of P(NIPAM-AAc) hydrogel-functionalized textiles to change. These synchronous thermoresponsive chromic drug uptake and release behaviors provided an effective method for visual and real-time monitoring of drug content. Furthermore, in view of the poor mechanical properties of hydrogel wound dressings, textile matrices were composited to prevent holistic breaking during the stretching process. Biological experiments proved that the drug-loaded P(NIPAM-AAc) hydrogel-functionalized textiles had good antibacterial properties and wound-healing effects.
Collapse
Affiliation(s)
- Xinbo Gong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201600, China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201600, China
| | - Qinghong Zhang
- Engineering Research Center of Advanced Glasses Manufacturing Technology, College of Materials Science and Engineering, Donghua University, Shanghai 201600, China
| | - Yaogang Li
- Engineering Research Center of Advanced Glasses Manufacturing Technology, College of Materials Science and Engineering, Donghua University, Shanghai 201600, China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201600, China
| |
Collapse
|
48
|
Yan BY, Liu BL, Yi LY, Wang GL, Xue BZ, Xie Y. Doxorubicin-Loaded In Situ Gel Combined with Biocompatible Hydroxyethyl Cellulose Hemostatic Gauze for Controlled Release of Drugs and Prevention of Breast Cancer Recurrence Postsurgery. ACS Biomater Sci Eng 2020; 6:5959-5968. [PMID: 33320580 DOI: 10.1021/acsbiomaterials.0c01187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biodegradable hemostatic gauze used for surgical hemostasis has attracted great interest due to its excellent compliance and local anti-inflammatory and therapeutic effects when combined with drugs. Herein, we demonstrate the successful fabrication of water-soluble absorbed cellulose hemostatic material by introducing a biocompatible hydroxyethyl cellulose (HEC) hemostasis gauze into doxorubicin-loaded in situ gel (GEL(DOX)) for the prevention of breast cancer recurrence after surgical tumor resection. The present results show that HEC has a shorter metabolic period, no anaphylaxis and peripheral nerve toxicity, and possesses more advantages than oxidative regenerated cellulose hemostasis gauze, a commercially available product in market. HEC is of the physical hemostasis in mechanism, which does not induce physiological hemostasis and hemolysis. In addition, the combination of HEC with GEL(DOX) not only stops the bleeding efficiently, but also effectively reduces the proliferation of tumor with no cardiac toxic and bone marrow suppression. After treatment, the tumor inhibition rate is up to 90%, resulting in prolonged survival time to 58 days. In conclusion, HEC hemostatic gauze has a broad prospect in clinical application due to its perfect biocompatibility, and we envision that it is a new strategy for the prevention of breast cancer to implant HEC hemostatic gauze containing GEL(DOX) at the postoperative site after surgery.
Collapse
Affiliation(s)
- Bai-Yi Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Bai-Lu Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Ling-Yu Yi
- Penglai Nuokang Pharmaceutical Company, Limited, Shandong Province, Penglai 265607, P. R. China
| | - Gui-Ling Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Bai-Zhong Xue
- Penglai Nuokang Pharmaceutical Company, Limited, Shandong Province, Penglai 265607, P. R. China
| | - Ying Xie
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
49
|
Pinteala M, Abadie MJM, Rusu RD. Smart Supra- and Macro-Molecular Tools for Biomedical Applications. MATERIALS 2020; 13:ma13153343. [PMID: 32727155 PMCID: PMC7435709 DOI: 10.3390/ma13153343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/28/2022]
Abstract
Stimuli-responsive, “smart” polymeric materials used in the biomedical field function in a bio-mimicking manner by providing a non-linear response to triggers coming from a physiological microenvironment or other external source. They are built based on various chemical, physical, and biological tools that enable pH and/or temperature-stimulated changes in structural or physicochemical attributes, like shape, volume, solubility, supramolecular arrangement, and others. This review touches on some particular developments on the topic of stimuli-sensitive molecular tools for biomedical applications. Design and mechanistic details are provided concerning the smart synthetic instruments that are employed to prepare supra- and macro-molecular architectures with specific responses to external stimuli. Five major themes are approached: (i) temperature- and pH-responsive systems for controlled drug delivery; (ii) glycodynameric hydrogels for drug delivery; (iii) polymeric non-viral vectors for gene delivery; (iv) metallic nanoconjugates for biomedical applications; and, (v) smart organic tools for biomedical imaging.
Collapse
Affiliation(s)
- Mariana Pinteala
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania; (M.P.); (M.J.M.A.)
| | - Marc J. M. Abadie
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania; (M.P.); (M.J.M.A.)
- Institute Charles Gerhardt Montpellier, Bat 15, CC 1052, University of Montpellier, 34095 Montpellier, France
| | - Radu D. Rusu
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania; (M.P.); (M.J.M.A.)
- Correspondence: ; Tel.: +40-232-217454
| |
Collapse
|
50
|
Das SS, Bharadwaj P, Bilal M, Barani M, Rahdar A, Taboada P, Bungau S, Kyzas GZ. Stimuli-Responsive Polymeric Nanocarriers for Drug Delivery, Imaging, and Theragnosis. Polymers (Basel) 2020; 12:E1397. [PMID: 32580366 PMCID: PMC7362228 DOI: 10.3390/polym12061397] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
In the past few decades, polymeric nanocarriers have been recognized as promising tools and have gained attention from researchers for their potential to efficiently deliver bioactive compounds, including drugs, proteins, genes, nucleic acids, etc., in pharmaceutical and biomedical applications. Remarkably, these polymeric nanocarriers could be further modified as stimuli-responsive systems based on the mechanism of triggered release, i.e., response to a specific stimulus, either endogenous (pH, enzymes, temperature, redox values, hypoxia, glucose levels) or exogenous (light, magnetism, ultrasound, electrical pulses) for the effective biodistribution and controlled release of drugs or genes at specific sites. Various nanoparticles (NPs) have been functionalized and used as templates for imaging systems in the form of metallic NPs, dendrimers, polymeric NPs, quantum dots, and liposomes. The use of polymeric nanocarriers for imaging and to deliver active compounds has attracted considerable interest in various cancer therapy fields. So-called smart nanopolymer systems are built to respond to certain stimuli such as temperature, pH, light intensity and wavelength, and electrical, magnetic and ultrasonic fields. Many imaging techniques have been explored including optical imaging, magnetic resonance imaging (MRI), nuclear imaging, ultrasound, photoacoustic imaging (PAI), single photon emission computed tomography (SPECT), and positron emission tomography (PET). This review reports on the most recent developments in imaging methods by analyzing examples of smart nanopolymers that can be imaged using one or more imaging techniques. Unique features, including nontoxicity, water solubility, biocompatibility, and the presence of multiple functional groups, designate polymeric nanocues as attractive nanomedicine candidates. In this context, we summarize various classes of multifunctional, polymeric, nano-sized formulations such as liposomes, micelles, nanogels, and dendrimers.
Collapse
Affiliation(s)
- Sabya Sachi Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India;
| | - Priyanshu Bharadwaj
- UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, 21000 Dijon, France;
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran;
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | - Pablo Taboada
- Colloids and Polymers Physics Group, Condensed Matter Physics Area, Particle Physics Department Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece
| |
Collapse
|