1
|
Ji H, Shi X. Hydroxypropyl methylcellulose E5 with molecular energy-enhancement ability contributes to improving wettability, drug delivery and taste masking effect for curcumin solid dispersions. Int J Biol Macromol 2025; 303:140715. [PMID: 39920946 DOI: 10.1016/j.ijbiomac.2025.140715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/22/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Curcumin (Cur) solid dispersions are a promising strategy to enhance the anti-inflammatory properties of Cur. However, challenges remain in creating effective food and nutritional products containing Cur. This study focuses on the biological macromolecule hydroxypropyl methylcellulose E5 (HPMC E5) to elucidate its advantages in solid dispersions formulated with Eudragit E100 (E100). The aim is to improve wettability, drug delivery and taste masking effect, while also revealing the primary mechanisms underlying these advantages. Raman imaging was used to identify the tautomeric form of Cur in the dispersions, and molecular docking was applied to study the interactions between tautomeric Cur and the excipient. The superior wettability of Cur solid dispersions was studied mainly through contact angle measurements. Results demonstrated that appropriate amounts of HPMC E5 enhanced the surface tension of E100 and significantly improved the total molecular energy of Cur when mixed with E/H, resulting in increased wettability, in vitro drug release, in vivo bioavailability, in vivo anti-inflammatory effects, and effective taste masking. Cur-6E/H with carrier-controlled wetting mechanism presented optimal performances. In summary, the addition of HPMC E5 significantly enhanced the molecular energy and overall efficacy of Cur solid dispersions.
Collapse
Affiliation(s)
- Hong Ji
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
2
|
Magi MS, de Lafuente Y, Quarta E, Palena MC, Ardiles PDR, Páez PL, Sonvico F, Buttini F, Jimenez-Kairuz AF. Novel Dry Hyaluronic Acid-Vancomycin Complex Powder for Inhalation, Useful in Pulmonary Infections Associated with Cystic Fibrosis. Pharmaceutics 2024; 16:436. [PMID: 38675098 PMCID: PMC11054002 DOI: 10.3390/pharmaceutics16040436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Polyelectrolyte-drug complexes are interesting alternatives to improve unfavorable drug properties. Vancomycin (VAN) is an antimicrobial used in the treatment of methicillin-resistant Staphylococcus aureus pulmonary infections in patients with cystic fibrosis. It is generally administered intravenously with a high incidence of adverse side effects, which could be reduced by intrapulmonary administration. Currently, there are no commercially available inhalable formulations containing VAN. Thus, the present work focuses on the preparation and characterization of an ionic complex between hyaluronic acid (HA) and VAN with potential use in inhalable formulations. A particulate-solid HA-VAN25 complex was obtained by spray drying from an aqueous dispersion. FTIR spectroscopy and thermal analysis confirmed the ionic interaction between HA and VAN, while an amorphous diffraction pattern was observed by X-ray. The powder density, geometric size and morphology showed the suitable aerosolization and aerodynamic performance of the powder, indicating its capability of reaching the deep lung. An in vitro extended-release profile of VAN from the complex was obtained, exceeding 24 h. Microbiological assays against methicillin-resistant and -sensitive reference strains of Staphylococcus aureus showed that VAN preserves its antibacterial efficacy. In conclusion, HA-VAN25 exhibited interesting properties for the development of inhalable formulations with potential efficacy and safety advantages over conventional treatment.
Collapse
Affiliation(s)
- María S. Magi
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba X5000GYA, Argentina; (M.S.M.); (Y.d.L.); (M.C.P.); (P.d.R.A.); (P.L.P.)
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-UNC), Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Yanina de Lafuente
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba X5000GYA, Argentina; (M.S.M.); (Y.d.L.); (M.C.P.); (P.d.R.A.); (P.L.P.)
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-UNC), Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Eride Quarta
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (E.Q.); (F.S.); (F.B.)
| | - María C. Palena
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba X5000GYA, Argentina; (M.S.M.); (Y.d.L.); (M.C.P.); (P.d.R.A.); (P.L.P.)
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-UNC), Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Perla del R. Ardiles
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba X5000GYA, Argentina; (M.S.M.); (Y.d.L.); (M.C.P.); (P.d.R.A.); (P.L.P.)
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-UNC), Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Paulina L. Páez
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba X5000GYA, Argentina; (M.S.M.); (Y.d.L.); (M.C.P.); (P.d.R.A.); (P.L.P.)
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-UNC), Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Fabio Sonvico
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (E.Q.); (F.S.); (F.B.)
| | - Francesca Buttini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (E.Q.); (F.S.); (F.B.)
| | - Alvaro F. Jimenez-Kairuz
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba X5000GYA, Argentina; (M.S.M.); (Y.d.L.); (M.C.P.); (P.d.R.A.); (P.L.P.)
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-UNC), Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| |
Collapse
|
3
|
Fluorescent Multifunctional Organic Nanoparticles for Drug Delivery and Bioimaging: A Tutorial Review. Pharmaceutics 2022; 14:pharmaceutics14112498. [PMID: 36432688 PMCID: PMC9698844 DOI: 10.3390/pharmaceutics14112498] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Fluorescent organic nanoparticles (FONs) are a large family of nanostructures constituted by organic components that emit light in different spectral regions upon excitation, due to the presence of organic fluorophores. FONs are of great interest for numerous biological and medical applications, due to their high tunability in terms of composition, morphology, surface functionalization, and optical properties. Multifunctional FONs combine several functionalities in a single nanostructure (emission of light, carriers for drug-delivery, functionalization with targeting ligands, etc.), opening the possibility of using the same nanoparticle for diagnosis and therapy. The preparation, characterization, and application of these multifunctional FONs require a multidisciplinary approach. In this review, we present FONs following a tutorial approach, with the aim of providing a general overview of the different aspects of the design, preparation, and characterization of FONs. The review encompasses the most common FONs developed to date, the description of the most important features of fluorophores that determine the optical properties of FONs, an overview of the preparation methods and of the optical characterization techniques, and the description of the theoretical approaches that are currently adopted for modeling FONs. The last part of the review is devoted to a non-exhaustive selection of some recent biomedical applications of FONs.
Collapse
|
4
|
Gyanewali S, Kesharwani P, Sheikh A, Ahmad FJ, Trivedi R, Talegaonkar S. Formulation development and in vitro-in vivo assessment of protransfersomal gel of anti-resorptive drug in osteoporosis treatment. Int J Pharm 2021; 608:121060. [PMID: 34500057 DOI: 10.1016/j.ijpharm.2021.121060] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022]
Abstract
Osteoporosis is a major cause of morbidity, mortality, and economic burden worldwide. Despite being an effective in combating the bone-deteriorating disorders, bisphosphonates have several shortcomings including poor and variable bioavailability, low permeability, high toxicity, etc. In this study, we developed and optimized protransfersome formulation for the drug risedronate sodium (RIS-Na) with the goal of enhancing its bioavailability and hence patient compliance. Phase separation coacervation technique was utilized for development of optimized formulation. Optimization was achieved by using three-factor, three-level Box-Behnken design combined with Response Surface Methodology (RSM). This enabled us to decipher the effect of 3 independent variables (Phospholipid, Tween-80 and Sodium Deoxycholate) on three dependent parameters (entrapment efficiency, vesicle size and transdermal flux). Optimized formulation was further evaluated for pharmacokinetic and pharmacodynamic parameters. Smooth, spherical protransfersomes with a size of 260 ± 18 nm, having entrapment efficiency and flux of 80.4 ± 4.90% and 8.41 ± 0.148 μg/cm2/h, respectively were prepared. Ex vivo studies revealed a shorter lag time of 1.21 ± 0.18 h and higher flux associated with transdermal formulation. CLSM analysis further revealed better drug penetration (220 μm) through the skin in case of protransfersomes as compared to drug solution (72 μm). Additionally, biomechanical, biochemical, and histo-pathological studies further validated the results. Thus, it was concluded that protransfersome formulation has a great potential in providing better therapeutic efficacy of risedronate than its conventional counterpart.
Collapse
Affiliation(s)
- Suman Gyanewali
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India.
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Ritu Trivedi
- Department of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sushama Talegaonkar
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India.
| |
Collapse
|
5
|
Carrascal JJ, Pinal R, Carvajal T, Pérez LD, Baena Y. Benzoic acid complexes with Eudragit E100®: New alternative antimicrobial preservatives. Int J Pharm 2021; 607:120991. [PMID: 34390811 DOI: 10.1016/j.ijpharm.2021.120991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 10/20/2022]
Abstract
Given that the use of some preservatives in cosmetics has been restricted, novel alternative preservatives are needed. The aim of this study was to characterize the physicochemical and antimicrobial properties of two polyelectrolyte complexes (EuB100 and EuB75Cl25), which were developed through hot melt extrusion (HME) using benzoic acid (BA) and Eudragit E100. Based on phase diagrams and an experimental statistical design, the solubility of the acid in the polymer and the HME conditions were established. Intermolecular interactions were evaluated through Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and X-ray powder diffraction (XRPD). Release behavior was determined for the systems. Antibacterial activity and ζ-potential were determined on Escherichia coli. FTIR revealed acid-base interaction, and XPS showed that the percentages of protonated nitrogen N1s were 13.5% for EuB100 and 20.3% for EuB75Cl25. The BA released showed a non-Fickian behavior, and a satisfactory antibacterial activity against E. coli was demonstrated at pH 6.9. The complexes modified ζ-potential, destabilizing the membrane functionality of E. coli. These complexes are potential antimicrobial preservatives with a greater spectrum of action, with bactericidal activity against E. coli in a wider pH range than uncomplexed BA, even at pH 6.9.
Collapse
Affiliation(s)
- Juan José Carrascal
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias -Departamento de Farmacia - Grupo de investigación Sistemas para liberación controlada de moléculas biológicamente activas, Carrera 30 # 45-03, Bogotá D.C, 111321, Colombia
| | - Rodolfo Pinal
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907-2051, USA
| | - Teresa Carvajal
- Department of Agricultural & Biological Engineering, Purdue University, 225 South University Street, West Lafayette, IN 47907-2093, USA
| | - León Darío Pérez
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias -Departamento de Química - Grupo de investigación en Macromoléculas, Carrera 30 # 45-03, Bogotá D.C 111321, Colombia
| | - Yolima Baena
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias -Departamento de Farmacia - Grupo de investigación Sistemas para liberación controlada de moléculas biológicamente activas, Carrera 30 # 45-03, Bogotá D.C, 111321, Colombia.
| |
Collapse
|
6
|
Peralta MF, Guzman ML, Bracamonte ME, Marco JD, Olivera ME, Carrer DC, Barroso PA. Efficacy of topical risedronate and risedronate - Eudragit E complex in a model of cutaneous leishmaniasis induced by Leishmania (Leishmania) amazonensis. Heliyon 2021; 7:e07136. [PMID: 34124403 PMCID: PMC8173260 DOI: 10.1016/j.heliyon.2021.e07136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/17/2020] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
An efficacious topical treatment for cutaneous leishmaniasis (CL) is highly desirable but still an ongoing challenge. Systemic risedronate (Ris) has been reported to have anti-leishmanial properties and Eudragit EPO (EuE) has shown in vitro activity against L. (L.) amazonensis. The aim of this work was to investigate the in vivo efficacy of topical Ris and EuE-Ris complexes on CL. Surface charge and Ris release kinetics from the different dispersions were analyzed. BALB/c mice were infected intradermally with promastigotes of L. (L.) amazonensis. Ulcers were treated with Ris or EuE-Ris hydrogels. All the lesions that received topical Ris or EuE-Ris showed an improvement with respect to control: reduction of ulcer average size, cicatrization, flattened edges and no signs of necrosis. In addition, a marked parasitic inhibition of 69.5 and 73.7% was observed in the groups treated with Ris and EuE-Ris, respectively, with the IgG2a levels indicating a tendency towards cure. The results are promising and the system should now be enhanced to achieve total parasite elimination.
Collapse
Affiliation(s)
- Ma Florencia Peralta
- Instituto Ferreyra - INIMEC-CONICET - Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ma Laura Guzman
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica - CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ma Estefanía Bracamonte
- Instituto de Patología Experimental - CONICET and Universidad Nacional de Salta, Salta, Argentina
| | - J Diego Marco
- Instituto de Patología Experimental - CONICET and Universidad Nacional de Salta, Salta, Argentina
| | - Ma Eugenia Olivera
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica - CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Dolores C Carrer
- Instituto Ferreyra - INIMEC-CONICET - Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Paola A Barroso
- Instituto de Patología Experimental - CONICET and Universidad Nacional de Salta, Salta, Argentina
| |
Collapse
|
7
|
Hou Y, Piao H, Tahara Y, Qin S, Wang J, Kong Q, Zou M, Cheng G, Goto M. Solid-in-oil nanodispersions as a novel delivery system to improve the oral bioavailability of bisphosphate, risedronate sodium. Eur J Pharm Sci 2020; 155:105521. [PMID: 32822808 DOI: 10.1016/j.ejps.2020.105521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
The aim of the current study was to modify the oral absorption of risedronate sodium (RS) using solid-in-oil nanodispersions (SONDs) technology. The oral therapeutic effect of RS is limited in vivo because of its low membrane permeability and the formation of insoluble precipitates with bivalent cations (such as Ca2+) in the gastrointestinal (GI) tract.We used SONDs to prepare medium-chain triglyceride (MCT)-based nanodispersions of the hydrophilic drug, which used the oral absorption mechanism of MCT digestion to improve bioavailability of RS in vivo. SONDs exhibited high encapsulation efficiency of RS and excellent enzymatic degradation-dependent release behavior. The result of an everted gut sac test showed that the Papp value of the SONDs was 6.29-fold (p<0.05) higher than that of RS aqueous solutions in simulated intestinal fluid containing 5 mM Ca2+, this was because MCT can be digested to form the fatty acids C8 and C10, which have an adsorption-promoting effect on RS. Further, solid-in-oil-in-water (S/O/W) emulsion droplets formedafter emulsification by bile salts and MCT digestionwere effective in disrupting epithelial tight junctions (TJs), facilitating the paracellular permeation of RS throughout the intestine. Moreover, in vivo absorption study in rats revealed that the AUC0-12h of RS in SONDs was approximately 4.56-fold (p<0.05) higher than with RS aqueous solutions at the same dose (15 mg/kg). This approach demonstrates a potential drug delivery system to improve the bioavailability of risedronate sodium.
Collapse
Affiliation(s)
- Yanting Hou
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang110016, China
| | - Hongyu Piao
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang110016, China
| | - Yoshiro Tahara
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka819-0395, Japan
| | - Shouhong Qin
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang110016, China
| | - Jingying Wang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang110016, China
| | - Qingliang Kong
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka819-0395, Japan
| | - Meijuan Zou
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang110016, China
| | - Gang Cheng
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang110016, China
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka819-0395, Japan; Advanced Transdermal Drug Delivery System Center, Kyushu University, Fukuoka819-0395, Japan; Center for Future Chemistry, Kyushu University, Fukuoka819-0395, Japan.
| |
Collapse
|
8
|
Elkady OA, Tadros MI, El-Laithy HM. QbD Approach for Novel Crosslinker-Free Ionotropic Gelation of Risedronate Sodium-Chitosan Nebulizable Microspheres: Optimization and Characterization. AAPS PharmSciTech 2019; 21:14. [PMID: 31807950 DOI: 10.1208/s12249-019-1561-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/07/2019] [Indexed: 01/29/2023] Open
Abstract
Risedronate sodium (RS) is a potent inhibitor of bone resorption, having an extreme poor permeability and limited oral bioavailability (0.62%). RS should be orally administered under fasting conditions while keeping in an upright posture for at least 30 min to diminish common gastroesophageal injuries. To surmount such limitations, novel risedronate-chitosan (RS-CS) crosslinker-free nebulizable microspheres were developed adopting the quality by design (QbD) approach and risk assessment (RA) thinking. RS:CS ratio, surfactant (Pluronic® F127) concentration, homogenization duration, speed, and temperature were identified using Ishikawa diagrams as the highest formulation and process risk factors affecting the critical quality attributes (CQAs), average particle size (PS), and entrapment efficiency (EE%). The risk factors were screened using the Plackett-Burman design, and the levels of the most significant factors were optimized using a multilevel factorial design to explore the optimized system with the least PS, maximum EE%, and a prolonged drug release profile. The optimized system (B6) was developed at a RS:CS ratio of 1:7, a surfactant concentration of 2% (w/v), and a homogenization speed of 14,000 rpm. It revealed good correlation with QbD theoretical prediction, where positively charged (47.9 ± 3.39 mV) discrete, spherical microspheres (3.47 ± 0.16 μm) having a high EE% (94.58 ± 0.19%) and prolonged RS release over 12 h (Q12 h, 89.70 ± 0.64%) were achieved. In vivo lung deposition after intratracheal instillation of B6 confirmed the delivery of high RS percentage to rat lung tissues (87 ± 3.54%) and its persistence for 24 h. This investigation demonstrated the effectiveness of QbD philosophy in developing RS-CS crosslinker-free nebulizable microspheres.
Collapse
Affiliation(s)
- Omar A Elkady
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 11787, Egypt
| | - Mina Ibrahim Tadros
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Hanan M El-Laithy
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 11787, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| |
Collapse
|
9
|
Ciprofloxacin-lidocaine-based hydrogel: development, characterization, and in vivo evaluation in a second-degree burn model. Drug Deliv Transl Res 2018; 8:1000-1013. [DOI: 10.1007/s13346-018-0523-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|