1
|
Ding J, Liu Y, Liu Z, Tan J, Xu W, Huang G, He Z. Glutathione-Responsive Organosilica Hybrid Nanosystems for Targeted Dual-Starvation Therapy in Luminal Breast Cancer. Mol Pharm 2024; 21:745-759. [PMID: 38148514 DOI: 10.1021/acs.molpharmaceut.3c00894] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Starvation therapy is an innovative approach in cancer treatment aimed at depriving cancer cells of necessary resources by impeding tumor angiogenesis or blocking the energy supply. In addition to the commonly observed anaerobic glycolysis energy supply mode, adipocyte-rich tumor tissue triggers the fatty acid energy supply pathway, which fuels the proliferation and metastasis of cancer cells. To completely disrupt these dual-energy-supply pathways, we developed an exceptional nanoreactor. This nanoreactor consisted of yolk-shell mesoporous organosilica nanoparticles (YSMONs) loaded with a fatty acid transport inhibitor (Dox), conjugated with a luminal breast-cancer-specific targeting aptamer, and integrated with a glucose oxidation catalyst (GOx). Upon reaching cancer cells with the assistance of the aptamer, the nanoreactor underwent a structural collapse of the shell triggered by the high concentration of glutathione within cancer cells. This collapse led to the release of GOx and Dox, achieving targeted delivery and exhibiting significant efficacy in starving therapy. Additionally, the byproducts of glucose metabolism, gluconic acid and H2O2, enhanced the acidity and reactive oxygen species levels of the intracellular microenvironment, inducing oxidative damage to cancer cells. Simultaneously, released Dox acted as a potent broad-spectrum anticancer drug, inhibiting the activity of carnitine palmitoyltransferase 1A and exerting marked effects. Combining these effects ensures high anticancer efficiency, and the "dual-starvation" nanoreactor has the potential to establish a novel synergistic therapy paradigm with considerable clinical significance. Furthermore, this approach minimizes damage to normal organs, making it highly valuable in the field of cancer treatment.
Collapse
Affiliation(s)
- Jie Ding
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Key Laboratory for Epigenetics of Dongguan City, China-America Cancer Research Institute, Guangdong Medical University, Dongguan 523808, China
| | - Yuke Liu
- Institute of Modern Biology, Nanjing University, Nanjing 210023, China
| | - Zhifang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Key Laboratory for Epigenetics of Dongguan City, China-America Cancer Research Institute, Guangdong Medical University, Dongguan 523808, China
| | - Jing Tan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Key Laboratory for Epigenetics of Dongguan City, China-America Cancer Research Institute, Guangdong Medical University, Dongguan 523808, China
| | - Weiqiang Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Key Laboratory for Epigenetics of Dongguan City, China-America Cancer Research Institute, Guangdong Medical University, Dongguan 523808, China
| | - Guoliang Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Key Laboratory for Epigenetics of Dongguan City, China-America Cancer Research Institute, Guangdong Medical University, Dongguan 523808, China
| | - Zhiwei He
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Key Laboratory for Epigenetics of Dongguan City, China-America Cancer Research Institute, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
2
|
Ma G, Xu X, Qi M, Zhang Y, Xu X. Radioactive polymeric microspheres as a novel embolic agent for radiological interventional therapy: A preliminary evaluation. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
3
|
Sun J, Feng E, Shao Y, Lv F, Wu Y, Tian J, Sun H, Song F. A Selenium-Substituted Heptamethine Cyanine Photosensitizer for Near-Infrared Photodynamic Therapy. Chembiochem 2022; 23:e202200421. [PMID: 36149045 DOI: 10.1002/cbic.202200421] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/23/2022] [Indexed: 02/03/2023]
Abstract
Photodynamic therapy (PDT) is a relatively safe approach to cancer treatment without significant systemic side effects or drug resistance. However, the current PDT efficiency is unsatisfactory due to the lack of near-infrared (NIR) photosensitizers. Heptamethine cyanine (Cy7) dyes are well-known NIR fluorophores and are also used as photosensitizers. But their singlet oxygen quantum yields (ΦΔ ) are not ideal. Herein, we developed an NIR photosensitizer with a long-lived excited triplet state (τ=4.3 μs) by introducing a selenium atom into the structure of a Cy7 dye. The new NIR photosensitizer exhibits a significantly high singlet oxygen quantum yield (ΦΔ =0.11). Its good PDT effect was demonstrated in the living cells. Considering that the selenium-substituted photosensitizer has a very low dark cytotoxicity and good chemical stability, we conclude that it will have a promising future in biomedical and clinical applications.
Collapse
Affiliation(s)
- Jinghan Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Ling gong Road, Hi-techZone, Dalian, 116024, P. R. China
| | - Erting Feng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Ling gong Road, Hi-techZone, Dalian, 116024, P. R. China
| | - Yutong Shao
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science, Shandong University, 72 Jimo Binhai Road, Qingdao, 266237, P. R. China
| | - Fangyuan Lv
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science, Shandong University, 72 Jimo Binhai Road, Qingdao, 266237, P. R. China
| | - Yingnan Wu
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science, Shandong University, 72 Jimo Binhai Road, Qingdao, 266237, P. R. China
| | - Jiarui Tian
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science, Shandong University, 72 Jimo Binhai Road, Qingdao, 266237, P. R. China
| | - Han Sun
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science, Shandong University, 72 Jimo Binhai Road, Qingdao, 266237, P. R. China
| | - Fengling Song
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Ling gong Road, Hi-techZone, Dalian, 116024, P. R. China.,Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science, Shandong University, 72 Jimo Binhai Road, Qingdao, 266237, P. R. China
| |
Collapse
|
4
|
Zhang F, Xu M, Su X, Yuan W, Feng W, Su Q, Li F. Afterglow Implant for Arterial Embolization and Intraoperative Imaging. Chemistry 2021; 28:e202103795. [PMID: 34791739 DOI: 10.1002/chem.202103795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Indexed: 11/06/2022]
Abstract
Transcatheter arterial embolization (TAE) is wildly used in clinical treatments. However, the online monitoring of the thrombosis formation is limited due to the challenges of the direct visualization of embolic agents and the real-time monitoring of dynamic blood flow. Thus, we developed a photochemical afterglow implant with strong afterglow intensity and a long lifetime for embolization and imaging. The liquid pre-implant injected into the abdominal aorta of mice was rapidly transformed into a hydrogel in situ to embolize the blood vessel. The vascular embolism position can be observed by the enhanced afterglow of the fixed implant, and the long lifetime of afterglow can also be used to monitor the effect of embolization. This provides an excellent candidate in bio-imaging to avoid the autofluorescence interference from continuous light excitation. The study suggests the potential usefulness of the implant as an embolic agent in TAE and artery imaging during a surgical procedure.
Collapse
Affiliation(s)
- Fuying Zhang
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Institute of Biomedicine Science, Fudan University, Shanghai, 200433, P. R. China
| | - Ming Xu
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Institute of Biomedicine Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xianlong Su
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Institute of Biomedicine Science, Fudan University, Shanghai, 200433, P. R. China
| | - Wei Yuan
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Institute of Biomedicine Science, Fudan University, Shanghai, 200433, P. R. China
| | - Wei Feng
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Institute of Biomedicine Science, Fudan University, Shanghai, 200433, P. R. China
| | - Qianqian Su
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Institute of Biomedicine Science, Fudan University, Shanghai, 200433, P. R. China.,Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, P. R. China
| | - Fuyou Li
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Institute of Biomedicine Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
5
|
Obinu A, Porcu EP, Piras S, Ibba R, Carta A, Molicotti P, Migheli R, Dalpiaz A, Ferraro L, Rassu G, Gavini E, Giunchedi P. Solid Lipid Nanoparticles as Formulative Strategy to Increase Oral Permeation of a Molecule Active in Multidrug-Resistant Tuberculosis Management. Pharmaceutics 2020; 12:E1132. [PMID: 33255304 PMCID: PMC7760137 DOI: 10.3390/pharmaceutics12121132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/17/2022] Open
Abstract
The role of mycobacterial efflux pumps in drug-resistant tuberculosis has been widely reported. Recently, a new compound, named SS13, has been synthesized, and its activity as a potential efflux inhibitor has been demonstrated. In this work, the chemical-physical properties of the SS13 were investigated; furthermore, a formulative study aimed to develop a formulation suitable for oral administration was performed. SS13 shows nonintrinsic antitubercular activity, but it increases the antitubercular activity of all the tested drugs on several strains. SS13 is insoluble in different simulated gastrointestinal media; thus, its oral absorption could be limited. Solid lipid nanoparticles (SLNs) were, therefore, developed by using two different lipids, Witepsol and/or Gelucire. Nanoparticles, having a particle size (range of 200-450 nm with regards to the formulation composition) suitable for intestinal absorption, are able to load SS13 and to improve its permeation through the intestinal mucosa compared to the pure compound. The cytotoxicity is influenced by the concentration of nanoparticles administered. These promising results support the potential application of these nanocarriers for increasing the oral permeation of SS13 in multidrug-resistant tuberculosis management.
Collapse
Affiliation(s)
- Antonella Obinu
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23/a, 07100 Sassari, Italy; (A.O.); (E.P.P.); (S.P.); (R.I.); (A.C.); (G.R.); (P.G.)
| | - Elena Piera Porcu
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23/a, 07100 Sassari, Italy; (A.O.); (E.P.P.); (S.P.); (R.I.); (A.C.); (G.R.); (P.G.)
| | - Sandra Piras
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23/a, 07100 Sassari, Italy; (A.O.); (E.P.P.); (S.P.); (R.I.); (A.C.); (G.R.); (P.G.)
| | - Roberta Ibba
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23/a, 07100 Sassari, Italy; (A.O.); (E.P.P.); (S.P.); (R.I.); (A.C.); (G.R.); (P.G.)
| | - Antonio Carta
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23/a, 07100 Sassari, Italy; (A.O.); (E.P.P.); (S.P.); (R.I.); (A.C.); (G.R.); (P.G.)
| | - Paola Molicotti
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 07100 Sassari, Italy;
| | - Rossana Migheli
- Department of Clinical and Experimental Medicine, University of Sassari, viale San Pietro 43/b, 07100 Sassari, Italy;
| | - Alessandro Dalpiaz
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, via Fossato di Mortara 19, 44121 Ferrara, Italy;
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, via Borsari 46, 44121 Ferrara, Italy;
| | - Giovanna Rassu
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23/a, 07100 Sassari, Italy; (A.O.); (E.P.P.); (S.P.); (R.I.); (A.C.); (G.R.); (P.G.)
| | - Elisabetta Gavini
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23/a, 07100 Sassari, Italy; (A.O.); (E.P.P.); (S.P.); (R.I.); (A.C.); (G.R.); (P.G.)
| | - Paolo Giunchedi
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23/a, 07100 Sassari, Italy; (A.O.); (E.P.P.); (S.P.); (R.I.); (A.C.); (G.R.); (P.G.)
| |
Collapse
|
6
|
Mohamed EM, Khuroo T, Afrooz H, Dharani S, Sediri K, Cook P, Arunagiri R, Khan MA, Rahman Z. Development of a Multivariate Predictive Dissolution Model for Tablets Coated with Cellulose Ester Blends. Pharmaceuticals (Basel) 2020; 13:ph13100311. [PMID: 33076276 PMCID: PMC7602398 DOI: 10.3390/ph13100311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 01/11/2023] Open
Abstract
The focus of the present investigation was to develop a predictive dissolution model for tablets coated with blends of cellulose acetate butyrate (CAB) 171-15 and cellulose acetate phthalate (C-A-P) using the design of experiment and chemometric approaches. Diclofenac sodium was used as a model drug. Coating weight gain (X1, 5, 7.5 and 10%) and CAB 171-15 percentage (X2, 33.3, 50 and 66.7%) in the coating composition relative to C-A-P and were selected as independent variables by full factorial experimental design. The responses monitored were dissolution at 1 (Y1), 8 (Y2), and 24 (Y3) h. Statistically significant (p < 0.05) effects of X1 on Y1 and X2 on Y1, Y2, and Y3 were observed. The models showed a good correlation between actual and predicted values as indicated by the correlation coefficients of 0.964, 0.914, and 0.932 for Y1, Y2, and Y3, respectively. For the chemometric model development, the near infrared spectra of the coated tablets were collected, and partial least square regression (PLSR) was performed. PLSR also showed a good correlation between actual and model predicted values as indicated by correlation coefficients of 0.916, 0.964, and 0.974 for Y1, Y2, and Y3, respectively. Y1, Y2, and Y3 predicted values of the independent sample by both approaches were close to the actual values. In conclusion, it is possible to predict the dissolution of tablets coated with blends of cellulose esters by both approaches.
Collapse
Affiliation(s)
- Eman M. Mohamed
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA; (E.M.M.); (T.K.); (H.A.); (S.D.); (K.S.); (M.A.K.)
- Department of Pharmaceutics, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Tahir Khuroo
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA; (E.M.M.); (T.K.); (H.A.); (S.D.); (K.S.); (M.A.K.)
| | - Hamideh Afrooz
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA; (E.M.M.); (T.K.); (H.A.); (S.D.); (K.S.); (M.A.K.)
| | - Sathish Dharani
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA; (E.M.M.); (T.K.); (H.A.); (S.D.); (K.S.); (M.A.K.)
| | - Khaldia Sediri
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA; (E.M.M.); (T.K.); (H.A.); (S.D.); (K.S.); (M.A.K.)
- Laboratory of Applied Chemistry, ACTR Univ. Ain Temouchent DGRCT, BP 248, 46000 Ain Temouchent, Algeria
| | - Phillip Cook
- Eastman Chemical Company, Kingsport, TN 37662, USA; (P.C.); (R.A.)
| | | | - Mansoor A. Khan
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA; (E.M.M.); (T.K.); (H.A.); (S.D.); (K.S.); (M.A.K.)
| | - Ziyaur Rahman
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA; (E.M.M.); (T.K.); (H.A.); (S.D.); (K.S.); (M.A.K.)
- Correspondence: ; Tel.: +1-979-436-0873
| |
Collapse
|
7
|
Chen G, Wei R, Huang X, Wang F, Chen Z. Synthesis and assessment of sodium alginate-modified silk fibroin microspheres as potential hepatic arterial embolization agent. Int J Biol Macromol 2020; 155:1450-1459. [DOI: 10.1016/j.ijbiomac.2019.11.122] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/04/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023]
|
8
|
Gao Y, Li Z, Hong Y, Li T, Hu X, Sun L, Chen Z, Chen Z, Luo Z, Wang X, Kong J, Li G, Wang HL, Leo HL, Yu H, Xi L, Guo Q. Decellularized liver as a translucent ex vivo model for vascular embolization evaluation. Biomaterials 2020; 240:119855. [DOI: 10.1016/j.biomaterials.2020.119855] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 12/25/2022]
|
9
|
Chitosan Nanoparticles for Therapy and Theranostics of Hepatocellular Carcinoma (HCC) and Liver-Targeting. NANOMATERIALS 2020; 10:nano10050870. [PMID: 32365938 PMCID: PMC7279387 DOI: 10.3390/nano10050870] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/24/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
Chitosan nanoparticles are well-known delivery systems widely used as polymeric carriers in the field of nanomedicine. Chitosan is a carbohydrate of natural origin: it is a biodegradable, biocompatible, mucoadhesive, polycationic polymer and it is endowed with penetration enhancer properties. Furthermore, it can be easily derivatized. Hepatocellular carcinoma (HCC) represents a remarkable health problem because current therapies, that include surgery, liver transplantation, trans-arterial embolization, chemoembolization and chemotherapy, present significant limitations due to the high risk of recurrence, to a lack of drug selectivity and to other serious side effects. Therefore, there is the need for new therapeutic strategies and for improving the liver-targeting to HCC. Nanomedicine consists in the use of nanoscale carriers as delivery systems to target and deliver drugs and/or diagnostic agents to specific organs or tissues. Chitosan and its derivatives can be successfully used in the preparation of nanoparticles that, for their peculiar surface-properties, can specifically interact with liver tumor, by passive and active targeting. This review concerns the use of chitosan nanoparticles for the therapy and theranostics of HCC and liver-targeting.
Collapse
|
10
|
Indocyanine Green Loaded Polymeric Nanoparticles: Physicochemical Characterization and Interaction Studies with Caco-2 Cell Line by Light and Transmission Electron Microscopy. NANOMATERIALS 2020; 10:nano10010133. [PMID: 31940760 PMCID: PMC7022782 DOI: 10.3390/nano10010133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022]
Abstract
Biomedical applications of nanoparticles (NPs) have reached an increasing development in recent years. Recently, we demonstrated that newly synthesized poly (ethyl 2-cyanoacrylate) nanoparticles (PECA-NPs) are possible antitumor agents due to their cytotoxicity for cancer cells. Indocyanine green (ICG), an amphiphilic tricarbocyanine fluorescent dye, is widely used for the detection of tumoral extension in different organs during clinical surgery. Moreover, this fluorescent agent is unstable and it has a rapid clearance in physiological conditions in vivo. In this study, ICG was charged in PECA-NPs to improve its aqueous stability and make easier its use for the identification of tumor cells. Microscopic and ultrastructural aspects concerning the related in vitro interactions between ICG-loaded NPs and tumor cell culture were investigated. Obtained results showed an effective stabilization of ICG; furthermore, color inclusions inside the cells treated with ICG-loaded NPs demonstrated the internalization of NPs with associated ICG. Transmission electron microscopy (TEM) analysis demonstrated the cytoplasmic presence of coated vesicles (Ø ≤ 100 nm), hypothesizing their involvement in the mechanism of endocytosis. Therefore, ICG-loaded NPs could be proposed as agents for tumor diagnosis, hypothesizing also in the future a specific therapeutic treatment.
Collapse
|
11
|
Wang J, Li J, Ren J. Surface Modification of Poly(lactic-co-glycolic acid) Microspheres with Enhanced Hydrophilicity and Dispersibility for Arterial Embolization. MATERIALS 2019; 12:ma12121959. [PMID: 31216635 PMCID: PMC6630409 DOI: 10.3390/ma12121959] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/24/2022]
Abstract
In this study, a series of poly(lactic-co-glycolic acid) (PLGA) microspheres with different particle sizes for arterial embolization surgery were prepared. The polydopamine (PDA) and polydopamine/polyethyleneimine (PDA/PEI) were respectively coated on the PLGA microspheres as shells, in order to improve the hydrophilicity and dispersibility of PLGA embolization microspheres. After modification, with the introduction of PDA and PEI, many hydrophilic hydroxyl and amine groups appeared on the surface of the PLGA@PDA and PLGA@PDA/PEI microspheres. SEM images showed the morphologies, sizes, and changes of the as-prepared microspheres. Meanwhile, the XPS and FT-IR spectra demonstrated the successful modification of the PDA and PEI. Water contact angles (WCAs) of the PLGA@PDA and PLGA@PDA/PEI microspheres became smaller, indicating a certain improvement in surface hydrophilicity. In addition, the results of in vitro cytotoxicity showed that modification had little effect on the biosafety of the microspheres. The modified PLGA microspheres suggest a promising prospective application in biomedical field, as the modified microspheres can reduce difficulties in embolization surgery.
Collapse
Affiliation(s)
- Jiao Wang
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Shanghai Key Laboratory for R&D and Application of Metalic Functional Materials, Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
| | - Jianbo Li
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Shanghai Key Laboratory for R&D and Application of Metalic Functional Materials, Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
| | - Jie Ren
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Shanghai Key Laboratory for R&D and Application of Metalic Functional Materials, Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
| |
Collapse
|
12
|
Xia Y, Yuan M, Chen M, Li J, Ci T, Ke X. Liquid jet breakup: A new method for the preparation of poly lactic-co-glycolic acid microspheres. Eur J Pharm Biopharm 2019; 137:140-147. [PMID: 30818010 DOI: 10.1016/j.ejpb.2019.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 01/29/2019] [Accepted: 02/24/2019] [Indexed: 01/19/2023]
Abstract
The purpose of this study was to apply the phenomenon of liquid jet breakup to the preparation of sustained-release microspheres. The mechanisms of liquid jet breakup in different jet states were investigated and the single factor method was used to study the effect of each process parameter on the particle size and size distribution of microspheres. Meantime, the prepared microspheres were characterized by morphology, drug loading, encapsulation efficiency and in vitro release. The results indicated that the process of liquid jet breakup could have 5 different states. The laminar flow state dominated when the Reynolds number (Re) was low, and the prepared microspheres had larger particle sizes. When the Re was high, the turbulent state was dominant and the microspheres had smaller particle sizes. And during the transition state from the laminar flow to the turbulence, the microspheres had a wide particle size distribution. Different process parameters could affect the particle size and distribution of microspheres by changing the Re, surface tension coefficient and viscosity. The microspheres prepared by liquid jet breakup were smooth and round with the drug loading of 35% and the encapsulation efficiency of 88%. In addition, when the polymeric carrier materials were different, the microspheres could have various drug release models such as sustained release with a lag phase, sustained release with no lag phase, pulsed release and so on, which could be applied widespread in the future.
Collapse
Affiliation(s)
- Yulong Xia
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Meng Yuan
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Mo Chen
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jin Li
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Tianyuan Ci
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| | - Xue Ke
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
13
|
Guo L, Qin S. Studies on preparations and properties of drug-eluting embolization microspheres made from oxidated alginate and carboxymethyl chitosan. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1517346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Li Guo
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, P. R. China
| | - Shaoxiong Qin
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, P. R. China
| |
Collapse
|
14
|
Huang A, Li X, Liang X, Zhang Y, Hu H, Yin Y, Huang Z. Solid-Phase Synthesis of Cellulose Acetate Butyrate as Microsphere Wall Materials for Sustained Release of Emamectin Benzoate. Polymers (Basel) 2018; 10:E1381. [PMID: 30961306 PMCID: PMC6401682 DOI: 10.3390/polym10121381] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/05/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022] Open
Abstract
Emamectin benzoate (EB), a widely used pesticide, is prone to decomposition by ultraviolet light and suffers from the corresponding loss of efficacy. The timed release of EB based on microspheres is one of the effective methods to solve this issue. As a non-toxic cellulose ester, cellulose acetate butyrate (CAB) is regarded as one of the best wall-forming materials for microcapsules with a good controlled release performance. Herein, two methods-mechanical activation (MA) technology and a conventional liquid phase (LP) method-were employed to synthesize different CABs, namely CAB-MA and CAB-LP, respectively. The molecular structure, rheological property, and thermal stability of these CABs were investigated. The two CABs were used to prepare microspheres for the loading and release of EB via an o/w (oil-in-water) solvent evaporation method. Moreover, the performances such as drug loading, drug entrapment, and anti-photolysis of the drug for these microspheres were studied. The results showed that both CABs were available as wall materials for loading and releasing EB. Compared with CAB-LP, CAB-MA presented a lower molecular weight and a narrower molecular weight distribution. Moreover, the MA method endowed the CAB with more ester substituent groups and less crystalline structure in comparison to the LP method, which had benefits including pelletizing and drug loading.
Collapse
Affiliation(s)
- Aimin Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
- Medical College of Guangxi University, Nanning 530004, China.
| | - Xuanhai Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Xingtang Liang
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-Enriched Functional Utilization, College of Petroleum and Chemical Engineering, Qinzhou University, Qinzhou 535011, China.
| | - Yanjuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Huayu Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Yanzhen Yin
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-Enriched Functional Utilization, College of Petroleum and Chemical Engineering, Qinzhou University, Qinzhou 535011, China.
| | - Zuqiang Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
15
|
Zhang M, Tang Y, Zhu Z, Zhao H, Yao J, Sun D. Paclitaxel and etoposide-loaded Poly (lactic-co-glycolic acid) microspheres fabricated by coaxial electrospraying for dual drug delivery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:1949-1963. [PMID: 29920151 DOI: 10.1080/09205063.2018.1485816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this study, we fabricated paclitaxel (PTX) and etoposide (ETP) loaded Poly (lactic-co-glycolic acid) (PLGA) microspheres with core-shell structures and particle sizes ranging from 1 to 4 µm by coaxial electrospraying. The microspheres were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM). The drug loading rate and entrapment efficiency of the microspheres were detected by high performance liquid chromatograph (HPLC). Moreover, the drug release profiles and degradation of drug-loaded PLGA microspheres in vitro were investigated, respectively. The distinct layered structure that existed in the manufactured core-shell microspheres can be observed by TEM. The in vitro release profiles indicated that the PLGA/PTX + ETP (PLGA/PE) microspheres exhibited the controlled release of two drugs in a sequential manner. Cell Counting Kit-8 was used to detect the toxic and side effects of the microspheres on bone tumor cells. PTX and ETP for combination drug therapy loaded microspheres had more cytotoxic effect on saos-2 osteosarcoma cells than the individual drugs. In conclusion, core-shell PLGA microspheres by electrospraying for combination drug therapy is promising for medicine applications, the PLGA/PE microspheres have some potential for osteosarcoma treatment.
Collapse
Affiliation(s)
- Mei Zhang
- a Alan G. MacDiarmid Laboratory, College of Chemistry , Jilin University , Changchun , China
| | - Yajun Tang
- a Alan G. MacDiarmid Laboratory, College of Chemistry , Jilin University , Changchun , China
| | - Zhenhua Zhu
- b Norman Bethune First Hospital, Jilin University , Changchun , China
| | - He Zhao
- a Alan G. MacDiarmid Laboratory, College of Chemistry , Jilin University , Changchun , China
| | - Jihang Yao
- b Norman Bethune First Hospital, Jilin University , Changchun , China
| | - Dahui Sun
- b Norman Bethune First Hospital, Jilin University , Changchun , China
| |
Collapse
|
16
|
Obinu A, Gavini E, Rassu G, Maestri M, Bonferoni MC, Giunchedi P. Nanoparticles in detection and treatment of lymph node metastases: an update from the point of view of administration routes. Expert Opin Drug Deliv 2018; 15:1117-1126. [DOI: 10.1080/17425247.2018.1537260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Antonella Obinu
- Department of Clinical-Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
| | - Elisabetta Gavini
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Giovanna Rassu
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Marcello Maestri
- IRCCS Policlinico San Matteo Foundation and Department of Clinical-Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
| | | | - Paolo Giunchedi
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| |
Collapse
|
17
|
Aqueous injection of quercetin: An approach for confirmation of its direct in vivo cardiovascular effects. Int J Pharm 2018; 541:224-233. [DOI: 10.1016/j.ijpharm.2018.02.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
|
18
|
Hyaluronic acid-based nano-sized drug carrier-containing Gellan gum microspheres as potential multifunctional embolic agent. Sci Rep 2018; 8:731. [PMID: 29335649 PMCID: PMC5768792 DOI: 10.1038/s41598-018-19191-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study was to develop a gellan gum-based multifunctional embolic agent. Calibrated spherical gellan gum and nanoparticle-containing gellan gum microspheres were prepared via water-in oil emulsification method. Self-assembled nanoparticles composed of short-chain hyaluronic acid and polyethylenimine as the doxorubicin carrier were prepared. The short-chain hyaluronic acid/polyethylenimine/ doxorubicin (sHH/PH/Dox) with the mean size was 140 ± 8 nm. To examine sHH/PH/Dox nanoparticle uptake into cells, the results confirmed that sHH/PH nanoparticles as drug carrier can facilitate the transport of doxorubicin into HepG2 liver cancer cells. Subsequently, sHH/PH/Dox merged into the gellan gum (GG) microspheres forming GG/sHH/PH/Dox microsphere. After a drug release experiment lasting 45 days, the amount of released doxorubicin from 285, 388, and 481 μm GG/sHH/PH/Dox microspheres were approximately 4.8, 1.8 and 1.1-fold above the IC50 value of the HepG2 cell. GG/sHH/PH/Dox microspheres were performed in rabbit ear embolization model and ischemic necrosis on ear was visible due to the vascular after 8 days. Regarding the application of this device in the future, we aim to provide better embolization agents for transcatheter arterial chemoembolization (TACE).
Collapse
|