1
|
Coopersmith S, Rahamim V, Drori E, Miloslavsky R, Kozlov R, Gorelick J, Azagury A. Natural Epithelial Barrier Integrity Enhancers- Citrus medica and Origanum dayi Extracts. Gels 2024; 10:836. [PMID: 39727593 DOI: 10.3390/gels10120836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024] Open
Abstract
Buccal drug delivery offers a promising alternative for avoiding gastrointestinal degradation and first-pass metabolism. However, enhancing the buccal epithelial barrier's permeability remains challenging. This study explores the effects of ethanolic extracts from Citrus medica var. Balady (CM), Citrus medica var. Calabria (CMC), and Origanum dayi (ORD) on buccal epithelium permeability in vitro using a TR146 cell-based model. The cell viability assay revealed that the extracts were non-toxic at the concentration range tested (<0.5% w/v). Surprisingly, none of the tested extracts significantly enhanced the buccal permeability of 40 kDa Fluorescein Isothiocyanate Dextran (FD40). However, the CMC and ORD extracts significantly reduced the epithelial permeability of FD40, mirroring the effects of hyaluronic acid (HA), a known barrier integrity enhancer. The total phenolic content (TPC) analysis suggested a potential link between the phenolic concentration and epithelial barrier reinforcement. The rapid colorimetric response method was applied to assess the interaction of these extracts with biological membranes. The results indicated that HA interacts with cellular membranes via lipid bilayer penetration, whereas the extracts likely influence the barrier integrity through alternative mechanisms, such as ligand-receptor interactions or extracellular matrix modulation. These findings highlight the potential of CMC and ORD extracts as natural agents to enhance buccal epithelial integrity. In conclusion, incorporating these extracts into formulations, such as hydrogels, could offer a cost-effective and biocompatible alternative to HA for improving buccal cavity health.
Collapse
Affiliation(s)
- Sarah Coopersmith
- The Department of Chemical Engineering and Biotechnology, Ariel University, Ariel 4070000, Israel
- Eastern Research & Development Center, Kiryat Arba, Ariel 40700, Israel
| | - Valeria Rahamim
- The Department of Chemical Engineering and Biotechnology, Ariel University, Ariel 4070000, Israel
| | - Eliyahu Drori
- The Department of Chemical Engineering and Biotechnology, Ariel University, Ariel 4070000, Israel
| | | | - Rima Kozlov
- Eastern Research & Development Center, Kiryat Arba, Ariel 40700, Israel
| | - Jonathan Gorelick
- Eastern Research & Development Center, Kiryat Arba, Ariel 40700, Israel
| | - Aharon Azagury
- The Department of Chemical Engineering and Biotechnology, Ariel University, Ariel 4070000, Israel
| |
Collapse
|
2
|
Patel D, Solanki J, Kher MM, Azagury A. A Review: Surface Engineering of Lipid-Based Drug Delivery Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401990. [PMID: 39004869 DOI: 10.1002/smll.202401990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/19/2024] [Indexed: 07/16/2024]
Abstract
This review explores the evolution of lipid-based nanoparticles (LBNPs) for drug delivery (DD). Herein, LBNPs are classified into liposomes and cell membrane-based nanoparticles (CMNPs), each with unique advantages and challenges. Conventional LBNPs possess drawbacks such as poor targeting, quick clearance, and limited biocompatibility. One of the possible alternatives to overcome these challenges is surface modification of nanoparticles (NPs) with materials such as polyethylene glycol (PEG), aptamers, antibody fragments, peptides, CD44, hyaluronic acid, folic acid, palmitic acid, and lactoferrin. Thus, the main focus of this review will be on the different surface modifications that enable LBNPs to have beneficial properties for DD, such as enhancing mass transport properties, immune evasion, improved stability, and targeting. Moreover, various CMNPs are explored used for DD derived from cells such as red blood cells (RBCs), platelets, leukocytes, cancer cells, and stem cells, highlighting their unique natural properties (e.g., biocompatibility and ability to evade the immune system). This discussion extends to the biomimicking of hybrid NPs accomplished through the surface coating of synthetic (mainly polymeric) NPs with different cell membranes. This review aims to provide a comprehensive resource for researchers on recent advances in the field of surface modification of LBNPs and CMNPs. Overall, this review provides valuable insights into the dynamic field of lipid-based DD systems.
Collapse
Affiliation(s)
- Dhaval Patel
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel, 4070000, Israel
| | - Jyoti Solanki
- Post Graduate Department of Biosciences, Sardar Patel University, Bakrol, Anand, Gujarat, 388120, India
| | - Mafatlal M Kher
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel, 4070000, Israel
| | - Aharon Azagury
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel, 4070000, Israel
| |
Collapse
|
3
|
Zeng L, Huang F, Zhang Q, Liu J, Quan D, Song W. Molecular perspective of efficiency and safety problems of chemical enhancers: bottlenecks and recent advances. Drug Deliv Transl Res 2021; 12:1376-1394. [PMID: 34476765 DOI: 10.1007/s13346-021-01044-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 12/12/2022]
Abstract
Chemical penetration enhancer (CPE) is a preferred approach to improve drug permeability through the skin, due to its unique advantages of simple use and high compatibility. However, CPEs efficiency and safety problems frequently arise, which greatly restrains the further application in transdermal drug delivery systems (TDDS). To get access to the root of problems, the efficiency and safety of CPEs are reviewed especially from molecular perspectives, which include (1) the possible factors of CPEs low efficiency; (2) the possible contribution of CPEs in the evolution of safety problems such as skin irritation and allergic reaction; (3) the interactive relationship between CPEs efficiency and safety, as well as the bottlenecks of achieving their balance. More importantly, based on these, recent advances are summarized in improving efficiency or safety of CPEs, which offers a guidance of rationally selecting CPEs in future research.
Collapse
Affiliation(s)
- Lijuan Zeng
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Jiangning District, 639 Longmian Avenue, Nanjing, 211198, P.R. China
| | - Feifei Huang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Jiangning District, 639 Longmian Avenue, Nanjing, 211198, P.R. China
| | - Qin Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Jiangning District, 639 Longmian Avenue, Nanjing, 211198, P.R. China
| | - Jianping Liu
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Jiangning District, 639 Longmian Avenue, Nanjing, 211198, P.R. China
| | - Danyi Quan
- Institute of Advanced Drug Delivery Technology, No. 10 Xinghuo Ave Jiangbei New Area, Nanjing, 210032, P.R. China.
| | - Wenting Song
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Jiangning District, 639 Longmian Avenue, Nanjing, 211198, P.R. China.
| |
Collapse
|
4
|
das Neves J, Notario-Pérez F, Sarmento B. Women-specific routes of administration for drugs: A critical overview. Adv Drug Deliv Rev 2021; 176:113865. [PMID: 34280514 DOI: 10.1016/j.addr.2021.113865] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022]
Abstract
The woman's body presents a number of unique anatomical features that can constitute valuable routes for the administration of drugs, either for local or systemic action. These are associated with genitalia (vaginal, endocervical, intrauterine, intrafallopian and intraovarian routes), changes occurring during pregnancy (extra-amniotic, intra-amniotic and intraplacental routes) and the female breast (breast intraductal route). While the vaginal administration of drug products is common, other routes have limited clinical application and are fairly unknown even for scientists involved in drug delivery science. Understanding the possibilities and limitations of women-specific routes is of key importance for the development of new preventative, diagnostic and therapeutic strategies that will ultimately contribute to the advancement of women's health. This article provides an overview on women-specific routes for the administration of drugs, focusing on aspects such as biological features pertaining to drug delivery, relevance in current clinical practice, available drug dosage forms/delivery systems and administration techniques, as well as recent trends in the field.
Collapse
|
5
|
Estrellas KM, Fiecas M, Azagury A, Laulicht B, Cho DY, Mancini A, Reineke J, Furtado S, Mathiowitz E. Time-dependent mucoadhesion of conjugated bioadhesive polymers. Colloids Surf B Biointerfaces 2019; 173:454-469. [PMID: 30326362 DOI: 10.1016/j.colsurfb.2018.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 11/19/2022]
Abstract
The time-dependent bioadhesive performance of various polymers was evaluated using a texture analyzer apparatus and freshly excised rat small intestinal tissue. A series of novel bioadhesive polymers were prepared by conjugating L-phenylalanine, L-tyrosine, and L-DOPA to either a low molecular weight poly (butadiene-maleic anhydride) or a high molecular weight poly (ethylene-maleic anhydride). Bioadhesive force was characterized as a function of time relative to polycarbophil, a slightly cross-linked poly (acrylic acid)-derivative, revealing different fracture strengths and tensile work for each of the six backbone-side chain conjugations that were studied. While polycarbophil showed a rapid and significant loss of bioadhesion over the testing period, the newly developed synthetic polymers were able to maintain their bioadhesive performance over the course of 91 min with the overall magnitude of bioadhesion corresponding to the hydrogen bonding potential of the associated side chains. These results highlight the potential of these polymers for use in the development of more effective bioadhesive oral drug delivery systems.
Collapse
Affiliation(s)
- Kenneth M Estrellas
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, 02912, USA
| | - Mark Fiecas
- Department of Statistics, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Aharon Azagury
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, 02912, USA
| | - Bryan Laulicht
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, 02912, USA
| | - Daniel Y Cho
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, 02912, USA
| | - Alexis Mancini
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, 02912, USA
| | - Joshua Reineke
- Pharmaceutical Sciences Faculty Research, South Dakota State University, Box 2202C, Brookings, SD, 57007, USA
| | - Stacia Furtado
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, 02912, USA
| | - Edith Mathiowitz
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|