1
|
Yoshihara N, Lopes M, Santos I, Kopke B, Almeida C, Araújo J, Fechine PBA, Santos-Oliveira R, Sant'Anna C. Graphitic carbon nitride as a novel anticancer agent: potential mechanisms and efficacy in prostate cancer and glioblastoma treatment. Biomater Sci 2024; 12:5547-5561. [PMID: 39292186 DOI: 10.1039/d4bm01025f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Carbon-derived compounds are gaining traction in the scientific community because of their unique properties, such as conductivity and strength, and promising innovations in technology and medicine. Graphitic nitride carbon (g-C3N4) stands out among these compounds because of its potential in antitumor therapies. This study aimed to assess g-C3N4's antitumor potential and cytotoxic mechanisms. Prostate cancer (DU-145) and glioblastoma (U87) cell lines were used to evaluate antitumor effects, whereas RAW 264.7 and HFF-1 non-tumor cells were used for selectivity evaluation. The synthesized g-C3N4 particles underwent comprehensive characterization, including the assessment of particle size, morphology, and oxygen content, employing various techniques, such as X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and atomic force microscopy. The results indicated that g-C3N4 significantly affected tumor cell proliferation and viability, exhibiting high cytotoxicity within 48 h. In non-tumor cells, minimal effects on proliferation were observed, except for damage to the cell membranes of RAW 264.7 cells. Moreover, g-C3N4 changed the cell morphology and ultrastructure, affecting cell migration in U87 cells and potentially enhancing migration in RAW 264.7 cells. Biochemical assays in Balb/C mice revealed alterations in alanine aminotransferase, aspartate aminotransferase, and amylase levels. In conclusion, g-C3N4 demonstrated promising antitumor effects with minimal toxicity to non-tumor cells, suggesting its potential in neoplasm treatment.
Collapse
Affiliation(s)
- Natalia Yoshihara
- National Institute of Metrology, Quality and Technology, Eukaryotic Cell Biology Laboratory, Duque de Caxias-RJ, 24250020, Brazil.
| | - Michelle Lopes
- National Institute of Metrology, Quality and Technology, Eukaryotic Cell Biology Laboratory, Duque de Caxias-RJ, 24250020, Brazil.
| | - Isabel Santos
- National Institute of Metrology, Quality and Technology, Eukaryotic Cell Biology Laboratory, Duque de Caxias-RJ, 24250020, Brazil.
| | - Beatriz Kopke
- National Institute of Metrology, Quality and Technology, Eukaryotic Cell Biology Laboratory, Duque de Caxias-RJ, 24250020, Brazil.
| | - Clara Almeida
- National Institute of Metrology, Quality and Technology, Laboratory of Microscopy Dimat, Duque de Caxias-RJ, 24250020, Brazil
| | - Joyce Araújo
- National Institute of Metrology, Quality and Technology, Laboratory of Microscopy Dimat, Duque de Caxias-RJ, 24250020, Brazil
| | - Pierre B A Fechine
- Group of Chemistry of Advanced Materials (GQMat)-Department of Analytical Chemistry and Physical-Chemistry, Federal University of Ceará, Fortaleza-CE, 451-970, Brazil
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy and Synthesis of New, Brazil
- Radiopharmaceuticals, Rio de Janeiro-RJ, 21941906, Brazil
- Rio de Janeiro State University, Laboratory of Nanoradiopharmaceuticals, Rio de Janeiro, 23070200, Brazil
| | - Celso Sant'Anna
- National Institute of Metrology, Quality and Technology, Eukaryotic Cell Biology Laboratory, Duque de Caxias-RJ, 24250020, Brazil.
| |
Collapse
|
2
|
Semenov KN, Shemchuk OS, Ageev SV, Andoskin PA, Iurev GO, Murin IV, Kozhukhov PK, Maystrenko DN, Molchanov OE, Kholmurodova DK, Rizaev JA, Sharoyko VV. Development of Graphene-Based Materials with the Targeted Action for Cancer Theranostics. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1362-1391. [PMID: 39245451 DOI: 10.1134/s0006297924080029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 09/10/2024]
Abstract
The review summarises the prospects in the application of graphene and graphene-based nanomaterials (GBNs) in nanomedicine, including drug delivery, photothermal and photodynamic therapy, and theranostics in cancer treatment. The application of GBNs in various areas of science and medicine is due to the unique properties of graphene allowing the development of novel ground-breaking biomedical applications. The review describes current approaches to the production of new targeting graphene-based biomedical agents for the chemotherapy, photothermal therapy, and photodynamic therapy of tumors. Analysis of publications and FDA databases showed that despite numerous clinical studies of graphene-based materials conducted worldwide, there is a lack of information on the clinical trials on the use of graphene-based conjugates for the targeted drug delivery and diagnostics. The review will be helpful for researchers working in development of carbon nanostructures, material science, medicinal chemistry, and nanobiomedicine.
Collapse
Affiliation(s)
- Konstantin N Semenov
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia.
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, 197758, Russia
| | - Olga S Shemchuk
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Sergei V Ageev
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Pavel A Andoskin
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
| | - Gleb O Iurev
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
| | - Igor V Murin
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | | | - Dmitriy N Maystrenko
- Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, 197758, Russia
| | - Oleg E Molchanov
- Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, 197758, Russia
| | | | - Jasur A Rizaev
- Samarkand Medical University, Samarkand, 100400, Uzbekistan
| | - Vladimir V Sharoyko
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia.
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, 197758, Russia
| |
Collapse
|
3
|
Wu L, He C, Zhao T, Li T, Xu H, Wen J, Xu X, Gao L. Diagnosis and treatment status of inoperable locally advanced breast cancer and the application value of inorganic nanomaterials. J Nanobiotechnology 2024; 22:366. [PMID: 38918821 PMCID: PMC11197354 DOI: 10.1186/s12951-024-02644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
Locally advanced breast cancer (LABC) is a heterogeneous group of breast cancer that accounts for 10-30% of breast cancer cases. Despite the ongoing development of current treatment methods, LABC remains a severe and complex public health concern around the world, thus prompting the urgent requirement for innovative diagnosis and treatment strategies. The primary treatment challenges are inoperable clinical status and ineffective local control methods. With the rapid advancement of nanotechnology, inorganic nanoparticles (INPs) exhibit a potential application prospect in diagnosing and treating breast cancer. Due to the unique inherent characteristics of INPs, different functions can be performed via appropriate modifications and constructions, thus making them suitable for different imaging technology strategies and treatment schemes. INPs can improve the efficacy of conventional local radiotherapy treatment. In the face of inoperable LABC, INPs have proposed new local therapeutic methods and fostered the evolution of novel strategies such as photothermal and photodynamic therapy, magnetothermal therapy, sonodynamic therapy, and multifunctional inorganic nanoplatform. This article reviews the advances of INPs in local accurate imaging and breast cancer treatment and offers insights to overcome the existing clinical difficulties in LABC management.
Collapse
Affiliation(s)
- Linxuan Wu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Chuan He
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Tingting Zhao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Tianqi Li
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Hefeng Xu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Jian Wen
- Department of Breast Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| | - Xiaoqian Xu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China.
| | - Lin Gao
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| |
Collapse
|
4
|
Schuh L, Reginato M, Florêncio I, Falcao L, Boron L, Gris EF, Mello V, Báo SN. From Nature to Innovation: The Uncharted Potential of Natural Deep Eutectic Solvents. Molecules 2023; 28:7653. [PMID: 38005377 PMCID: PMC10675409 DOI: 10.3390/molecules28227653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
This review discusses the significance of natural deep eutectic solvents (NaDESs) as a promising green extraction technology. It employs the consolidated meta-analytic approach theory methodology, using the Web of Science and Scopus databases to analyze 2091 articles as the basis of the review. This review explores NaDESs by examining their properties, challenges, and limitations. It underscores the broad applications of NaDESs, some of which remain unexplored, with a focus on their roles as solvents and preservatives. NaDESs' connections with nanocarriers and their use in the food, cosmetics, and pharmaceutical sectors are highlighted. This article suggests that biomimicry could inspire researchers to develop technologies that are less harmful to the human body by emulating natural processes. This approach challenges the notion that green science is inferior. This review presents numerous successful studies and applications of NaDESs, concluding that they represent a viable and promising avenue for research in the field of green chemistry.
Collapse
Affiliation(s)
- Luísa Schuh
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, Brazil; (L.S.); (M.R.); (I.F.); (V.M.)
- Cooil Cosmetics, Brasília 71070-524, Brazil
- Nanocycle Group, Brasília 72622-401, Brazil
| | - Marcella Reginato
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, Brazil; (L.S.); (M.R.); (I.F.); (V.M.)
- Cooil Cosmetics, Brasília 71070-524, Brazil
- Nanocycle Group, Brasília 72622-401, Brazil
| | - Isadora Florêncio
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, Brazil; (L.S.); (M.R.); (I.F.); (V.M.)
- Cooil Cosmetics, Brasília 71070-524, Brazil
- Nanocycle Group, Brasília 72622-401, Brazil
| | - Leila Falcao
- Inaturals SAS, 2 Bis, Impasse Henri Mouret, 84000 Avignon, France;
| | - Luana Boron
- Inaturals BR, Rua Gerson Luís Piovesan 200, Concórdia 89701-012, Brazil;
| | - Eliana Fortes Gris
- Department of Bromatology, Faculty of Ceilândia, University of Brasília, Ceilândia 72220-275, Brazil;
| | - Victor Mello
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, Brazil; (L.S.); (M.R.); (I.F.); (V.M.)
- Cooil Cosmetics, Brasília 71070-524, Brazil
- Nanocycle Group, Brasília 72622-401, Brazil
| | - Sônia Nair Báo
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, Brazil; (L.S.); (M.R.); (I.F.); (V.M.)
- Nanocycle Group, Brasília 72622-401, Brazil
| |
Collapse
|
5
|
Yang K, Dong Y, Li X, Wang F, Zhang Y. Dual-targeted delivery of paclitaxel and indocyanine green with aptamer-modified ferritin for synergetic chemo-phototherapy. Colloids Surf B Biointerfaces 2023; 229:113437. [PMID: 37437411 DOI: 10.1016/j.colsurfb.2023.113437] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/17/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023]
Abstract
The combination of phototherapy and chemotherapy has become attractive and effective cancer treatment. However, the accurate delivery of both chemo-phototherapy drugs to the target site as well as the development of high-efficient phototherapy and chemotherapy drugs remain major challenges. In this study, indocyanine green (ICG) and paclitaxel (PTX)-loaded aptamer ferritin (HAS1411-PTX-ICG) was developed as a biocompatible nanoplatform for combined chemo/photothermal/photodynamic (PTT/PDT) therapy that was safe and highly effective against tumors. HAS1411 was prepared by coupling aptamer AS1411 to the surface of human H chain ferritin (HFtn) by the carbon diimide method to further enhance the targeting of HFtn. Both ICG and PTX were effectively encapsulated in the HAS1411 by incubation at 60 ℃. Moreover, under near-infrared (NIR) light irradiation, HAS1411 enhanced the photothermal effect and cell internalization of ICG, as well as the production of reactive oxygen species in cancer cells. HAS1411-PTX-ICG displayed effective cytotoxicity and a significant tumor spheroids inhibitory effect owning to the improved internalization of PTX and ICG mediated by TfR1 and nucleolin dual receptors. Co-loaded PTX combined with ICG can produce chemo/PTT/PDT under near-infrared (NIR) light irradiation, enhancing the anti-tumor effect. The dual-targeting HAS1411 nanocarrier developed in this study can be a promising delivery system for cancer therapy and the fabricated HAS1411-PTX-ICG possesses potential application in chemo-phototherapy.
Collapse
Affiliation(s)
- Kun Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Ago-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yixin Dong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Ago-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Ago-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Fei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Ago-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yu Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Ago-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
6
|
Nave M, Costa FJP, Alves CG, Lima-Sousa R, Melo BL, Correia IJ, de Melo-Diogo D. Simple preparation of POxylated nanomaterials for cancer chemo-PDT/PTT. Eur J Pharm Biopharm 2023; 184:7-15. [PMID: 36682512 DOI: 10.1016/j.ejpb.2023.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Near infrared (NIR) light-responsive nanomaterials hold potential to mediate combinatorial therapies targeting several cancer hallmarks. When irradiated, these nanomaterials produce reactive oxygen species (photodynamic therapy) and/or a temperature increase (photothermal therapy). These events can damage cancer cells and trigger the release of drugs from the nanomaterials' core. However, engineering nanomaterials for cancer chemo-photodynamic/photothermal therapy is a complex process. First, nanomaterials with photothermal capacity are synthesized, being then loaded with photosensitizers plus chemotherapeutics, and, finally functionalized with polymers for achieving suitable biological properties. To overcome this limitation, in this work, a novel straightforward approach to attain NIR light-responsive nanosystems for cancer chemo-photodynamic/photothermal therapy was established. Such was accomplished by synthesizing poly(2-ethyl-2-oxazoline)-IR780 amphiphilic conjugates, which can be assembled into nanoparticles with photodynamic/photothermal capabilities that simultaneously encapsulate Doxorubicin (DOX/PEtOx-IR NPs). The DOX/PEtOx-IR NPs presented a suitable size and surface charge for cancer-related applications. When irradiated with NIR light, the DOX/PEtOx-IR NPs produced singlet oxygen as well as a smaller thermic effect that boosted the release of DOX by 1.7-times. In the in vitro studies, the combination of DOX/PEtOx-IR NPs and NIR light could completely ablate breast cancer cells (viability ≈ 4 %), demonstrating the enhanced outcome arising from the nanomaterials' chemo-photodynamic/photothermal therapy.
Collapse
Affiliation(s)
- Micaela Nave
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Francisco J P Costa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Bruna L Melo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, 3030-790 Coimbra, Portugal.
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
7
|
Parra B, Contreras A, Mina JH, Valencia ME, Grande-Tovar CD, Valencia CH, Ramírez C, Bolívar GA. The Entrapment and Concentration of SARS-CoV-2 Particles with Graphene Oxide: An In Vitro Assay. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:343. [PMID: 36678096 PMCID: PMC9861810 DOI: 10.3390/nano13020343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Previous studies have suggested that graphene oxide (GO) has some antiviral capacity against some enveloped viruses, including SARS-CoV-2. Given this background, we wanted to test the in vitro antiviral ability to GO using the viral plaque assay technique. Two-dimensional graphene oxide (GO) nanoparticles were synthesized using the modified Hummers method, varying the oxidation conditions to achieve nanoparticles between 390 and 718 nm. The antiviral activity of GO was evaluated by experimental infection and plaque formation units assay of the SARS-CoV-2 virus in VERO cells using a titrated viral clinical isolate. It was found that GO at concentrations of 400 µg/mL, 100 µg/mL, 40 µg/mL, and 4 µg/mL was not toxic to cell culture and also did not inhibit the infection of VERO cells by SARS-CoV-2. However, it was evident that GO generated a novel virus entrapment phenomenon directly proportional to its concentration in the suspension. Similarly, this effect of GO was maintained in assays performed with the Zika virus. A new application for GO nanoparticles is proposed as part of a system to trap viruses in surgical mask filters, air conditioning equipment filters, and air purifier filters, complemented with the use of viricidal agents that can destroy the trapped viruses, an application of broad interest for human beings.
Collapse
Affiliation(s)
- Beatriz Parra
- Grupo de Virus Emergentes y Enfermedad (VIREM), Departamento de Microbiología, Facultad de Salud, Universidad del Valle, Calle 4B No. 36-00, Santiago de Cali 760032, Colombia
| | - Adolfo Contreras
- Grupo Medicina Periodontal, Escuela de Odontología, Facultad de Salud, Universidad del Valle, Calle 4B No. 36-00, Santiago de Cali 760043, Colombia
| | - José Herminsul Mina
- Grupo Materiales Compuestos (GMC), Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia
| | - Mayra Eliana Valencia
- Grupo Materiales Compuestos (GMC), Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Facultad de Ciencias, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Carlos Humberto Valencia
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B No. 36-00, Santiago de Cali 76001, Colombia
| | - Cristina Ramírez
- Grupo de Investigación en Ingeniería de Procesos Agroalimentarios y Biotecnológicos (GIPAB), Escuela de Ingeniería de Alimentos, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia
- Grupo de Investigación en Microbiología y Biotecnología Aplicada (MIBIA), Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia
| | - Germán Armando Bolívar
- Grupo de Investigación en Microbiología y Biotecnología Aplicada (MIBIA), Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia
| |
Collapse
|
8
|
Tailoring carrier-free nanocombo of small-molecule prodrug for combinational cancer therapy. J Control Release 2022; 352:256-275. [PMID: 36272660 DOI: 10.1016/j.jconrel.2022.10.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
The outcomes of monotherapy could not satisfy clinical cancer treatment owing to the challenges of tumor heterogeneity, multi-drug resistance, tumor metastasis and relapse. In response, the significance of combinational cancer therapy has been highlighted. Traditional combinational schemes usually utilize "free" drug for multi drug administration, independently. The diverse pharmacokinetics and biodistribution greatly hinder the antitumor effects and cause systematic toxicity. To tackle the hinderance, various nanoparticulate drug delivery systems (Nano-DDSs) have been developed. However, conventional Nano-DDSs encapsulate drugs into carrier materials through noncovalent interactions, resulting in low drug loading, fixed multi drug encapsulation ratio, chemical instability and carrier-associated toxicity. Recently, carrier-free nanocombos based on self-assembling small-molecule prodrugs (SPNCs) have emerged as a versatile Nano-DDSs for multiple drug delivery. Benefited by the self-assembly capability, SPNCs could be facilely fabricated with distinct merits of ultra-high drug loading, adjustable drug ratio and negligible carrier-associated toxicity. Herein, we summarize the latest trends of SPNCs. First, a basic review on self-assembling small-molecule prodrugs is presented. Additionally, facile techniques to prepare SPNCs are introduced. Furthermore, advanced combinational therapies based on SPNCs are spotlighted with special emphasis on synergistic mechanisms. Finally, future prospects and challenges are discussed.
Collapse
|
9
|
Orrantia-Borunda E, Acuña-Aguilar LE, Ramírez-Valdespino CA. Nanomaterials for Breast Cancer. Breast Cancer 2022. [DOI: 10.36255/exon-publications-breast-cancer-nanomaterials] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Shi X, Tian Y, Liu Y, Xiong Z, Zhai S, Chu S, Gao F. Research Progress of Photothermal Nanomaterials in Multimodal Tumor Therapy. Front Oncol 2022; 12:939365. [PMID: 35898892 PMCID: PMC9309268 DOI: 10.3389/fonc.2022.939365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
The aggressive growth of cancer cells brings extreme challenges to cancer therapy while triggering the exploration of the application of multimodal therapy methods. Multimodal tumor therapy based on photothermal nanomaterials is a new technology to realize tumor cell thermal ablation through near-infrared light irradiation with a specific wavelength, which has the advantages of high efficiency, less adverse reactions, and effective inhibition of tumor metastasis compared with traditional treatment methods such as surgical resection, chemotherapy, and radiotherapy. Photothermal nanomaterials have gained increasing interest due to their potential applications, remarkable properties, and advantages for tumor therapy. In this review, recent advances and the common applications of photothermal nanomaterials in multimodal tumor therapy are summarized, with a focus on the different types of photothermal nanomaterials and their application in multimodal tumor therapy. Moreover, the challenges and future applications have also been speculated.
Collapse
Affiliation(s)
- Xiaolu Shi
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ye Tian
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yang Liu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhengrong Xiong
- University of Science and Technology of China, Hefei, China
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Shaobo Zhai
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shunli Chu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
- *Correspondence: Shunli Chu, ; Fengxiang Gao,
| | - Fengxiang Gao
- University of Science and Technology of China, Hefei, China
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- *Correspondence: Shunli Chu, ; Fengxiang Gao,
| |
Collapse
|
11
|
Hasanin M, Taha NF, Abdou AR, Emara LH. Green decoration of graphene oxide Nano sheets with gelatin and gum Arabic for targeted delivery of doxorubicin. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 34:e00722. [PMID: 35686004 PMCID: PMC9171453 DOI: 10.1016/j.btre.2022.e00722] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 12/21/2022]
Abstract
Tri-nanocomposite of gelatin, gum arabic functionalized onto graphene oxide. Loading of anticancer doxorubicin onto the tri-nanocomposite via green biosynthesis. High drug loading from loaded composite, with targeted delivery to cancerous cells. High proliferative inhibition of drug loaded composite on A549 lung carcinoma. Minimal toxicity of drug loaded composite on normal WI-38 lung fibroblast.
Tri-nanocomposite system of biocompatible polymers (gelatin/gum arabic) functionalized onto graphene-oxide nanosheets for controlling the release of an anticancer, doxorubicin (DOX), was fabricated via green-biosynthesis. Biocompatibility and nano-size stability of the tri-nanocomposite was characterized by SEM, TEM, FTIR, XRD, and zeta-potential. Loading-efficiency, release-behavior and cytotoxic-activity of DOX-loaded-composite in WI-38 normal-lung-fibroblast and A549 lung-carcinoma cells were investigated. High DOX-loading (at pH 9.5), with pH-sensitive release from loaded-composite was achieved, with 25% and 77% DOX released, at physiological pH 7.4 and cancerous pH 5.3, respectively. Stability of tri-nanocomposite system was confirmed over 3-months storage at accelerated conditions, as presented by FTIR, XRD, TEM, zeta-potential and in-vitro release assays. High proliferative inhibitory effect of DOX loaded-composite, on A549-cells, with minimal toxicity on WI-38-cells, with IC50 values of 51.9 ± 0.46 and 185±1.08 µg/mL, against A549 and WI-38, respectively. Proposed tri-nanocomposite offers a novel combination of gelatin/gum arabic with graphene-oxide for targeted drug-delivery and efficient anti-cancer therapy.
Collapse
Affiliation(s)
- Mohamed Hasanin
- Cellulose and Paper Department, Chemical Research Institute, National Research Centre, 33 EL Bohouth st. (former EL Tahrir st.), Dokki, Giza, P.O.12622 Egypt
| | - Nesrin Fouad Taha
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 EL Bohouth st. (former EL Tahrir st.), Dokki, Giza, P.O.12622 Egypt
- Corresponding author.
| | - Aya Rashad Abdou
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 EL Bohouth st. (former EL Tahrir st.), Dokki, Giza, P.O.12622 Egypt
| | - Laila Hasanin Emara
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 EL Bohouth st. (former EL Tahrir st.), Dokki, Giza, P.O.12622 Egypt
| |
Collapse
|
12
|
Kim S, Kang JH, Nguyen Cao TG, Kang SJ, Jeong K, Kang HC, Kwon YJ, Rhee WJ, Ko YT, Shim MS. Extracellular vesicles with high dual drug loading for safe and efficient combination chemo-phototherapy. Biomater Sci 2022; 10:2817-2830. [PMID: 35384946 DOI: 10.1039/d1bm02005f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extracellular vesicles (EVs) have emerged as biocompatible nanocarriers for efficient delivery of various therapeutic agents, with intrinsic long-term blood circulatory capability and low immunogenicity. Here, indocyanine green (ICG)- and paclitaxel (PTX)-loaded EVs [EV(ICG/PTX)] were developed as a biocompatible nanoplatform for safe and efficient cancer treatment through near-infrared (NIR) light-triggered combination chemo/photothermal/photodynamic therapy. High dual drug encapsulation in EVs was achieved for both the hydrophilic ICG and hydrophobic PTX by simple incubation. The EVs substantially improved the photostability and cellular internalization of ICG, thereby augmenting the photothermal effects and reactive oxygen species production in breast cancer cells upon NIR light irradiation. Hence, ICG-loaded EVs activated by NIR light irradiation showed greater cytotoxic effects than free ICG. EV(ICG/PTX) showed the highest anticancer activity owing to the simultaneous chemo/photothermal/photodynamic therapy when compared with EV(ICG) and free ICG. In vivo study revealed that EV(ICG/PTX) had higher accumulation in tumors and improved pharmacokinetics compared to free ICG and PTX. In addition, a single intravenous administration of EV(ICG/PTX) exhibited a considerable inhibition of tumor proliferation with negligible systemic toxicity. Thus, this study demonstrates the potential of EV(ICG/PTX) for clinical translation of combination chemo-phototherapy.
Collapse
Affiliation(s)
- Sumin Kim
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Ji Hee Kang
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea.
| | - Thuy Giang Nguyen Cao
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea.
| | - Su Jin Kang
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea.
| | - Kyeongsoo Jeong
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea.
| | - Han Chang Kang
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA.,Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA.,Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA.
| | - Won Jong Rhee
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea. .,Research Center for Bio Materials & Process Development, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea.
| | - Young Tag Ko
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea.
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea.
| |
Collapse
|
13
|
Gutierrez AM, Frazar EM, X Klaus MV, Paul P, Hilt JZ. Hydrogels and Hydrogel Nanocomposites: Enhancing Healthcare through Human and Environmental Treatment. Adv Healthc Mater 2022; 11:e2101820. [PMID: 34811960 PMCID: PMC8986592 DOI: 10.1002/adhm.202101820] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/08/2021] [Indexed: 12/11/2022]
Abstract
Humans are constantly exposed to exogenous chemicals throughout their life, which can lead to a multitude of negative health impacts. Advanced materials can play a key role in preventing or mitigating these impacts through a wide variety of applications. The tunable properties of hydrogels and hydrogel nanocomposites (e.g., swelling behavior, biocompatibility, stimuli responsiveness, functionality, etc.) have deemed them ideal platforms for removal of environmental contaminants, detoxification, and reduction of body burden from exogenous chemical exposures for prevention of disease initiation, and advanced treatment of chronic diseases, including cancer, diabetes, and cardiovascular disease. In this review, three main junctures where the use of hydrogel and hydrogel nanocomposite materials can intervene to positively impact human health are highlighted: 1) preventing exposures to environmental contaminants, 2) prophylactic treatments to prevent chronic disease initiation, and 3) treating chronic diseases after they have developed.
Collapse
Affiliation(s)
- Angela M Gutierrez
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Erin Molly Frazar
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Maria Victoria X Klaus
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Pranto Paul
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - J Zach Hilt
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| |
Collapse
|
14
|
Ashrafizadeh M, Saebfar H, Gholami MH, Hushmandi K, Zabolian A, Bikarannejad P, Hashemi M, Daneshi S, Mirzaei S, Sharifi E, Kumar AP, Khan H, Heydari Sheikh Hossein H, Vosough M, Rabiee N, Thakur Kumar V, Makvandi P, Mishra YK, Tay FR, Wang Y, Zarrabi A, Orive G, Mostafavi E. Doxorubicin-loaded graphene oxide nanocomposites in cancer medicine: Stimuli-responsive carriers, co-delivery and suppressing resistance. Expert Opin Drug Deliv 2022; 19:355-382. [PMID: 35152815 DOI: 10.1080/17425247.2022.2041598] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The application of doxorubicin (DOX) in cancer therapy has been limited due to its drug resistance and poor internalization. Graphene oxide (GO) nanostructures have the capacity for DOX delivery while promoting its cytotoxicity in cancer. AREAS COVERED The favorable characteristics of GO nanocomposites, preparation method, and application in cancer therapy are described. Then, DOX resistance in cancer is discussed. The GO-mediated photothermal therapy and DOX delivery for cancer suppression are described. Preparation of stimuli-responsive GO nanocomposites, surface functionalization, hybrid nanoparticles, and theranostic applications are emphasized in DOX chemotherapy. EXPERT OPINION Graphene oxide nanoparticle-based photothermal therapy maximizes the anti-cancer activity of DOX against cancer cells. Apart from DOX delivery, GO nanomaterials are capable of loading anti-cancer agents and genetic tools to minimize drug resistance and enhance the cytolytic impact of DOX in cancer eradication. To enhance DOX accumulation in cancer cells, stimuli-responsive (redox-, light-, enzyme- and pH-sensitive) GO nanoparticles have been developed for DOX delivery. Further development of targeted delivery of DOX-loaded GO nanomaterials against cancer cells may be achieved by surface modification of polymers such as polyethylene glycol, hyaluronic acid, and chitosan. Doxorubicin-loaded GO nanoparticles have demonstrated theranostic potential for simultaneous diagnosis and therapy. Hybridization of GO with other nanocarriers such as silica and gold nanoparticles further broadens their potential anti-cancer therapy applications.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Hamidreza Saebfar
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hossein Gholami
- DVM. Graduated, Faculty of Veterinary Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | - Pooria Bikarannejad
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, 6517838736 Hamadan, Iran
| | - Alan Prem Kumar
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.,Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | | | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran.,School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Vijay Thakur Kumar
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.,School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interface, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, 6400 Sønderborg, Denmark
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, USA
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer 34396, Istanbul, Turkey
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Vitoria-Gasteiz, Spain.,University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHUFundación Eduardo Anitua). Vitoria-Gasteiz, Spain.,Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.,Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
15
|
Lima-Sousa R, Alves CG, Melo BL, Moreira AF, Mendonça AG, Correia IJ, de Melo-Diogo D. Poly(2-ethyl-2-oxazoline) functionalized reduced graphene oxide: Optimization of the reduction process using dopamine and application in cancer photothermal therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112468. [PMID: 34702543 DOI: 10.1016/j.msec.2021.112468] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/10/2021] [Accepted: 09/26/2021] [Indexed: 01/22/2023]
Abstract
The high near infrared (NIR) absorption displayed by reduced graphene oxide (rGO) nanostructures renders them a great potential for application in cancer photothermal therapy. However, the production of this material often relies on the use of hydrazine as a reductant, leading to poor biocompatibility and environmental-related issues. In addition, to improve rGO colloidal stability, this material has been functionalized with poly(ethylene glycol). However, recent studies have reported the immunogenicity of poly(ethylene glycol)-based coatings. In this work, the production of rGO, by using dopamine as the reducing agent, was optimized considering the size distribution and NIR absorption of the attained materials. The obtained results unveiled that the rGO produced by using a 1:5 graphene oxide:dopamine weight ratio and a reaction time of 4 h (termed as DOPA-rGO) displayed the highest NIR absorption while retaining its nanometric size distribution. Subsequently, the DOPA-rGO was functionalized with thiol-terminated poly(2-ethyl-2-oxazoline) (P-DOPA-rGO), revealing suitable physicochemical features, colloidal stability and cytocompatibility. When irradiated with NIR light, the P-DOPA-rGO could produce a temperature increase (ΔT) of 36 °C (75 μg/mL; 808 nm, 1.7 W/cm2, 5 min). The photothermal therapy mediated by P-DOPA-rGO was capable of ablating breast cancer cells monolayers (viability < 3%) and could reduce heterotypic breast cancer spheroids' viability to just 30%. Overall, P-DOPA-rGO holds a great potential for application in breast cancer photothermal therapy.
Collapse
Affiliation(s)
- Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Bruna L Melo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - André F Moreira
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - António G Mendonça
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; Departamento de Química, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, 3030-790 Coimbra, Portugal.
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
16
|
Cui G, Wu J, Lin J, Liu W, Chen P, Yu M, Zhou D, Yao G. Graphene-based nanomaterials for breast cancer treatment: promising therapeutic strategies. J Nanobiotechnology 2021; 19:211. [PMID: 34266419 PMCID: PMC8281664 DOI: 10.1186/s12951-021-00902-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common malignancy in women, and its incidence increases annually. Traditional therapies have several side effects, leading to the urgent need to explore new smart drug-delivery systems and find new therapeutic strategies. Graphene-based nanomaterials (GBNs) are potential drug carriers due to their target selectivity, easy functionalization, chemosensitization and high drug-loading capacity. Previous studies have revealed that GBNs play an important role in fighting breast cancer. Here, we have summarized the superior properties of GBNs and modifications to shape GBNs for improved function. Then, we focus on the applications of GBNs in breast cancer treatment, including drug delivery, gene therapy, phototherapy, and magnetothermal therapy (MTT), and as a platform to combine multiple therapies. Their advantages in enhancing therapeutic effects, reducing the toxicity of chemotherapeutic drugs, overcoming multidrug resistance (MDR) and inhibiting tumor metastasis are highlighted. This review aims to help evaluate GBNs as therapeutic strategies and provide additional novel ideas for their application in breast cancer therapy.
Collapse
Affiliation(s)
- Guangman Cui
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jiaying Lin
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenjing Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Peixian Chen
- Department of Breast Surgery, The First People's Hospital of Foshan, Sun Yat-Sen University, Guangdong, China
| | - Meng Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Dan Zhou
- Department of Breast Surgery, The First People's Hospital of Foshan, Sun Yat-Sen University, Guangdong, China.
| | - Guangyu Yao
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
17
|
Graphene-based materials: A new tool to fight against breast cancer. Int J Pharm 2021; 603:120644. [PMID: 33964335 DOI: 10.1016/j.ijpharm.2021.120644] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/11/2021] [Accepted: 04/21/2021] [Indexed: 12/30/2022]
Abstract
Breast cancer is one of the most common malignant tumors among women population on a global scale, with a huge number of new cases and deaths each year. In recent years, there has been an increasing number of literatures on the discovery and development of novel anti-breast cancer drugs and materials, aiming to increase the survival rate of breast cancer patients. One of the newest tools used for the therapy of breast cancer is graphene-based materials, which have ultra-high surface area as well as unique physical, chemical and mechanical properties. It is reported that graphene-based materials could induce apoptosis in cancer cells while showing low toxicity due to their carbon structure. Therefore, they can be used as nano-drugs or biological carriers to introduce small molecules such as nucleic acids, drugs, or photosensitizers into the human body to achieve treatment goals. This article introduces the synthetic methods for graphene-based materials, as well as the current status and the future prospects of graphene-based materials' application in the treatment of breast cancer.
Collapse
|
18
|
Devrim B, Bolat ZB, Telci D, Şahin F, Gulyuz S, Ozkose UU, Yilmaz O, Bozkır A. Design and evaluation of peptide-18-targeted nanoliposomes constructed by poly(2-oxazoline)-DOPE for doxorubicin delivery. J Microencapsul 2021; 38:285-297. [PMID: 33853478 DOI: 10.1080/02652048.2021.1905094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIMS The aim of this study is to develop targeted nanoliposome formulations to provide efficient treatment for breast cancer. In this study, peptide 18-modified poly(2-ethyl-2-oxazoline)-dioleoylphosphatidylethanolamine (P18-PEtOx-DOPE), was synthesised to construct nanoliposomes. METHODS Doxorubicin (DOX) was encapsulated into the nanoliposomes by ethanol injection method. Particle size and polydispersity index were measured by dynamic light scattering. Zeta potential was determined by electrophoretic laser Doppler anemometry. The shape of the nanoliposomes was examined by transmission electron microscope. Specific bindings of P18-PEtOx-DOPE nanoliposomes were demonstrated on AU565 cells by confocal microscopy and flow cytometry studies. RESULTS DOX-loaded nanoliposomes with particle diameter of 150.00 ± 2.84 nm and PDI of 0.212 ± 0.013 were obtained. PEtOx-DOPE and PEtOx-DOPE nanoliposomes are non-toxic on HUVEC, HEK293 and hMSC cells for 48 h. Furthermore, P18-PEtOx-DOPE nanoliposomes demonstrated specificity towards AU565 cells with high binding affinity. CONCLUSIONS As a result, DOX-loaded P18-PEtOx-DOPE nanoliposomes can serve as favourable candidates in breast cancer targeted therapy.
Collapse
Affiliation(s)
- Burcu Devrim
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Zeynep Busra Bolat
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.,Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Dilek Telci
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Sevgi Gulyuz
- Marmara Research Center, TUBITAK, Materials Institution, Gebze, Turkey.,Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Maslak, Turkey
| | - Umut Ugur Ozkose
- Marmara Research Center, TUBITAK, Materials Institution, Gebze, Turkey.,Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Maslak, Turkey.,Department of Chemistry, Faculty of Science and Letters, Piri Reis University, Istanbul, Turkey
| | - Ozgur Yilmaz
- Marmara Research Center, TUBITAK, Materials Institution, Gebze, Turkey
| | - Asuman Bozkır
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
19
|
Injectable in situ forming hydrogels incorporating dual-nanoparticles for chemo-photothermal therapy of breast cancer cells. Int J Pharm 2021; 600:120510. [PMID: 33766636 DOI: 10.1016/j.ijpharm.2021.120510] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/03/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023]
Abstract
Chemo-photothermal therapy (chemo-PTT) mediated by nanomaterials holds a great potential for cancer treatment. However, the tumor uptake of the systemically administered nanomaterials was recently found to be below 1%. To address this limitation, the development of injectable tridimensional polymeric matrices capable of delivering nanomaterials directly into the tumor site appears to be a promising approach. In this work, an injectable in situ forming ionotropically crosslinked chitosan-based hydrogel co-incorporating IR780 loaded nanoparticles (IR/BPN) and Doxorubicin (DOX) loaded nanoparticles (DOX/TPN) was developed for application in breast cancer chemo-PTT. The produced hydrogels (IR/BPN@Gel and IR/BPN+DOX/TPN@Gel) displayed suitable physicochemical properties and produced a temperature increase of about 9.1 °C upon exposure to Near Infrared (NIR) light. As importantly, the NIR-light exposure also increased the release of DOX from the hydrogel by 1.7-times. In the in vitro studies, the combination of IR/BPN@Gel with NIR light (photothermal therapy) led to a reduction in the viability of breast cancer cells to 35%. On the other hand, the non-irradiated IR/BPN+DOX/TPN@Gel (chemotherapy) only diminished cancer cells' viability to 85%. In contrast, the combined action of IR/BPN+DOX/TPN@Gel and NIR light reduced cancer cells' viability to about 9%, demonstrating its potential for breast cancer chemo-PTT.
Collapse
|
20
|
Guimarães RS, Rodrigues CF, Fernandes N, de Melo-Diogo D, Ferreira P, Correia IJ, Moreira AF. Combinatorial delivery of doxorubicin and acridine orange by gold core silica shell nanospheres functionalized with poly(ethylene glycol) and 4-methoxybenzamide for cancer targeted therapy. J Inorg Biochem 2021; 219:111433. [PMID: 33887612 DOI: 10.1016/j.jinorgbio.2021.111433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022]
Abstract
Combinatorial therapies based on the simultaneous administration of multiple drugs can lead to synergistic effects, increasing the efficacy of the cancer therapy. However, it is crucial to develop new delivery systems that can increase the drugs' therapeutic selectivity and efficacy. Gold core silica shell (AuMSS) nanoparticles present physicochemical properties that allow their simultaneous application as drug delivery and imaging agents. Herein, poly(ethylene glycol) was modified with 4-methoxybenzamide and 3-(triethoxysilyl)propyl isocyanate (TPANIS) to create a novel surface functionalization capable of improving the colloidal stability and specificity of AuMSS nanospheres towards cancer cells. Moreover, a dual drug combination based on Doxorubicin (DOX) and Acridine orange (AO) was characterized and administered using the AuMSS-TPANIS nanospheres. The obtained results show that the DOX:AO drug combination can mediate a synergistic therapeutic effect in both HeLa and MCF-7 cells, particularly at the 2:1, 1:1, and 1:2 ratios. Additionally, the TPANIS functionalization increased the AuMSS nanospheres colloidal stability and selectivity towards MCF-7 cancer cells (overexpressing sigma receptors). Such also resulted in an enhanced cytotoxic effect against MCF-7 cells when administering the DOX:AO drug combination with the AuMSS-TPANIS nanospheres. Overall, the obtained results confirm the therapeutic potential of the DOX:AO drug combination as well as the targeting capacity of AuMSS-TPANIS, supporting its application in the cancer-targeted combinatorial chemotherapy.
Collapse
Affiliation(s)
- Rafaela S Guimarães
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Carolina F Rodrigues
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Natanael Fernandes
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Duarte de Melo-Diogo
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Paula Ferreira
- CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - Ilídio J Correia
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal.
| | - André F Moreira
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
21
|
Kumar SR, Hsu YH, Vi TTT, Pang JHS, Lee YC, Hsieh CH, Lue SJ. Graphene Oxide-Induced Protein Conformational Change in Nasopharyngeal Carcinoma Cells: A Joint Research on Cytotoxicity and Photon Therapy. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1396. [PMID: 33805683 PMCID: PMC8001416 DOI: 10.3390/ma14061396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022]
Abstract
The objectives of this work aim to investigate the interaction and cytotoxicity between nanometric graphene oxide (GO) and nasopharyngeal carcinoma cells (NPC-BM1), and possible application in photon therapy. GO nanosheets were obtained in the size range of 100-200 nm, with a negative surface charge. This nanometric GO exhibited a limited (<10%) cytotoxicity effect and no significant dimensional change on NPC-BM1 cells in the tested GO concentration range (0.1-10 µg·mL-1). However, the secondary protein structure was modified in the GO-treated NPC-BM1 cells, as determined through synchrotron radiation-based Fourier transform infrared microspectroscopy (SR-FTIRM) mapping. To further study the cellular response of GO-treated NPC-BM1 cancer cells at low GO concentration (0.1 µg·mL-1), photon radiation was applied with increasing doses, ranging from 2 to 8 Gy. The low radiation energy (<5 Gy) did not cause significant cell mortality (5-7%). Increasing the radiation energy to 6-8 Gy accelerated cell apoptosis rate, especially in the GO-treated NPC-BM1 cells (27%). This necrosis may be due to GO-induced conformational changes in protein and DNA/RNA, resulting in cell vulnerability under photon radiation. The findings of the present work demonstrate the potential biological applicability of nanometric GO in different areas, such as targeted drug delivery, cellular imaging, and radiotherapy, etc.
Collapse
Affiliation(s)
- Selvaraj Rajesh Kumar
- Department of Chemical and Materials Engineering, Chang Gung University, Wenhua 1st Road, Guishan, Taoyuan 333, Taiwan; (S.R.K.); (T.T.T.V.)
| | - Ya-Hui Hsu
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Wenhua 1st Road, Guishan, Taoyuan 333, Taiwan; (Y.-H.H.); (J.-H.S.P.)
| | - Truong Thi Tuong Vi
- Department of Chemical and Materials Engineering, Chang Gung University, Wenhua 1st Road, Guishan, Taoyuan 333, Taiwan; (S.R.K.); (T.T.T.V.)
| | - Jong-Hwei Su Pang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Wenhua 1st Road, Guishan, Taoyuan 333, Taiwan; (Y.-H.H.); (J.-H.S.P.)
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Dinghu Road, Guishan, Taoyuan 333, Taiwan
| | - Yao-Chang Lee
- National Synchrotron Radiation Research Center, Hsin Ann Road, Hsinchu City 300, Taiwan;
| | - Chia-Hsun Hsieh
- Division of Hematology-Oncology, Department of Internal Medicine, New Taipei Municipal TuCheng Hospital, Jincheng Road, New Taipei City 236, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Fusing Street, Guishan, Taoyuan 333, Taiwan
- School of Medicine, Chang Gung University, Wenhua 1st Road, Guishan, Taoyuan 333, Taiwan
| | - Shingjiang Jessie Lue
- Department of Chemical and Materials Engineering, Chang Gung University, Wenhua 1st Road, Guishan, Taoyuan 333, Taiwan; (S.R.K.); (T.T.T.V.)
- Division of Join Reconstruction, Department of Orthopedics, Chang Gung Medical Center at Linkou, Fusing Street, Guishan, Taoyuan 333, Taiwan
- Department of Safety, Health and Environment Engineering, Ming-Chi University of Technology, Gongzhuan Road, Taishan, New Taipei City 243, Taiwan
- Center for Environmental Sustainability and Human Health, Ming-Chi University of Technology, Gongzhuan Road, Taishan, New Taipei City 243, Taiwan
| |
Collapse
|
22
|
Melo BL, Lima-Sousa R, Alves CG, Ferreira P, Moreira AF, Correia IJ, de Melo-Diogo D. Sulfobetaine methacrylate-albumin-coated graphene oxide incorporating IR780 for enhanced breast cancer phototherapy. Nanomedicine (Lond) 2021; 16:453-464. [PMID: 33660547 DOI: 10.2217/nnm-2020-0460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: Enhance the colloidal stability and photothermal capacity of graphene oxide (GO) by functionalizing it with sulfobetaine methacrylate (SBMA)-grafted bovine serum albumin (BSA; i.e., SBMA-g-BSA) and by loading IR780, respectively. Materials & methods: SBMA-g-BSA coating and IR780 loading into GO was achieved through a simple sonication process. Results: SBMA-g-BSA-functionalized GO (SBMA-BSA/GO) presented an adequate size distribution and cytocompatibility. When in contact with biologically relevant media, the size of the SBMA-BSA/GO only increased by 8%. By loading IR780 into SBMA-BSA/GO, its photothermal capacity increased by twofold. The combination of near infrared light with SBMA-BSA/GO did not induce photocytotoxicity on breast cancer cells. In contrast, the interaction of IR780-loaded SBMA-BSA/GO with near infrared light caused the ablation of cancer cells. Conclusion: IR780-loaded SBMA-BSA/GO displayed an improved colloidal stability and phototherapeutic capacity.
Collapse
Affiliation(s)
- Bruna L Melo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, Covilhã 6200-506, Portugal
| | - Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, Covilhã 6200-506, Portugal
| | - Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, Covilhã 6200-506, Portugal
| | - Paula Ferreira
- CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Silvio Lima, Coimbra 3030-790, Portugal
| | - André F Moreira
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, Covilhã 6200-506, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, Covilhã 6200-506, Portugal.,CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Silvio Lima, Coimbra 3030-790, Portugal
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, Covilhã 6200-506, Portugal
| |
Collapse
|
23
|
Jain VP, Chaudhary S, Sharma D, Dabas N, Lalji RSK, Singh BK, Jaiswar G. Advanced functionalized nanographene oxide as a biomedical agent for drug delivery and anti-cancerous therapy: A review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
24
|
Anani T, Rahmati S, Sultana N, David AE. MRI-traceable theranostic nanoparticles for targeted cancer treatment. Am J Cancer Res 2021; 11:579-601. [PMID: 33391494 PMCID: PMC7738852 DOI: 10.7150/thno.48811] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Current cancer therapies, including chemotherapy and radiotherapy, are imprecise, non-specific, and are often administered at high dosages - resulting in side effects that severely impact the patient's overall well-being. A variety of multifunctional, cancer-targeted nanotheranostic systems that integrate therapy, imaging, and tumor targeting functionalities in a single platform have been developed to overcome the shortcomings of traditional drugs. Among the imaging modalities used, magnetic resonance imaging (MRI) provides high resolution imaging of structures deep within the body and, in combination with other imaging modalities, provides complementary diagnostic information for more accurate identification of tumor characteristics and precise guidance of anti-cancer therapy. This review article presents a comprehensive assessment of nanotheranostic systems that combine MRI-based imaging (T1 MRI, T2 MRI, and multimodal imaging) with therapy (chemo-, thermal-, gene- and combination therapy), connecting a range of topics including hybrid treatment options (e.g. combined chemo-gene therapy), unique MRI-based imaging (e.g. combined T1-T2 imaging, triple and quadruple multimodal imaging), novel targeting strategies (e.g. dual magnetic-active targeting and nanoparticles carrying multiple ligands), and tumor microenvironment-responsive drug release (e.g. redox and pH-responsive nanomaterials). With a special focus on systems that have been tested in vivo, this review is an essential summary of the most advanced developments in this rapidly evolving field.
Collapse
|
25
|
Lima-Sousa R, de Melo-Diogo D, Alves CG, Cabral CS, Miguel SP, Mendonça AG, Correia IJ. Injectable in situ forming thermo-responsive graphene based hydrogels for cancer chemo-photothermal therapy and NIR light-enhanced antibacterial applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111294. [DOI: 10.1016/j.msec.2020.111294] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/06/2020] [Accepted: 07/21/2020] [Indexed: 02/01/2023]
|
26
|
Alemi F, Zarezadeh R, Sadigh AR, Hamishehkar H, Rahimi M, Majidinia M, Asemi Z, Ebrahimi-Kalan A, Yousefi B, Rashtchizadeh N. Graphene oxide and reduced graphene oxide: Efficient cargo platforms for cancer theranostics. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101974] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Mó I, Alves CG, de Melo-Diogo D, Lima-Sousa R, Correia IJ. Assessing the Combinatorial Chemo-Photothermal Therapy Mediated by Sulfobetaine Methacrylate-Functionalized Nanoparticles in 2D and 3D In Vitro Cancer Models. Biotechnol J 2020; 15:e2000219. [PMID: 33063471 DOI: 10.1002/biot.202000219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Combinatorial cancer therapies mediated by nanomaterials can potentially overcome the limitations of conventional treatments. These therapies are generally investigated using 2D in vitro cancer models, leading to an inaccurate screening. Recently, 3D in vitro spheroids have emerged in the preclinical testing stage of nanomedicines due to their ability to mimic key features of the in vivo solid tumors. Investigate the chemo-photothermal therapy mediated by Doxorubicin and IR780 loaded sulfobetaine methacrylate functionalized nanoparticles, for the first time, using monolayers of cancer cells and spheroids. In the 2D cancer models, the nanomaterials' mediated photothermal therapy, chemotherapy, and chemo-photothermal therapy reduced cancer cells' viability to about 58%, 29%, and 1%, respectively. Interestingly, when the nanomaterials' mediated photothermal therapy is tested on 3D spheroids, no cytotoxic effect is noticed. In contrast, the nanostructures' induced chemotherapy decreased spheroids' viability to 42%. On the other hand, nanomaterials' mediated chemo-photothermal therapy diminished spheroids' viability to 16%, being the most promising therapeutic modality. These results demonstrate the importance of using 3D spheroids during the in vitro screening of single/combinatorial therapies mediated by nanomaterials.
Collapse
Affiliation(s)
- Inês Mó
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, 6200-506, Portugal
| | - Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, 6200-506, Portugal
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, 6200-506, Portugal
| | - Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, 6200-506, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, 6200-506, Portugal.,CIEPQPF - Departamento de Engenharia Química, Rua Sílvio Lima, Universidade de Coimbra, Coimbra, 3030-790, Portugal
| |
Collapse
|
28
|
Gonçalves ASC, Rodrigues CF, Moreira AF, Correia IJ. Strategies to improve the photothermal capacity of gold-based nanomedicines. Acta Biomater 2020; 116:105-137. [PMID: 32911109 DOI: 10.1016/j.actbio.2020.09.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022]
Abstract
The plasmonic photothermal properties of gold nanoparticles have been widely explored in the biomedical field to mediate a photothermal effect in response to the irradiation with an external light source. Particularly, in cancer therapy, the physicochemical properties of gold-based nanomaterials allow them to efficiently accumulate in the tumor tissue and then mediate the light-triggered thermal destruction of cancer cells with high spatial-temporal control. Nevertheless, the gold nanomaterials can be produced with different shapes, sizes, and organizations such as nanospheres, nanorods, nanocages, nanoshells, and nanoclusters. These gold nanostructures will present different plasmonic photothermal properties that can impact cancer thermal ablation. This review analyses the application of gold-based nanomaterials in cancer photothermal therapy, emphasizing the main parameters that affect its light-to-heat conversion efficiency and consequently the photothermal potential. The different shapes/organizations (clusters, shells, rods, stars, cages) of gold nanomaterials and the parameters that can be fine-tuned to improve the photothermal capacity are presented. Moreover, the gold nanostructures combination with other materials (e.g. silica, graphene, and iron oxide) or small molecules (e.g. indocyanine green and IR780) to improve the nanomaterials photothermal capacity is also overviewed.
Collapse
Affiliation(s)
- Ariana S C Gonçalves
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Carolina F Rodrigues
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - André F Moreira
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Ilídio J Correia
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; CIEPQF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal.
| |
Collapse
|
29
|
Ravichandran V, Nguyen Cao TG, Choi DG, Kang HC, Shim MS. Non-ionic polysorbate-based nanoparticles for efficient combination chemo/photothermal/photodynamic therapy. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.04.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
30
|
Mirzaie V, Ansari M, Nematollahi-Mahani SN, Moballegh Nasery M, Karimi B, Eslaminejad T, Pourshojaei Y. Nano-Graphene Oxide-supported APTES-Spermine, as Gene Delivery System, for Transfection of pEGFP-p53 into Breast Cancer Cell Lines. Drug Des Devel Ther 2020; 14:3087-3097. [PMID: 32801647 PMCID: PMC7398748 DOI: 10.2147/dddt.s251005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 07/06/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Genetic diseases can be the result of genetic dysfunctions that happen due to some inhibitory and/or environmental risk factors, which are mostly called mutations. One of the most promising treatments for these diseases is correcting the faulty gene. Gene delivery systems are an important issue in improving the gene therapy efficiency. Therefore, the main purpose of this study was modifying graphene oxide nanoparticles by spermine in order to optimize the gene delivery system. METHODS Graphene oxide/APTES was modified by spermine (GOAS) and characterized by FT-IR, DLS, SEM and AFM techniques. Then pEGFP-p53 was loaded on GOAS, transfected into cells and evaluated by fluorescent microscopy and gene expression techniques. RESULTS FT-IR data approved the GOAS sheet formation. Ninety percent of the particles were less than 56 nm based on DLS analysis. SEM analysis indicated that the sheets were dispersed with no aggregation. AFM results confirmed the dispersed structures with thickness of 1.25±0.87 nm. STA analysis showed that GOAS started to decompose from 400°C and was very unstable during the heating process. The first weight loss up to 200°C was due to the evaporation of absorbed water, the second one observed in the range of 200-550°C was assigned to the decomposition of labile oxygen- and nitrogen-containing functional groups, and the third one above 550°C was attributed to the removal of oxygen functionalities. In vitro release of DNA demonstrated the efficient activity of the new synthesized system. Ninety percent of the cells were transfected and showed the GFP under fluorescence microscopy, and TP53 gene was expressed 51-fold in BT-20 cells compared to β-actin as the reference gene. Flow cytometry analysis confirmed the apoptosis of the cells rather than necrosis. CONCLUSION It could be concluded that the new synthesized structure could transfer a high amount of the therapeutic agent into cells with best activity.
Collapse
Affiliation(s)
- Vida Mirzaie
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Ansari
- Department of Drug and Food Control, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mahshid Moballegh Nasery
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Behzad Karimi
- Surface Coating and Corrosion Department, Institute for Color Science and Technology, Tehran, Iran
| | - Touba Eslaminejad
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Yaghoub Pourshojaei
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
31
|
Mó I, Sabino IJ, Melo-Diogo DD, Lima-Sousa R, Alves CG, Correia IJ. The importance of spheroids in analyzing nanomedicine efficacy. Nanomedicine (Lond) 2020; 15:1513-1525. [PMID: 32552537 DOI: 10.2217/nnm-2020-0054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The use of nanomedicines for cancer treatment holds a great potential due to their improved efficacy and safety. During the nanomedicine preclinical in vitro evaluation stage, these are mainly tested on cell culture monolayers. However, these 2D models are an unrealistic representation of the in vivo tumors, leading to an inaccurate screening of the candidate formulations. To address this problem, spheroids are emerging as an additional tool to validate the efficacy of new therapeutics due to the ability of these 3D in vitro cancer models to mimic the key features displayed by in vivo solid tumors. In this review, the application of spheroids for the evaluation of nanomedicines' physicochemical properties and therapeutic efficacy is discussed.
Collapse
Affiliation(s)
- Inês Mó
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506, Covilhã, Portugal
| | - Ivo J Sabino
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506, Covilhã, Portugal
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506, Covilhã, Portugal
| | - Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506, Covilhã, Portugal
| | - Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506, Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506, Covilhã, Portugal.,CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, 3030-790, Coimbra, Portugal
| |
Collapse
|
32
|
Schneible JD, Shi K, Young AT, Ramesh S, He N, Dowdey CE, Dubnansky JM, Lilova RL, Gao W, Santiso E, Daniele M, Menegatti S. Modified gaphene oxide (GO) particles in peptide hydrogels: a hybrid system enabling scheduled delivery of synergistic combinations of chemotherapeutics. J Mater Chem B 2020; 8:3852-3868. [PMID: 32219269 PMCID: PMC7945679 DOI: 10.1039/d0tb00064g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The scheduled delivery of synergistic drug combinations is increasingly recognized as highly effective against advanced solid tumors. Of particular interest are composite systems that release a sequence of drugs with defined kinetics and molar ratios to enhance therapeutic effect, while minimizing the dose to patients. In this work, we developed a homogeneous composite comprising modified graphene oxide (GO) nanoparticles embedded in a Max8 peptide hydrogel, which provides controlled kinetics and molar ratios of release of doxorubicin (DOX) and gemcitabine (GEM). First, modified GO nanoparticles (tGO) were designed to afford high DOX loading and sustained release (18.9% over 72 h and 31.4% over 4 weeks). Molecular dynamics simulations were utilized to model the mechanism of DOX loading as a function of surface modification. In parallel, a Max8 hydrogel was developed to release GEM with faster kinetics and achieve a 10-fold molar ratio to DOX. The selected DOX/tGO nanoparticles were suspended in a GEM/Max8 hydrogel matrix, and the resulting composite was tested against a triple negative breast cancer cell line, MDA-MB-231. Notably, the composite formulation afforded a combination index of 0.093 ± 0.001, indicating a much stronger synergism compared to the DOX-GEM combination co-administered in solution (CI = 0.396 ± 0.034).
Collapse
Affiliation(s)
- John D Schneible
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
| | - Kaihang Shi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
| | - Ashlyn T Young
- Joint Department of Biomedical Engineering, North Carolina State University - University of North Carolina Chapel Hill, North Carolina, USA
| | - Srivatsan Ramesh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
| | - Nanfei He
- Department of Textile Engineering, Chemistry, and Science, 1020 Main Campus Drive, Raleigh, North Carolina, USA
| | - Clay E Dowdey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
| | - Jean Marie Dubnansky
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
| | - Radina L Lilova
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
| | - Wei Gao
- Department of Textile Engineering, Chemistry, and Science, 1020 Main Campus Drive, Raleigh, North Carolina, USA
| | - Erik Santiso
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
| | - Michael Daniele
- Joint Department of Biomedical Engineering, North Carolina State University - University of North Carolina Chapel Hill, North Carolina, USA and Department of Electrical and Computer Engineering, North Carolina State University, 890 Oval Drive, Raleigh, North Carolina, USA.
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
| |
Collapse
|
33
|
Alves CG, de Melo-Diogo D, Lima-Sousa R, Correia IJ. IR780 loaded sulfobetaine methacrylate-functionalized albumin nanoparticles aimed for enhanced breast cancer phototherapy. Int J Pharm 2020; 582:119346. [PMID: 32315749 DOI: 10.1016/j.ijpharm.2020.119346] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022]
Abstract
New insights about nanomaterials' biodistribution revealed their ability to achieve tumor accumulation by taking advantage from the dynamic vents occurring in tumor's vasculature. This paradigm-shift emphasizes the importance of extending nanomaterials' blood circulation time to enhance their tumor uptake. The classic strategy to improve nanomaterials' stability during circulation relies on their functionalization with poly(ethylene glycol). However, recent reports have been showing that PEGylated nanomaterials can suffer from the accelerated blood clearance phenomenon, emphasizing the importance of developing novel coatings for functionalizing the nanomaterials. To address this limitation, the modification of natural carriers' surface to enhance their stability appears to be a promising strategy. Herein, sulfobetaine methacrylate (SBMA)-functionalized bovine serum albumin (BSA) was synthesized for the first time to investigate the capacity of this modification to improve the resulting nanoparticles' physicochemical properties, colloidal stability and in vitro performance. This novel polymer was then employed in the formulation of nanoparticles loaded with IR780 for application in breast cancer phototherapy (IR/SBMA-BSA NPs). When compared to their non-functionalized equivalents, the IR/SBMA-BSA NPs presented a neutral surface charge and a higher stability in biologically relevant media. Due to these features, the IR/SBMA-BSA NPs could achieve a 1.9-fold greater uptake by breast cancer cells than IR/BSA NPs. Furthermore, the IR/SBMA-BSA NPs were cytocompatible towards normal cells and reduced breast cancer cells' viability up to 42%. The phototherapy mediated by IR/SBMA-BSA NPs could further decrease cancer cells' viability to about 12%. Overall, the IR/SBMA-BSA NPs have enhanced features that propel their application in breast cancer phototherapy.
Collapse
Affiliation(s)
- Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal.
| |
Collapse
|
34
|
Leitão MM, de Melo‐Diogo D, Alves CG, Lima‐Sousa R, Correia IJ. Prototypic Heptamethine Cyanine Incorporating Nanomaterials for Cancer Phototheragnostic. Adv Healthc Mater 2020; 9:e1901665. [PMID: 31994354 DOI: 10.1002/adhm.201901665] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/16/2020] [Indexed: 12/12/2022]
Abstract
Developing technologies that allow the simultaneous diagnosis and treatment of cancer (theragnostic) has been the quest of numerous interdisciplinary research teams. In this context, nanomaterials incorporating prototypic near infrared (NIR)-light responsive heptamethine cyanines have been showing very promising results for cancer theragnostic. The precisely engineered features of these nanomaterials endow them with the ability to achieve a high tumor accumulation, enabling a tumor's visualization by NIR fluorescence and photoacoustic imaging modalities. Upon interaction with NIR light, the tumor-homed heptamethine cyanine-incorporating nanomaterials can also produce a photothermal/photodynamic effect with a high spatio-temporal resolution and minimal side effects, leading to an improved therapeutic outcome. This progress report analyses the application of nanomaterials incorporating prototypic NIR-light responsive heptamethine cyanines (IR775, IR780, IR783, IR797, IR806, IR808, IR820, IR825, IRDye 800CW, and Cypate) for cancer photothermal therapy, photodynamic therapy, and imaging. Overall, the continuous development of nanomaterials incorporating the prototypic NIR absorbing heptamethine cyanines will cement their phototheragnostic capabilities.
Collapse
Affiliation(s)
- Miguel M. Leitão
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
| | - Duarte de Melo‐Diogo
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
| | - Cátia G. Alves
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
| | - Rita Lima‐Sousa
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
| | - Ilídio J. Correia
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
- CIEPQPF‐Departamento de Engenharia QuímicaUniversidade de CoimbraRua Sílvio Lima 3030‐790 Coimbra Portugal
| |
Collapse
|
35
|
de Melo-Diogo D, Lima-Sousa R, Alves CG, Correia IJ. Graphene family nanomaterials for application in cancer combination photothermal therapy. Biomater Sci 2020; 7:3534-3551. [PMID: 31250854 DOI: 10.1039/c9bm00577c] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Combining hyperthermia with other therapies holds a great potential for improving cancer treatment. In this approach, the increase in the body temperature can exert a therapeutic effect on cells and/or enhance the effectiveness of anticancer agents. However, the conventional methodologies available to induce hyperthermia cannot confine a high temperature increase to the tumor-site while maintaining healthy tissues unexposed and ensuring minimal invasiveness. To overcome these limitations, combination photothermal therapy (PTT) mediated by graphene family nanomaterials (GFN) has been showing promising results. Such is owed to the ability of GFN to accumulate at the tumor site and convert near infrared light into heat, enabling a hyperthermia with a high spatial-temporal resolution. Furthermore, GFN can also incorporate different therapeutic agents on their structure for delivery purposes to cancer cells. In this way, the combination PTT mediated by GFN can result in an improved therapeutic effect. In this review, the combination of GFN mediated PTT with chemo-, photodynamic-, gene-, radio-, and immuno-therapies is examined. Furthermore, the main parameters that influence these types of combination approaches are also analyzed, with emphasis on the photothermal potential of GFN and on the vascular and cellular effects produced by the temperature increase mediated by GFN.
Collapse
Affiliation(s)
- Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | | | | | | |
Collapse
|
36
|
Zainal-Abidin M, Hayyan M, Ngoh GC, Wong WF. Doxorubicin Loading on Functional Graphene as a Promising Nanocarrier Using Ternary Deep Eutectic Solvent Systems. ACS OMEGA 2020; 5:1656-1668. [PMID: 32010840 PMCID: PMC6990633 DOI: 10.1021/acsomega.9b03709] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
The application of graphene in the field of drug delivery has attracted massive interest among researchers. However, the high toxicity of graphene has been a drawback for its use in drug delivery. Therefore, to enhance the biocompatibility of graphene, a new route was developed using ternary natural deep eutectic solvents (DESs) as functionalizing agents, which have the capability to incorporate various functional groups and surface modifications. Physicochemical characterization analyses, including field emission scanning electron microscope, fourier-transform infrared spectroscopy, Raman spectroscopy, Brunauer-Emmett-Teller, X-ray diffraction, and energy dispersive X-ray, were used to verify the surface modifications introduced by the functionalization process. Doxorubicin was loaded onto the DES-functionalized graphene. The results exhibited significantly improved drug entrapment efficiency (EE) and drug loading capacity (DLC) compared with pristine graphene and oxidized graphene. Compared with unfunctionalized graphene, functionalization with DES choline chloride (ChCl):sucrose:water (4:1:4) resulted in the highest drug loading capacity (EE of 51.84% and DLC of 25.92%) followed by DES ChCl:glycerol:water (1:2:1) (EE of 51.04% and DLC of 25.52%). Following doxorubicin loading, graphene damaged human breast cancer cell line (MCF-7) through the generation of intracellular reactive oxygen species (>95%) and cell cycle disruption by increase in the cell population at S phase and G2/M phase. Thus, DESs represent promising green functionalizing agents for nanodrug carriers. To the best of our knowledge, this is the first time that DES-functionalized graphene has been used as a nanocarrier for doxorubicin, illustrating the potential application of DESs as functionalizing agents in drug delivery systems.
Collapse
Affiliation(s)
- Mohamad
Hamdi Zainal-Abidin
- Department of Chemical
Engineering, Faculty of Engineering, University of Malaya
Centre for Ionic Liquids (UMCiL), Faculty of Engineering, Department of Medical
Microbiology, Faculty of Medicine, and Centre for Separation Science and
Technology (CSST), Department of Chemical Engineering, Faculty of
Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Maan Hayyan
- Department of Chemical
Engineering, Faculty of Engineering, University of Malaya
Centre for Ionic Liquids (UMCiL), Faculty of Engineering, Department of Medical
Microbiology, Faculty of Medicine, and Centre for Separation Science and
Technology (CSST), Department of Chemical Engineering, Faculty of
Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
- Chemical
Engineering Program, Faculty of Engineering & Technology, Muscat University, PO Box 550, Muscat P.C.130, Sultanate of Oman
| | - Gek Cheng Ngoh
- Department of Chemical
Engineering, Faculty of Engineering, University of Malaya
Centre for Ionic Liquids (UMCiL), Faculty of Engineering, Department of Medical
Microbiology, Faculty of Medicine, and Centre for Separation Science and
Technology (CSST), Department of Chemical Engineering, Faculty of
Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Won Fen Wong
- Department of Chemical
Engineering, Faculty of Engineering, University of Malaya
Centre for Ionic Liquids (UMCiL), Faculty of Engineering, Department of Medical
Microbiology, Faculty of Medicine, and Centre for Separation Science and
Technology (CSST), Department of Chemical Engineering, Faculty of
Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
37
|
Leitão MM, Alves CG, de Melo-Diogo D, Lima-Sousa R, Moreira AF, Correia IJ. Sulfobetaine methacrylate-functionalized graphene oxide-IR780 nanohybrids aimed at improving breast cancer phototherapy. RSC Adv 2020; 10:38621-38630. [PMID: 35517523 PMCID: PMC9057306 DOI: 10.1039/d0ra07508f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/14/2020] [Indexed: 01/23/2023] Open
Abstract
The application of Graphene Oxide (GO) in cancer photothermal therapy is hindered by its lack of colloidal stability in biologically relevant media and modest Near Infrared (NIR) absorption. In this regard, the colloidal stability of GO has been improved by functionalizing its surface with poly(ethylene glycol) (PEG), which may not be optimal due to the recent reports on PEG immunogenicity. On the other hand, the chemical reduction of GO using hydrazine hydrate has been applied to enhance its photothermal capacity, despite decreasing its cytocompatibility. In this work GO was functionalized with an amphiphilic polymer containing [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) brushes and was loaded with IR780, for the first time, aiming to improve its colloidal stability and phototherapeutic capacity. The attained results revealed that the SBMA-functionalized GO displays a suitable size distribution, neutral surface charge and adequate cytocompatibility. Furthermore, the SBMA-functionalized GO exhibited an improved colloidal stability in biologically relevant media, while its non-SBMA functionalized equivalent promptly precipitated under the same conditions. By loading IR780 into the SBMA-functionalized GO, its NIR absorption increased by 2.7-fold, leading to a 1.2 times higher photothermal heating. In in vitro cell studies, the combination of SBMA-functionalized GO with NIR light only reduced breast cancer cells' viability to 73%. In stark contrast, by combining IR780 loaded SBMA-functionalized GO and NIR radiation, the cancer cells' viability decreased to 20%, hence confirming the potential of this nanomaterial for cancer photothermal therapy. IR780 loaded SBMA-coated GO displayed an improved colloidal stability in biologically relevant media and an enhanced photothermal capacity.![]()
Collapse
Affiliation(s)
- Miguel M. Leitão
- CICS-UBI – Centro de Investigação em Ciências da Saúde
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - Cátia G. Alves
- CICS-UBI – Centro de Investigação em Ciências da Saúde
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - Duarte de Melo-Diogo
- CICS-UBI – Centro de Investigação em Ciências da Saúde
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - Rita Lima-Sousa
- CICS-UBI – Centro de Investigação em Ciências da Saúde
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - André F. Moreira
- CICS-UBI – Centro de Investigação em Ciências da Saúde
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - Ilídio J. Correia
- CICS-UBI – Centro de Investigação em Ciências da Saúde
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
- CIEPQPF – Departamento de Engenharia Química
| |
Collapse
|
38
|
Fernandes N, Rodrigues CF, Moreira AF, Correia IJ. Overview of the application of inorganic nanomaterials in cancer photothermal therapy. Biomater Sci 2020; 8:2990-3020. [DOI: 10.1039/d0bm00222d] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Cancer photothermal therapy (PTT) has captured the attention of researchers worldwide due to its localized and trigger-activated therapeutic effect.
Collapse
Affiliation(s)
- Natanael Fernandes
- CICS-UBI – Health Sciences Research Centre
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - Carolina F. Rodrigues
- CICS-UBI – Health Sciences Research Centre
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - André F. Moreira
- CICS-UBI – Health Sciences Research Centre
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - Ilídio J. Correia
- CICS-UBI – Health Sciences Research Centre
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
- CIEPQF—Departamento de Engenharia Química
| |
Collapse
|
39
|
Effect of dual stimuli responsive dextran/nanocellulose polyelectrolyte complexes for chemophotothermal synergistic cancer therapy. Int J Biol Macromol 2019; 135:776-789. [DOI: 10.1016/j.ijbiomac.2019.05.218] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 12/23/2022]
|
40
|
Alves CG, de Melo-Diogo D, Lima-Sousa R, Costa EC, Correia IJ. Hyaluronic acid functionalized nanoparticles loaded with IR780 and DOX for cancer chemo-photothermal therapy. Eur J Pharm Biopharm 2019; 137:86-94. [DOI: 10.1016/j.ejpb.2019.02.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/21/2019] [Accepted: 02/19/2019] [Indexed: 01/13/2023]
|
41
|
Wang SB, Ma YY, Chen XY, Zhao YY, Mou XZ. Ceramide-Graphene Oxide Nanoparticles Enhance Cytotoxicity and Decrease HCC Xenograft Development: A Novel Approach for Targeted Cancer Therapy. Front Pharmacol 2019; 10:69. [PMID: 30800068 PMCID: PMC6376252 DOI: 10.3389/fphar.2019.00069] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
Despite substantial efforts to develop novel therapeutic strategies for treating hepatocellular carcinoma (HCC), the effectiveness and specificity of available drugs still require further improvement. Previous work has shown that exogenous ceramide can play a key role in inducing the apoptotic death of cancer cells, however, the poor water-solubility of this compound has hampered its use for cancer treatment. In the present study, we used polyethylene glycol (PEG) and polyethylenimine (PEI) co-conjugated ultra-small nano-GO (NGO-PEG-PEI) loaded with C6-ceramide (NGO-PEG-PEI/Cer) as a strategy for HCC treatment. We assessed the biological role of NGO-PEG-PEI/Cer, and we assessed its antitumor efficacy against HCC both in vitro and in vivo in combination with the chemotherapeutic drug sorafenib. We found that NGO-PEG-PEI significantly enhanced the cellular uptake of C6-ceramide. By investigating the mechanism of cellular delivery, we determined that the internalization of NGO-PEG-PEI/Cer progressed primarily via a clathrin-mediated mechanism. The combination of NGO-PEG-PEI/Cer and sorafenib exhibited synergy between these two drugs. Further work revealed that NGO-PEG-PEI/Cer may play a role in subverting multidrug resistance (MDR) in HCC cells by inactivating MDR and Akt signaling. NGO-PEG-PEI/Cer also significantly inhibited tumor growth and improved survival times in vivo, and the synergetic effect of NGO-PEG-PEI/Cer combined with sorafenib was also observed in drug-resistant HCC xenografts. In conclusion, our NGO-PEG-PEI nanocomposite is an effective nano-platform for loading C6-ceramide for therapeutic use in treating HCC, exhibiting high cancer cell killing potency in this tumor model. The NGO-PEG-PEI/Cer/sorafenib combination additionally represents a promising potential therapeutic strategy for the treatment of drug-resistant HCC.
Collapse
Affiliation(s)
- Shi-Bing Wang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ying-Yu Ma
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiao-Yi Chen
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yuan-Yuan Zhao
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiao-Zhou Mou
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
42
|
Mou C, Yang Y, Bai Y, Yuan P, Wang Y, Zhang L. Hyaluronic acid and polydopamine functionalized phase change nanoparticles for ultrasound imaging-guided photothermal-chemotherapy. J Mater Chem B 2019; 7:1246-1257. [DOI: 10.1039/c8tb03056a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hyaluronic acid and polydopamine functionalized phase change nanoparticles for ultrasound imaging-guided photothermal-chemotherapy.
Collapse
Affiliation(s)
- Chongyan Mou
- Chongqing Research Center for Pharmaceutical Engineering
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- College of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| | - Yang Yang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
- Institute of Ultrasound Imaging
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Yan Bai
- Chongqing Research Center for Pharmaceutical Engineering
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- College of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| | - Pei Yuan
- Chongqing Research Center for Pharmaceutical Engineering
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- College of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| | - Yiwu Wang
- Experimental Teaching and Management Center
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Liangke Zhang
- Chongqing Research Center for Pharmaceutical Engineering
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- College of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| |
Collapse
|
43
|
Pourjavadi A, Kohestanian M, Yaghoubi M. Poly(glycidyl methacrylate)-coated magnetic graphene oxide as a highly efficient nanocarrier: preparation, characterization, and targeted DOX delivery. NEW J CHEM 2019. [DOI: 10.1039/c9nj04623b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Herein, we report the preparation of novel magnetic graphene oxide grafted with brush polymer via SI-RAFT polymerization and its application as a nanocarrier for magnetic and pH-triggered delivery of DOX anticancer drug.
Collapse
Affiliation(s)
- Ali Pourjavadi
- Polymer Research Laboratory
- Department of Chemistry
- Sharif University of Technology
- Tehran
- Iran
| | - Mohammad Kohestanian
- Polymer Research Laboratory
- Department of Chemistry
- Sharif University of Technology
- Tehran
- Iran
| | - Mahshid Yaghoubi
- Polymer Research Laboratory
- Department of Chemistry
- Sharif University of Technology
- Tehran
- Iran
| |
Collapse
|