1
|
Liu X, Sun X, Zhu H, Yan R, Xu C, Zhu F, Xu R, Xia J, Dong H, Yi B, Zhou Q. A mosquito proboscis-inspired cambered microneedle patch for ophthalmic regional anaesthesia. J Adv Res 2025; 72:605-614. [PMID: 39067695 DOI: 10.1016/j.jare.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/24/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
INTRODUCTION One of the methods for pain management involves the use of local anesthesia, which numbs sensations in specific body regions while maintaining consciousness. OBJECTIVES Considering the certain limitations (e.g., pain, the requirement of skilled professionals, or slow passive diffusion) of conventional delivery methods of local anesthetics, developing alternative strategies that offer minimally invasive yet therapeutically effective delivery systems is of great concern for ophthalmic regional anesthesia. METHODS AND RESULTS In this study, a rapidly dissolving cambered microneedle (MNs) patch, composed of poly(vinylpyrrolidone) (PVP) and hyaluronic acid (HA) and served as a delivery system for lidocaine (Lido) in local anesthesia, was developed taking inspiration from the mosquito proboscis's ability to extract blood unnoticed. The lidocaine-containing MNs patch (MNs@Lido) consisted of 25 microneedles with a four-pronged cone structure (height: 500 μm, base width: 275 μm), arranged in a concentric circle pattern on the patch, and displays excellent dissolubility for effective drug delivery of Lido. After confirming good cytocompatibility, MNs@Lido was found to possess adequate rigidity to penetrate the cornea without causing any subsequent injury, and the created corneal pinhole channels completely self-healed within 24 h. Interestingly, MNs@Lido exhibited effective analgesic effects for local anesthesia on both heel skin and eyeball, with the sustained anesthetic effect lasting for at least 30 min. CONCLUSIONS These findings indicate that the mosquito proboscis-inspired cambered MNs patch provides rapid and painless local anesthesia, overcoming the limitations of conventional delivery methods of local anesthetics, thus opening up new possibilities in the treatment of ophthalmic diseases.
Collapse
Affiliation(s)
- Xuequan Liu
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Science and Engineering, Qingdao 266113, China; Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Xuequan Sun
- Weifang Eye Hospital, Zhengda Guangming Eye Group, Weifang 261041, China; Zhengda Guangming International Eye Research Center, Qingdao Zhengda Guangming Eye Hospital, Qingdao University, Qingdao 266000, China
| | - Hongyu Zhu
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Rubing Yan
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Chang Xu
- Weifang Eye Hospital, Zhengda Guangming Eye Group, Weifang 261041, China; Zhengda Guangming International Eye Research Center, Qingdao Zhengda Guangming Eye Hospital, Qingdao University, Qingdao 266000, China
| | - Fangxing Zhu
- Weifang Eye Hospital, Zhengda Guangming Eye Group, Weifang 261041, China; Zhengda Guangming International Eye Research Center, Qingdao Zhengda Guangming Eye Hospital, Qingdao University, Qingdao 266000, China
| | - Ruijie Xu
- School of Electronic Information, Qingdao University, Qingdao 266023, China
| | - Jing Xia
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - He Dong
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China.
| | - Bingcheng Yi
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Science and Engineering, Qingdao 266113, China.
| | - Qihui Zhou
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Science and Engineering, Qingdao 266113, China.
| |
Collapse
|
2
|
Pu N, Li S, Wu H, Zhao N, Wang K, Wei D, Wang J, Sha L, Zhao Y, Tao Y, Song Z. Beacon of Hope for Age-Related Retinopathy: Antioxidative Mechanisms and Pre-Clinical Trials of Quercetin Therapy. Antioxidants (Basel) 2025; 14:561. [PMID: 40427443 DOI: 10.3390/antiox14050561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/27/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Age-related retinopathy is one of the leading causes of visual impairment and irreversible blindness, characterized by progressive neuronal and myelin loss. The damages caused by oxidation contributes to the hallmarks of aging and represents fundamental components in pathological pathways that are thought to drive multiple age-related retinopathies. Quercetin (Que), a natural polyphenol abundant in vegetables, herbs, and fruits, has been extensively studied for its long-term antioxidative effects mediated through diverse mechanisms. Additionally, Que and its derivatives exhibit a broad spectrum of pharmacological characteristics in the cellular responses of age-related retinopathy induced by oxidative stress, including anti-inflammatory, anti-neovascularization, regulatory, and neuroprotective effects in autophagy and apoptosis processes. This review mainly focuses on the antioxidative mechanisms and curative effects of Que treatment for various age-related retinopathies, such as retinitis pigmentosa, diabetic retinopathy, age-related macular degeneration, and glaucoma. Furthermore, we discuss emerging technologies and methods involving Que and its derivatives in the therapeutic strategies for age-related retinopathies, highlighting their promise for clinical translation.
Collapse
Affiliation(s)
- Ning Pu
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Siyu Li
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Hao Wu
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Na Zhao
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Kexin Wang
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Dong Wei
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Jiale Wang
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Lulu Sha
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Yameng Zhao
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Zongming Song
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| |
Collapse
|
3
|
Mi B, Mu J, Ding X, Guo S, Hua X. Responsive Microneedles for Diagnostic and Therapeutic Applications of Ocular Diseases. SMALL METHODS 2025:e2402048. [PMID: 40095315 DOI: 10.1002/smtd.202402048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Traditional ophthalmic formulations are characterized by low bioavailability, short intraocular retention time, strong irritation, and failure to achieve the expected therapeutic effect due to the special physiological structure of the eye and the existence of many barriers. Microneedle drug delivery is a novel transdermal drug delivery modality. Responsive microneedles are defined as controllably releasing the drug payloads in response to physiological stimuli, including pH levels, temperature, enzymes, and reactive oxygen species (ROS), as well as external stimuli such as magnetic fields and light. In addition to inheriting the advantages of traditional microneedles, which include enhanced targeting and permeability, non-invasiveness, and painless application, the integration with stimulus-responsive materials enables responsive microneedles to achieve a personalized precision drug delivery process, which further increases the accuracy and efficiency of ocular treatments, making on-demand drug delivery possible. This article systematically reviews the classification, mechanisms, and characteristics of responsive microneedles and provides a detailed introduction to their diagnostic and therapeutic applications as well as real-time monitoring potential in ocular diseases, aiming to offer insights for the precision treatment of ocular diseases in the future.
Collapse
Affiliation(s)
- Baoyue Mi
- Tianjin Aier Eye Hospital, Tianjin University, No. 102, Fukang Road, Nankai, Tianjin, 300074, P. R. China
| | - Jingqing Mu
- Changsha Aier Eye Hospital, No. 188, Section 1, Furong South Road, Changsha, Hunan, 410023, P. R. China
- Aier Eye Institute, No. 188, Section 1, Furong South Road, Changsha, Hunan, 410023, P. R. China
| | - Xiangyu Ding
- Tianjin Aier Eye Hospital, Tianjin University, No. 102, Fukang Road, Nankai, Tianjin, 300074, P. R. China
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, No. 94, Weijin Road, Nankai, Tianjin, 300071, P. R. China
| | - Xia Hua
- Tianjin Aier Eye Hospital, Tianjin University, No. 102, Fukang Road, Nankai, Tianjin, 300074, P. R. China
- Changsha Aier Eye Hospital, No. 188, Section 1, Furong South Road, Changsha, Hunan, 410023, P. R. China
- Aier Eye Institute, No. 188, Section 1, Furong South Road, Changsha, Hunan, 410023, P. R. China
| |
Collapse
|
4
|
Bao Q, Zhang X, Hao Z, Li Q, Wu F, Wang K, Li Y, Li W, Gao H. Advances in Polysaccharide-Based Microneedle Systems for the Treatment of Ocular Diseases. NANO-MICRO LETTERS 2024; 16:268. [PMID: 39136800 PMCID: PMC11322514 DOI: 10.1007/s40820-024-01477-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/06/2024] [Indexed: 08/16/2024]
Abstract
The eye, a complex organ isolated from the systemic circulation, presents significant drug delivery challenges owing to its protective mechanisms, such as the blood-retinal barrier and corneal impermeability. Conventional drug administration methods often fail to sustain therapeutic levels and may compromise patient safety and compliance. Polysaccharide-based microneedles (PSMNs) have emerged as a transformative solution for ophthalmic drug delivery. However, a comprehensive review of PSMNs in ophthalmology has not been published to date. In this review, we critically examine the synergy between polysaccharide chemistry and microneedle technology for enhancing ocular drug delivery. We provide a thorough analysis of PSMNs, summarizing the design principles, fabrication processes, and challenges addressed during fabrication, including improving patient comfort and compliance. We also describe recent advances and the performance of various PSMNs in both research and clinical scenarios. Finally, we review the current regulatory frameworks and market barriers that are relevant to the clinical and commercial advancement of PSMNs and provide a final perspective on this research area.
Collapse
Affiliation(s)
- Qingdong Bao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Xiaoting Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Zhankun Hao
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Qinghua Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Fan Wu
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Kaiyuan Wang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Yang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
| | - Wenlong Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China.
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China.
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China.
| | - Hua Gao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China.
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China.
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China.
| |
Collapse
|
5
|
Mulkutkar M, Damani M, Sawarkar S. Polymeric microneedles for the eye: An overview of advances and ocular applications for minimally invasive drug delivery. Eur J Pharm Biopharm 2024; 197:114209. [PMID: 38336234 DOI: 10.1016/j.ejpb.2024.114209] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Ocular drug delivery is challenging due to the presence of tissue barriers and clearance mechanisms. Most widely used topical formulations need frequent application because of poor permeability, short retention, and low bioavailability. Invasive intraocular injections and implants that deliver drugs at the target site are associated with infections, inflammation, and even vision loss post-use. These gaps can be addressed by a delivery platform that can efficiently deliver drug with minimal tissue damage. Microneedles were introduced as a delivery platform for overcoming dermal barriers with minimal tissue damage. After the successful clinical transition of microneedles in the transdermal drug delivery, they are now being extensively studied for ocular applications. The attributes of minimally invasive application and the capability to deliver a wide range of therapeutics make microneedles an attractive candidate for ocular drug delivery. The current manuscript provides a detailed overview of the recent advancements in the field of microneedles for ocular use. This paper reviews research focusing on polymeric microneedles and their pharmaceutical and biopharmaceutical properties. A brief discussion about their clinical translation and regulatory concerns is also covered. The multitude of research articles supports the fact that microneedles are a potential, minimally invasive drug delivery platform for ophthalmic use.
Collapse
Affiliation(s)
- Madhura Mulkutkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Mansi Damani
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India.
| |
Collapse
|
6
|
Tighsazzadeh M, Boateng J. Matrix hyaluronic acid and bilayer poly-hydroxyethyl methacrylate-hyaluronic acid films as potential ocular drug delivery platforms. Int J Biol Macromol 2024; 260:129496. [PMID: 38244742 DOI: 10.1016/j.ijbiomac.2024.129496] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/01/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
This study aimed to design hydrogel based films comprising hyaluronic acid (HA) to overcome limitations of currently used eye drops. Timolol-loaded crosslinked (X2) HA-based and bilayer (B2) (pHEMA/PVP-HA-based layers) films were designed and characterized. The films were transparent (UV, visual observation) with crosslinked (<80 %) films showing lower light transmittance than bilayer (>80 %) films. X2 showed significantly higher swelling capacity, tensile strength and elastic modulus (5491.6 %, 1539.8 Nmm-2, 1777.2 mPa) than B2 (1905.0 %, 170.0N mm-2, 67.3 mPa) respectively. However, X2 showed lower cumulative drug released and adhesive force (27.3 %, 6.2 N) than B2 (57.5 %, 8.6 N). UV sterilization did not significantly alter physical properties, while SEM and IR microscopy showed smooth surface morphology and homogeneous drug distribution. Timolol permeation (EpiCorneal™/porcine cornea) depended on the film matrix with erodible films showing similar permeation to commercial eyedrops. Drug permeation for porcine cornea (X2 = 549.0.2, B2 = 312.1 μgcm-2 h-1) was significantly faster than EpiCorneal™ (X2 = 55.2, B2 = 37.6 μgcm-2 h-1), but with a linear correlation between them. All the selected optimized films showed acceptable compatibility (MTT assay) with both HeLa cells and EpiCorneal™. In conclusion, crosslinked and bilayer HA based films showed ideal characteristics suitable for potential ocular drug delivery, though further work is required to further optimize these properties and confirm their efficacy including in vivo tests.
Collapse
Affiliation(s)
- Mohammad Tighsazzadeh
- School of Science, Faculty of Engineering and Science, University of Greenwich, Medway, Kent ME4 4TB, UK
| | - Joshua Boateng
- School of Science, Faculty of Engineering and Science, University of Greenwich, Medway, Kent ME4 4TB, UK.
| |
Collapse
|
7
|
Zhong T, Yi H, Gou J, Li J, Liu M, Gao X, Chen S, Guan H, Liang S, He Q, Lin R, Long Z, Wang Y, Shi C, Zhan Y, Zhang Y, Xing L, Zhong J, Xue X. A wireless battery-free eye modulation patch for high myopia therapy. Nat Commun 2024; 15:1766. [PMID: 38409083 PMCID: PMC10897479 DOI: 10.1038/s41467-024-46049-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024] Open
Abstract
The proper axial length of the eye is crucial for achieving emmetropia. In this study, we present a wireless battery-free eye modulation patch designed to correct high myopia and prevent relapse. The patch consists of piezoelectric transducers, an electrochemical micro-actuator, a drug microneedle array, μ-LEDs, a flexible circuit, and biocompatible encapsulation. The system can be wirelessly powered and controlled using external ultrasound. The electrochemical micro-actuator plays a key role in precisely shortening the axial length by driving the posterior sclera inward. This ensures accurate scene imaging on the retina for myopia eye. The drug microneedle array delivers riboflavin to the posterior sclera, and μ-LEDs' blue light induces collagen cross-linking, reinforcing sclera strength. In vivo experiments demonstrate that the patch successfully reduces the rabbit eye's axial length by ~1217 μm and increases sclera strength by 387%. The system operates effectively within the body without the need for batteries. Here, we show that the patch offers a promising avenue for clinically treating high myopia.
Collapse
Affiliation(s)
- Tianyan Zhong
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Hangjin Yi
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiacheng Gou
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jie Li
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Miao Liu
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xing Gao
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Sizhu Chen
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongye Guan
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Shan Liang
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qianxiong He
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Rui Lin
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Zhihe Long
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yue Wang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Chuang Shi
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yang Zhan
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yan Zhang
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lili Xing
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jie Zhong
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China.
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Xinyu Xue
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
8
|
Yang Q, Zhang T, Wu Y, Liang Q, Zhao W, Liu R, Jin X. Progress in the Application of Microneedles in Eye Disorders and the Proposal of the Upgraded Microneedle with Spinule. Pharm Res 2024; 41:203-222. [PMID: 38337104 DOI: 10.1007/s11095-024-03658-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
PURPOSE In the local administration methods for treating eye diseases, the application of microneedles has great potential due to the shortcomings of low efficacy and significant side effects of local administration preparations. This article provides ideas for the research on the application of ophthalmic microneedle in the treatment of eye diseases. RESULTS This article analyzes the physiological structures of the eyes, ocular diseases and its existing ocular preparations in sequence. Finally, this article reviews the development and trends of ocular microneedles in recent years, and summarizes and discusses the drugs of ocular microneedles as well as the future directions of development. At the same time, according to the inspiration of previous work, the concept of "microneedle with spinule" is proposed for the first time, and its advantages and limitations are discussed in the article. CONCLUSIONS At present, the application of ocular microneedles still faces multiple challenges. The aspects of auxiliary devices, appearance, the properties of the matrix materials, and preparation technology of ophthalmic microneedle are crucial for their application in the treatment of eye diseases.
Collapse
Affiliation(s)
- Qiannan Yang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Tianjin, 301617, Jinghai District, China
| | - Tingting Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin, 301617, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
- Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yujie Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin, 301617, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
- Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qianyue Liang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Tianjin, 301617, Jinghai District, China
| | - Wanqi Zhao
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Tianjin, 301617, Jinghai District, China
| | - Rui Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin, 301617, China.
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China.
- Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xin Jin
- Military Medicine Section, Logistics University of People's Armed Police Force, 1 Huizhihuan Road, Tianjin, 300309, Dongli District, China.
| |
Collapse
|
9
|
Biswas A, Choudhury AD, Bisen AC, Agrawal S, Sanap SN, Verma SK, Mishra A, Kumar S, Bhatta RS. Trends in Formulation Approaches for Sustained Drug Delivery to the Posterior Segment of the Eye. AAPS PharmSciTech 2023; 24:217. [PMID: 37891392 DOI: 10.1208/s12249-023-02673-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The eye, an intricate organ comprising physical and physiological barriers, poses a significant challenge for ophthalmic physicians seeking to treat serious ocular diseases affecting the posterior segment, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR). Despite extensive efforts, the delivery of therapeutic drugs to the rear part of the eye remains an unresolved issue. This comprehensive review delves into conventional and innovative formulation strategies for drug delivery to the posterior segment of the eye. By utilizing alternative nanoformulation approaches such as liposomes, nanoparticles, and microneedle patches, researchers and clinicians can overcome the limitations of conventional eye drops and achieve more effective drug delivery to the posterior segment of the eye. These innovative strategies offer improved drug penetration, prolonged residence time, and controlled release, enhancing therapeutic outcomes for ocular diseases. Moreover, this article explores recently approved delivery systems that leverage diverse polymer technologies, such as chitosan and hyaluronic acid, to regulate drug-controlled release over an extended period. By offering a comprehensive understanding of the available formulation strategies, this review aims to empower researchers and clinicians in their pursuit of developing highly effective treatments for posterior-segment ocular diseases.
Collapse
Affiliation(s)
- Arpon Biswas
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Jawaharlal Nehru University, New Delhi, 110067, India
| | - Abhijit Deb Choudhury
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sristi Agrawal
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sachin Nashik Sanap
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sarvesh Kumar Verma
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anjali Mishra
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Shivansh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
| |
Collapse
|
10
|
Glover K, Mishra D, Gade S, Vora LK, Wu Y, Paredes AJ, Donnelly RF, Singh TRR. Microneedles for advanced ocular drug delivery. Adv Drug Deliv Rev 2023; 201:115082. [PMID: 37678648 DOI: 10.1016/j.addr.2023.115082] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023]
Abstract
In the field of ocular drug delivery, topical delivery remains the most common treatment option for managing anterior segment diseases, whileintraocular injectionsare the current gold standard treatment option for treating posterior segment diseases. Nonetheless, topical eye drops are associated with low bioavailability (<5%), and theintravitreal administration procedure is highly invasive, yielding poor patient acceptability. In both cases, frequent administration is currently required. As a result, there is a clear unmet need for sustained drug delivery to the eye, particularly in a manner that can be localised. Microneedles, which are patches containing an array of micron-scale needles (<1 mm), have the potential to meet this need. These platforms can enable localised drug delivery to the eye while enhancing penetration of drug molecules through key ocular barriers, thereby improving overall therapeutic outcomes. Moreover, the minimally invasive manner in which microneedles are applied could provide significant advantages over traditional intravitreal injections regarding patient acceptability. Considering the benefitsofthis novel ocular delivery system, this review provides an in-depth overviewofthe microneedle systems for ocular drug delivery, including the types of microneedles used and therapeutics delivered. Notably, we outline and discuss the current challenges associated with the clinical translation of these platforms and offer opinions on factors which should be considered to improve such transition from lab to clinic.
Collapse
Affiliation(s)
- Katie Glover
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Deepakkumar Mishra
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Shilpkala Gade
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Yu Wu
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Alejandro J Paredes
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | | |
Collapse
|
11
|
Tsung TH, Tsai YC, Lee HP, Chen YH, Lu DW. Biodegradable Polymer-Based Drug-Delivery Systems for Ocular Diseases. Int J Mol Sci 2023; 24:12976. [PMID: 37629157 PMCID: PMC10455181 DOI: 10.3390/ijms241612976] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Ocular drug delivery is a challenging field due to the unique anatomical and physiological barriers of the eye. Biodegradable polymers have emerged as promising tools for efficient and controlled drug delivery in ocular diseases. This review provides an overview of biodegradable polymer-based drug-delivery systems for ocular diseases with emphasis on the potential for biodegradable polymers to overcome the limitations of conventional methods, allowing for sustained drug release, improved bioavailability, and targeted therapy. Natural and synthetic polymers are both discussed, highlighting their biodegradability and biocompatibility. Various formulation strategies, such as nanoparticles, hydrogels, and microemulsions, among others, are investigated, detailing preparation methods, drug encapsulation, and clinical applications. The focus is on anterior and posterior segment drug delivery, covering glaucoma, corneal disorders, ocular inflammation, retinal diseases, age-related macular degeneration, and diabetic retinopathy. Safety considerations, such as biocompatibility evaluations, in vivo toxicity studies, and clinical safety, are addressed. Future perspectives encompass advancements, regulatory considerations, and clinical translation challenges. In conclusion, biodegradable polymers offer potential for efficient and targeted ocular drug delivery, improving therapeutic outcomes while reducing side effects. Further research is needed to optimize formulation strategies and address regulatory requirements for successful clinical implementation.
Collapse
Affiliation(s)
- Ta-Hsin Tsung
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
| | - Yu-Chien Tsai
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
- Department of Ophthalmology, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
| | - Hsin-Pei Lee
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
| | - Yi-Hao Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
| | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
| |
Collapse
|
12
|
Shen J, Gao H, Chen L, Jiang Y, Li S, Chao Y, Liu N, Wang Y, Wei T, Liu Y, Li J, Chen M, Zhu J, Liang J, Zhou X, Zhang X, Gu P, Chen Q, Liu Z. Eyedrop-based macromolecular ophthalmic drug delivery for ocular fundus disease treatment. SCIENCE ADVANCES 2023; 9:eabq3104. [PMID: 36706184 PMCID: PMC9882978 DOI: 10.1126/sciadv.abq3104] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Therapeutic antibodies are extensively used to treat fundus diseases by intravitreal injection, as eyedrop formulation has been rather challenging due to the presence of ocular barriers. Here, an innovative penetrating carrier was developed for antibody delivery in eyedrop formulations. We found that fluorocarbon-modified chitosan (FCS) would self-assemble with proteins to form nanocomplexes, which could effectively pass across the complicated ocular structure to reach the posterior eye segments in both mice and rabbits. In a choroidal melanoma-bearing mouse model, eyedrops containing FCS/anti-PDL1 could induce stronger antitumor immune responses than those triggered by intravenous injection of anti-PDL1. Moreover, in choroidal neovascularization-bearing mouse and rabbit models, FCS/anti-VEGFA eyedrops effectively inhibited vascular proliferation, achieving comparable therapeutic responses to those observed with intravitreal injection of anti-VEGFA. Our work presents an effective delivery carrier to treat fundus diseases using eyedrop of therapeutic proteins, which may enable at-home treatment of many eye diseases with great patient compliance.
Collapse
Affiliation(s)
- Jingjing Shen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Huiqin Gao
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, P. R. China
| | - Linfu Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yutong Jiang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Shu Li
- Department of Ophthalmology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215123 China
| | - Yu Chao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Nanhui Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yufei Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Ting Wei
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yan Liu
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, P. R. China
| | - Jipeng Li
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, P. R. China
| | - Muchao Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Jiafei Zhu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Juan Liang
- Department of Ophthalmology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215123 China
| | - Xiaoyu Zhou
- Department of Ophthalmology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215123 China
| | - Xiaofeng Zhang
- Department of Ophthalmology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215123 China
| | - Ping Gu
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, P. R. China
| | - Qian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
13
|
Park S, Kim YJ, Kostal E, Matylitskaya V, Partel S, Ryu W. Highly-sensitive single-step sensing of levodopa by swellable microneedle-mounted nanogap sensor. Biosens Bioelectron 2022; 220:114912. [DOI: 10.1016/j.bios.2022.114912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/30/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
|
14
|
Park S, Lee K, Ryu W. Research progress on detachable microneedles for advanced applications. Expert Opin Drug Deliv 2022; 19:1115-1131. [PMID: 36062366 DOI: 10.1080/17425247.2022.2121388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Microneedles (MNs) have undergone great advances in transdermal drug delivery, and commercialized MN applications are currently available in vaccination and cosmetic products. Despite the development of MN technologies, common limitations of MN products still exist. Typical MN patches are applied to target tissues, where the substrate of an MN patch must remain until the drug is delivered, which reduces patients' compliance and hinders the applicability of the MN technique to many diseases in various tissues. MN research is ongoing to solve this issue. AREAS COVERED Most recent MNs developed by combining various biomaterials with appropriate fabrication processes are detachable MNs (DeMNs). Because of advances in biomaterials and fabrication techniques, various DeMNs have been rapidly developed. In this review, we discuss four types of DeMN: substrate-separable, multi-layered, crack-inducing, and shell DeMN. These DeMNs deliver various therapeutic agents ranging from small- and large-molecular-weight drugs to proteins and even stem cells for regeneration therapy. Furthermore, DeMNs are applied to skin as well as non-transdermal tissues. EXPERT OPINION It has become increasingly evident that novel MN technologies can be expected in terms of designs, fabrication methods, materials, and even possible application sites given the recent advances in DeMNs.
Collapse
Affiliation(s)
- SeungHyun Park
- Department of Mechanical Engineering, Yonsei University, Republic of Korea
| | - KangJu Lee
- School of Healthcare and Biomedical Engineering, Chonnam National University, Republic of Korea
| | - WonHyoung Ryu
- Department of Mechanical Engineering, Yonsei University, Republic of Korea
| |
Collapse
|
15
|
Karim Z, Karwa P, Hiremath SRR. Polymeric microneedles for transdermal drug delivery- a review of recent studies. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Polymeric Drug Delivery Devices: Role in Cornea and External Disease. Eye Contact Lens 2022; 48:119-126. [PMID: 35192566 DOI: 10.1097/icl.0000000000000874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT The field of ophthalmic drug delivery is undergoing rapid changes not only in the evolution of pharmacologic agents but also in the novel drug delivery vehicles. The ocular surface has limitations to drug penetration because of the presence of tight junctions between basal epithelial cells, which limits the amount of drug that can be absorbed after topical instillation. In addition, nasolacrimal drainage reduces the precorneal residence time significantly. Contact lenses (CLs) have been considered as possible carriers for topical medications because they reside on the ocular surface for a sufficient length of time, and pharmacologic agents may be copolymerized with hydrogels allowing controlled drug diffusion. This strategy reduces the frequency of dosage while improving compliance. Modification of drug delivery vehicles is essential to allow sustained release of the drug from a polymeric complex, facilitate stability and residence time of the drug on the precorneal tear film, and improve penetration into biologic membranes. This review focuses on updates in CL-based and non-CL-based strategies in ophthalmic drug delivery.
Collapse
|
17
|
Lee K, Park S, Jo DH, Cho CS, Jang HY, Yi J, Kang M, Kim J, Jung HY, Kim JH, Ryu W, Khademhosseini A. Self-Plugging Microneedle (SPM) for Intravitreal Drug Delivery. Adv Healthc Mater 2022; 11:e2102599. [PMID: 35192734 DOI: 10.1002/adhm.202102599] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/09/2022] [Indexed: 01/26/2023]
Abstract
Intravitreal injection (IVI) is a common technology which is used to treat ophthalmic diseases inside eyeballs by delivering various drugs into the vitreous cavity using hypodermic needles. However, in some cases, there are possible side effects such as ocular tissue damage due to repeated injection or eyeball infection through the hole created during the needle retraction process. The best scenario of IVI is a one-time injection of drugs without needle retraction, keeping the system of the eyeball closed. Microneedles (MNs) have been applied to ocular tissues over 10 years, and no serious side effects on ocular tissue due to MN injection have been reported. Therefore, a self-plugging MN (SPM) is developed to perform intraocular drug delivery and to seal the scleral puncture simultaneously. The SPMs are fabricated by a thermal drawing process and then coated with a polymeric carrier of drugs and a hydrogel-based scleral plugging component. Each coated functional layer is characterized and demonstrated by in vitro and ex vivo experiments. Finally, in vivo tests using a porcine model confirms prompt sealing of SPM and sustained intraocular drug delivery.
Collapse
Affiliation(s)
- KangJu Lee
- School of Healthcare and Biomedical Engineering Chonnam National University Yeosu 59626 Republic of Korea
- Terasaki Institute for Biomedical Innovation Los Angeles CA 90064 USA
| | - SeungHyun Park
- Department of Mechanical Engineering Yonsei University Seoul 03722 Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy and Cell Biology Seoul National University College of Medicine Seoul 03080 Republic of Korea
| | - Chang Sik Cho
- Fight against Angiogenesis‐Related Blindness (FARB) Laboratory Biomedical Research Institute Seoul National University Hospital Seoul 03080 Republic of Korea
| | - Ha Young Jang
- Fight against Angiogenesis‐Related Blindness (FARB) Laboratory Biomedical Research Institute Seoul National University Hospital Seoul 03080 Republic of Korea
| | - Jiyeon Yi
- Department of Mechanical Engineering Yonsei University Seoul 03722 Republic of Korea
| | - Minkyung Kang
- Department of Mechanical Engineering Yonsei University Seoul 03722 Republic of Korea
| | - Jaeho Kim
- Department of Mechanical Engineering Yonsei University Seoul 03722 Republic of Korea
| | - Ho Yun Jung
- Department of Mechanical Engineering Yonsei University Seoul 03722 Republic of Korea
| | - Jeong Hun Kim
- Fight against Angiogenesis‐Related Blindness (FARB) Laboratory Biomedical Research Institute Seoul National University Hospital Seoul 03080 Republic of Korea
- Department of Ophthalmology & Biomedical Sciences Seoul National University College of Medicine Seoul 03080 Republic of Korea
| | - WonHyoung Ryu
- Department of Mechanical Engineering Yonsei University Seoul 03722 Republic of Korea
| | | |
Collapse
|
18
|
Ruan S, Zhang Y, Feng N. Microneedle-mediated transdermal nanodelivery systems: a review. Biomater Sci 2021; 9:8065-8089. [PMID: 34752590 DOI: 10.1039/d1bm01249e] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The greatest limitation in the development of transdermal drug delivery systems is that only a few drugs can permeate the skin due to the barrier function of the stratum corneum. Active and passive methods are generally available for improving the ability of drug transdermal delivery. However, nanoparticles, as a passive approach, exhibit capacity-constrained permeation enhancement. Thus, microneedle-mediated nanoparticles possess enormous potential and broad prospects. Microneedles promote the penetration of macromolecules by creating microchannels on the skin surface. In this review, the prevailing subknowledge on microneedles (mechanism, classification, and applications of microneedles combined with nanoparticles) is discussed to provide a guideline for readers and a basic reference for further in-depth studies of this novel drug delivery system.
Collapse
Affiliation(s)
- Shuyao Ruan
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
19
|
Lee J, Jang EH, Kim JH, Park S, Kang Y, Park S, Lee K, Kim JH, Youn YN, Ryu W. Highly flexible and porous silk fibroin microneedle wraps for perivascular drug delivery. J Control Release 2021; 340:125-135. [PMID: 34688718 DOI: 10.1016/j.jconrel.2021.10.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/29/2022]
Abstract
Various perivascular drug delivery techniques have been demonstrated for localized post-treatment of intimal hyperplasia: a vascular inflammatory response caused by endothelial damages. Although most perivascular devices have focused on controlling the delivery duration of anti-proliferation drug, the confined and unidirectional delivery of the drug to the target tissue has become increasingly important. In addition, careful attention should also be paid to the luminal stability and the adequate exchange of vascular protein or cell between the blood vessel and extravascular tissue to avoid any side effect from the long-term application of any perivascular device. Here, a highly flexible and porous silk fibroin microneedle wrap (Silk MN wrap) is proposed to directly inject antiproliferative drug to the anastomosis sites while ensuring sufficient vascular exchanges. Drug-embedded silk MNs were transfer-molded on a highly flexible and porous silk wrap. The enhanced cell compatibility, molecular permeability, and flexibility of silk MN wrap guaranteed the structural integrity of blood vessels. Silk wrap successfully supported the silk MNs and induced multiple MN penetration to the target tissue. Over 28 days, silk MN wrap significantly inhibited intimal hyperplasia with a 62.1% reduction in neointimal formation.
Collapse
Affiliation(s)
- JiYong Lee
- School of Mechanical Engineering, YONSEI University, Seoul 03722, South Korea
| | - Eui Hwa Jang
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, YONSEI University College of Medicine, Seoul 03722, South Korea
| | - Jae Ho Kim
- School of Mechanical Engineering, YONSEI University, Seoul 03722, South Korea
| | - SeungHyun Park
- School of Mechanical Engineering, YONSEI University, Seoul 03722, South Korea
| | - Yosup Kang
- School of Mechanical Engineering, YONSEI University, Seoul 03722, South Korea
| | - Sanghyun Park
- School of Mechanical Engineering, YONSEI University, Seoul 03722, South Korea
| | - KangJu Lee
- Department of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, South Korea; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90005, USA
| | - Jung-Hwan Kim
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, YONSEI University College of Medicine, Seoul 03722, South Korea
| | - Young-Nam Youn
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, YONSEI University College of Medicine, Seoul 03722, South Korea.
| | - WonHyoung Ryu
- School of Mechanical Engineering, YONSEI University, Seoul 03722, South Korea.
| |
Collapse
|
20
|
Ilochonwu BC, Urtti A, Hennink WE, Vermonden T. Intravitreal hydrogels for sustained release of therapeutic proteins. J Control Release 2020; 326:419-441. [PMID: 32717302 DOI: 10.1016/j.jconrel.2020.07.031] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022]
Abstract
This review highlights how hydrogel formulations can improve intravitreal protein delivery to the posterior segment of the eye in order to increase therapeutic outcome and patient compliance. Several therapeutic proteins have shown excellent clinical successes for the treatment of various intraocular diseases. However, drug delivery to the posterior segment of the eye faces significant challenges due to multiple physiological barriers preventing drugs from reaching the retina, among which intravitreal protein instability and rapid clearance from the site of injection. Hence, frequent injections are required to maintain therapeutic levels. Moreover, because the world population ages, the number of patients suffering from ocular diseases, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR) is increasing and causing increased health care costs. Therefore, there is a growing need for suitable delivery systems able to tackle the current limitations in retinal protein delivery, which also may reduce costs. Hydrogels have shown to be promising delivery systems capable of sustaining release of therapeutic proteins and thus extending their local presence. Here, an extensive overview of preclinically developed intravitreal hydrogels is provided with attention to the rational design of clinically useful intravitreal systems. The currently used polymers, crosslinking mechanisms, in vitro/in vivo models and advancements are discussed together with the limitations and future perspective of these biomaterials.
Collapse
Affiliation(s)
- Blessing C Ilochonwu
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Arto Urtti
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland; School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
21
|
Lin S, Lin H, Yang M, Ge M, Chen Y, Zhu Y. A two-dimensional MXene potentiates a therapeutic microneedle patch for photonic implantable medicine in the second NIR biowindow. NANOSCALE 2020; 12:10265-10276. [PMID: 32356854 DOI: 10.1039/d0nr01444c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Due to the refractory nature and recurrence of cancer, the related treatments are continuously updated and improved. Here, we designed a soluble polyvinylpyrrolidone (PVP) microneedle system loaded with a two-dimensional (2D) MXene (Nb2C nanosheets) for medical implantation and photothermal ablation of superficial tumors in the second near infrared biological window (NIR-II). In this system, 2D Nb2C nanosheets acted as high-performance photothermal nanoagents, and biocompatible PVP functioned as matrix material to maintain the structure of the needles. The microneedle system exhibited sufficient skin-penetration ability and distinctive dissolution behavior. After being inserted into the skin of the tumor site, it can be dissolved within a short period to release the loaded 2D Nb2C nanosheets. The temperature of the tumor site increased rapidly to almost 70 °C under the irradiation of a 1064 nm laser at a power density of 1 W cm-2, and this could provide sufficient conditions for photonic tumor ablation. After two weeks of treatment, the tumor growth was significantly suppressed, compared to that of the control group, and the survival rate of mice was clearly improved. In addition, the biocompatibility of the microneedle system was tested on mice, in which no significant toxicity or side effects were observed. Therefore, this kind of microneedle system with minimally invasive, safe and effective features is expected to be developed as an intriguing strategy for localized superficial cancer treatment.
Collapse
Affiliation(s)
- Shiyang Lin
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | | | | | | | | | | |
Collapse
|
22
|
Lee K, Lee J, Lee SG, Park S, Yang DS, Lee JJ, Khademhosseini A, Kim JS, Ryu W. Microneedle drug eluting balloon for enhanced drug delivery to vascular tissue. J Control Release 2020; 321:174-183. [DOI: 10.1016/j.jconrel.2020.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 10/25/2022]
|
23
|
Lee K, Goudie MJ, Tebon P, Sun W, Luo Z, Lee J, Zhang S, Fetah K, Kim HJ, Xue Y, Darabi MA, Ahadian S, Sarikhani E, Ryu W, Gu Z, Weiss PS, Dokmeci MR, Ashammakhi N, Khademhosseini A. Non-transdermal microneedles for advanced drug delivery. Adv Drug Deliv Rev 2019; 165-166:41-59. [PMID: 31837356 PMCID: PMC7295684 DOI: 10.1016/j.addr.2019.11.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022]
Abstract
Microneedles (MNs) have been used to deliver drugs for over two decades. These platforms have been proven to increase transdermal drug delivery efficiency dramatically by penetrating restrictive tissue barriers in a minimally invasive manner. While much of the early development of MNs focused on transdermal drug delivery, this technology can be applied to a variety of other non-transdermal biomedical applications. Several variations, such as multi-layer or hollow MNs, have been developed to cater to the needs of specific applications. The heterogeneity in the design of MNs has demanded similar variety in their fabrication methods; the most common methods include micromolding and drawing lithography. Numerous materials have been explored for MN fabrication which range from biocompatible ceramics and metals to natural and synthetic biodegradable polymers. Recent advances in MN engineering have diversified MNs to include unique shapes, materials, and mechanical properties that can be tailored for organ-specific applications. In this review, we discuss the design and creation of modern MNs that aim to surpass the biological barriers of non-transdermal drug delivery in ocular, vascular, oral, and mucosal tissue.
Collapse
Affiliation(s)
- KangJu Lee
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marcus J Goudie
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peyton Tebon
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wujin Sun
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhimin Luo
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Junmin Lee
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shiming Zhang
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kirsten Fetah
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Han-Jun Kim
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yumeng Xue
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mohammad Ali Darabi
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samad Ahadian
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Einollah Sarikhani
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - WonHyoung Ryu
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, South Korea
| | - Zhen Gu
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90024, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Paul S Weiss
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mehmet R Dokmeci
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Radiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nureddin Ashammakhi
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Radiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Ali Khademhosseini
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90024, USA; Department of Radiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|