1
|
Imran H, Tang Y, Wang S, Yan X, Liu C, Guo L, Wang E, Xu C. Optimized DOX Drug Deliveries via Chitosan-Mediated Nanoparticles and Stimuli Responses in Cancer Chemotherapy: A Review. Molecules 2023; 29:31. [PMID: 38202616 PMCID: PMC10780101 DOI: 10.3390/molecules29010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Chitosan nanoparticles (NPs) serve as useful multidrug delivery carriers in cancer chemotherapy. Chitosan has considerable potential in drug delivery systems (DDSs) for targeting tumor cells. Doxorubicin (DOX) has limited application due to its resistance and lack of specificity. Chitosan NPs have been used for DOX delivery because of their biocompatibility, biodegradability, drug encapsulation efficiency, and target specificity. In this review, various types of chitosan derivatives are discussed in DDSs to enhance the effectiveness of cancer treatments. Modified chitosan-DOX NP drug deliveries with other compounds also increase the penetration and efficiency of DOX against tumor cells. We also highlight the endogenous stimuli (pH, redox, enzyme) and exogenous stimuli (light, magnetic, ultrasound), and their positive effect on DOX drug delivery via chitosan NPs. Our study sheds light on the importance of chitosan NPs for DOX drug delivery in cancer treatment and may inspire the development of more effective approaches for cancer chemotherapy.
Collapse
Affiliation(s)
- HafizMuhammad Imran
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Yixin Tang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Siyuan Wang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Xiuzhang Yan
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Chang Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Lei Guo
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Erlei Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Caina Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| |
Collapse
|
2
|
Iqbal Y, Ahmed I, Irfan MF, Chatha SAS, Zubair M, Ullah A. Recent advances in chitosan-based materials; The synthesis, modifications and biomedical applications. Carbohydr Polym 2023; 321:121318. [PMID: 37739510 DOI: 10.1016/j.carbpol.2023.121318] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/24/2023]
Abstract
The attention to polymer-based biomaterials, for instance, chitosan and its derivatives, as well as the techniques for using them in numerous scientific domains, is continuously rising. Chitosan is a decomposable naturally occurring polymeric material that is mostly obtained from seafood waste. Because of its special ecofriendly, biocompatible, non- toxic nature as well as antimicrobial properties, chitosan-based materials have received a lot of interest in the field of biomedical applications. The reactivity of chitosan is mainly because of the amino and hydroxyl groups in its composition, which makes it further fascinating for various uses, including biosensing, textile finishing, antimicrobial wound dressing, tissue engineering, bioimaging, gene, DNA and drug delivery and as a coating material for medical implants. This study is an overview of the different types of chitosan-based materials which now a days have been fabricated by applying different techniques and modifications that include etherification, esterification, crosslinking, graft copolymerization and o-acetylation etc. for hydroxyl groups' processes and acetylation, quaternization, Schiff's base reaction, and grafting for amino groups' reactions. Furthermore, this overview summarizes the literature from recent years related to the important applications of chitosan-based materials (i.e., thin films, nanocomposites or nanoparticles, sponges and hydrogels) in different biomedical applications.
Collapse
Affiliation(s)
- Yasir Iqbal
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; Department of Chemistry, Government College University Faisalabad, 38000, Pakistan
| | - Iqbal Ahmed
- Department of Chemistry, Government College University Faisalabad, 38000, Pakistan
| | - Muhammad Faisal Irfan
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | | | - Muhammad Zubair
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Aman Ullah
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| |
Collapse
|
3
|
Surendranath M, Ramesan RM, Nair P, Parameswaran R. Design and evaluation of propranolol hydrochloride loaded thiolated Zein/PEO electrospun fibrous matrix for transmucosal drug delivery. J Mater Chem B 2023; 11:7778-7791. [PMID: 37489021 DOI: 10.1039/d3tb01088k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Thiolated polymers have garnered wide attention from researchers on mucoadhesive drug delivery. This work explores the thiolation of zein protein using cysteine amino acid via the EDC crosslinker. The optimization of thiolation and purification have been done and confirmed using Ellman's assay and Raman spectra. The thiolated Zein/PEO polymer blend has been appraised for electrospinning to fabricate fibrous matrices. The extent of thiol modification augmented the mechanical properties and adhesion in rabbit intestinal mucosa. In vitro cytotoxicity evaluations such as direct contact assay, MTT assay, and live dead assay performed in RPMI 2650 cells corroborated the non-cytotoxicity of the fabricated matrices with and without propranolol hydrochloride (PL). Detailed drug release studies were conducted in PBS. Drug release in PBS followed the Korsmeyer Peppas model of release. On treating RPMI 2650 cells with the matrix, F-actin and adherens junctional proteins retained integrity, and consequently, drug permeation would proceed through the transcellular transport mechanism. Transepithelial electrical resistance (TEER) measurement of the RPMI 2650 cell monolayer also supported the transcellular transport mechanism. Ex vivo permeation study through porcine buccal mucosa showed 41.26 ± 0.56% PL permeation within 24 h of study. It validated the competence of the electrospun thiolated Zein/PEO matrix for transmucosal drug delivery.
Collapse
Affiliation(s)
- Medha Surendranath
- Division of Polymeric Medical Devices, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India.
| | - Rekha M Ramesan
- Division of Biosurface Technology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Prakash Nair
- Department of Neurosurgery Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Ramesh Parameswaran
- Division of Polymeric Medical Devices, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
4
|
Kapourani A, Chatzitaki AT, S Vizirianakis I, Fatouros DG, Barmpalexis P. Assessing the performance of thermally crosslinked amorphous solid dispersions with high drug loadings. Int J Pharm 2023; 640:123004. [PMID: 37142138 DOI: 10.1016/j.ijpharm.2023.123004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Continuing what previous studies had also intended, the present study aims to shed light on some unanswered questions concerning a recently introduced class of high drug loading (HD) amorphous solid dispersions (ASDs), based on the in-situ thermal crosslinking of poly (acrylic acid) (PAA) and poly (vinyl alcohols) (PVA). Initially, the effect of supersaturated dissolution conditions on the kinetic solubility profiles of the crosslinked HD ASDSs having indomethacin (IND) as a model drug, was determined. Subsequently, the safety profile of these new crosslinked formulations was determined for the first time by evaluating their cytotoxic effect on human intestinal epithelia cell line (Caco-2), while their ex-vivo intestinal permeability was also studied via the non-everted gut sac method. According to the obtained findings, the in-situ thermal crosslinked IND HD ASDs present similar kinetic solubility profiles when the dissolution studies are conducted with a steady sink index value, regardless of the different dissolution medium's volume and the total dose of the API. Additionally, the results showed a concentration- and time- dependent cytotoxicity profile for all formulations, while the neat crosslinked PAA/PVA matrices did not elicit cytotoxicity during the first 24 h, even at the highest examined concentration. Finally, the newly proposed HD ASD system, resulted in a remarkably increased ex-vivo intestinal permeability of IND.
Collapse
Affiliation(s)
- Afroditi Kapourani
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)
| | - Aikaterini-Theodora Chatzitaki
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)
| | - Ioannis S Vizirianakis
- Department of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Department of Life & Health Sciences, University of Nicosia, Nicosia CY-1700 (Cyprus)
| | - Dimitrios G Fatouros
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Natural Products Research Centre of Excellence-AUTH (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001 (Greece).
| |
Collapse
|
5
|
Xie Y, Jin Z, Ma D, Yin TH, Zhao K. Palmitic acid- and cysteine-functionalized nanoparticles overcome mucus and epithelial barrier for oral delivery of drug. Bioeng Transl Med 2023; 8:e10510. [PMID: 37206211 PMCID: PMC10189451 DOI: 10.1002/btm2.10510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/20/2023] [Accepted: 03/08/2023] [Indexed: 05/21/2023] Open
Abstract
Nanoparticles (NPs) used for oral administration have greatly improved drug bioavailability and therapeutic efficacy. Nevertheless, NPs are limited by biological barriers, such as gastrointestinal degradation, mucus barrier, and epithelial barrier. To solve these problems, we developed the PA-N-2-HACC-Cys NPs loaded with anti-inflammatory hydrophobic drug curcumin (CUR) (CUR@PA-N-2-HACC-Cys NPs) by self-assembled amphiphilic polymer, composed of the N-2-Hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC), hydrophobic palmitic acid (PA), and cysteine (Cys). After oral administration, the CUR@PA-N-2-HACC-Cys NPs had good stability and sustained release under gastrointestinal conditions, followed by adhering to the intestine to achieve drug mucosal delivery. Additionally, the NPs could penetrate mucus and epithelial barriers to promote cellular uptake. The CUR@PA-N-2-HACC-Cys NPs could open tight junctions between cells for transepithelial transport while striking a balance between mucus interaction and diffusion through mucus. Notably, the CUR@PA-N-2-HACC-Cys NPs improved the oral bioavailability of CUR, which remarkably relieved colitis symptoms and promoted mucosal epithelial repair. Our findings proved that the CUR@PA-N-2-HACC-Cys NPs had excellent biocompatibility, could overcome mucus and epithelial barriers, and had significant application prospects for oral delivery of the hydrophobic drugs.
Collapse
Affiliation(s)
- Yinzhuo Xie
- Institute of Nanobiomaterials and Immunology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou UniversityTaizhou318000China
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang UniversityHarbin150080China
| | - Zheng Jin
- Institute of Nanobiomaterials and Immunology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou UniversityTaizhou318000China
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang UniversityHarbin150080China
| | - Da Ma
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou UniversityTaizhou318000China
| | - Tan Hui Yin
- Tunku Abdul Rahman University of Management and TechnologyJalan Genting KelangKuala Lumpur53300Malaysia
| | - Kai Zhao
- Institute of Nanobiomaterials and Immunology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou UniversityTaizhou318000China
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang UniversityHarbin150080China
| |
Collapse
|
6
|
Spleis H, Sandmeier M, Claus V, Bernkop-Schnürch A. Surface design of nanocarriers: Key to more efficient oral drug delivery systems. Adv Colloid Interface Sci 2023; 313:102848. [PMID: 36780780 DOI: 10.1016/j.cis.2023.102848] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
As nanocarriers (NCs) can improve the solubility of drugs, prevent their degradation by gastrointestinal (GI) enzymes and promote their transport across the mucus gel layer and absorption membrane, the oral bioavailability of these drugs can be substantially enhanced. All these properties of NCs including self-emulsifying drug delivery systems (SEDDS), solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), liposomes, polymeric nanoparticles, inorganic nanoparticles and polymeric micelles depend mainly on their surface chemistry. In particular, interaction with food, digestive enzymes, bile salts and electrolytes, diffusion behaviour across the mucus gel layer and fate on the absorption membrane are determined by their surface. Bioinert surfaces limiting interactions with gastrointestinal fluid and content as well as with mucus, adhesive surfaces providing an intimate contact with the GI mucosa and absorption enhancing surfaces can be designed. Furthermore, charge converting surfaces shifting their zeta potential from negative to positive directly at the absorption membrane and surfaces providing a targeted drug release are advantageous. In addition to these passive surfaces, even active surfaces cleaving mucus glycoproteins on their way through the mucus gel layer can be created. Within this review, we provide an overview on these different surfaces and discuss their impact on the performance of NCs in the GI tract.
Collapse
Affiliation(s)
- Helen Spleis
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria; Thiomatrix Forschungs und Beratungs GmbH, Trientlgasse 65, Innsbruck 6020, Austria
| | - Matthias Sandmeier
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria; Thiomatrix Forschungs und Beratungs GmbH, Trientlgasse 65, Innsbruck 6020, Austria
| | - Victor Claus
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria; Thiomatrix Forschungs und Beratungs GmbH, Trientlgasse 65, Innsbruck 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria.
| |
Collapse
|
7
|
Chen C, Fa Y, Kuo Y, Liu Y, Lin C, Wang X, Lu Y, Chiang Y, Yang C, Wu L, Ho JA. Thiolated Mesoporous Silica Nanoparticles as an Immunoadjuvant to Enhance Efficacy of Intravesical Chemotherapy for Bladder Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204643. [PMID: 36638276 PMCID: PMC9982584 DOI: 10.1002/advs.202204643] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The characteristics of global prevalence and high recurrence of bladder cancer has led numerous efforts to develop new treatments. The spontaneous voiding and degradation of the chemodrug hamper the efficacy and effectiveness of intravesical chemotherapy following tumor resection. Herein, the externally thiolated hollow mesoporous silica nanoparticles (MSN-SH(E)) is fabricated to serve as a platform for improved bladder intravesical therapy. Enhanced mucoadhesive effect of the thiolated nanovector is confirmed with porcine bladder. The permeation-enhancing effect is also verified, and a fragmented distribution pattern of a tight junction protein, claudin-4, indicates the opening of tight junction. Moreover, MSN-SH(E)-associated reprogramming of M2 macrophages to M1-like phenotype is observed in vitro. The antitumor activity of the mitomycin C (MMC)-loaded nanovector (MMC@MSN-SH(E)) is more effective than that of MMC alone in both in vitro and in vivo. In addition, IHC staining is used to analyze IFN-γ, TGF-β1, and TNF-α. These observations substantiated the significance of MMC@MSN-SH(E) in promoting anticancer activity, holding the great potential for being used in intravesical therapy for non-muscle invasive bladder cancer (NMIBC) due to its mucoadhesivity, enhanced permeation, immunomodulation, and prolonged and very efficient drug exposure.
Collapse
Affiliation(s)
- Cheng‐Che Chen
- BioAnalytical Chemistry and Nanobiomedicine LaboratoryDepartment of Biochemical Science and TechnologyNational Taiwan University10617TaipeiTaiwan
- Department of UrologyTaichung Veterans General Hospital40705TaichungTaiwan
| | - Yu‐Chen Fa
- BioAnalytical Chemistry and Nanobiomedicine LaboratoryDepartment of Biochemical Science and TechnologyNational Taiwan University10617TaipeiTaiwan
| | - Yen‐Yu Kuo
- Department of ChemistryNational Tsing Hua University300044HsinchuTaiwan
| | - Yi‐Chun Liu
- BioAnalytical Chemistry and Nanobiomedicine LaboratoryDepartment of Biochemical Science and TechnologyNational Taiwan University10617TaipeiTaiwan
| | - Chih‐Yu Lin
- Department of ChemistryNational Tsing Hua University300044HsinchuTaiwan
| | - Xin‐Hui Wang
- Instrumentation CenterNational Taiwan University10617TaipeiTaiwan
| | - Yu‐Huan Lu
- Department of ChemistryNational Tsing Hua University300044HsinchuTaiwan
| | - Yu‐Han Chiang
- Department of ChemistryNational Taiwan University10617TaipeiTaiwan
| | - Chia‐Min Yang
- Department of ChemistryNational Tsing Hua University300044HsinchuTaiwan
- Frontier Research Center on Fundamental and Applied Sciences of MattersNational Tsing Hua University300044HsinchuTaiwan
| | - Li‐Chen Wu
- Department of Applied ChemistryNational Chi Nan UniversityPuliNantou54561Taiwan
| | - Ja‐an Annie Ho
- BioAnalytical Chemistry and Nanobiomedicine LaboratoryDepartment of Biochemical Science and TechnologyNational Taiwan University10617TaipeiTaiwan
- Department of ChemistryNational Taiwan University10617TaipeiTaiwan
- Center for Emerging Materials and Advance DevicesNational Taiwan University10617TaipeiTaiwan
- Center for BiotechnologyNational Taiwan University10617TaipeiTaiwan
| |
Collapse
|
8
|
Insulin-loaded liposomes packaged in alginate hydrogels promote the oral bioavailability of insulin. J Control Release 2023; 353:51-62. [PMID: 36410613 DOI: 10.1016/j.jconrel.2022.11.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Compared to subcutaneous injections, oral administration of insulin would be a preferred route of drug administration for diabetic patients. For oral delivery, both liposomes and alginate hydrogels face many challenges, including early burst release of the encapsulated drug and poor intestinal drug absorption. Also, adhesion to the intestinal mucosa remains weak, which all result in a low bioavailability of the payload. This study reports on an alginate hydrogel loaded with liposomes for oral insulin administration. Liposomes (Lip) loaded with arginine-insulin complexes (AINS) were incorporated into a hydrogel prepared from cysteine modified alginate (Cys-Alg) to form liposome-in-alginate hydrogels (AINS-Lip-Gel). An ex vivo study proves that intestinal permeation of AINS and AINS-Lip is approximately 2.0 and 6.0-fold, respectively, higher than that of free insulin. The hydrogel retarded early release of insulin (∼30%) from the liposomes and enhanced the intestinal mucosal retention. In vivo experiments revealed that the AINS-Lip-Gel released insulin in a controlled manner and possessed strong hypoglycemic effects. We conclude that liposome-in-alginate hydrogels loaded with AINS represent an attractive strategy for the oral delivery of insulin.
Collapse
|
9
|
Zhang CY, Zhao J, Mao MX, Zhao ZQ, Liu FJ, Wang HW. Disordered Expression of Tight Junction Proteins Is Involved in the Mo-induced Intestinal Microenvironment Dysbiosis in Sheep. Biol Trace Elem Res 2023; 201:204-214. [PMID: 35460030 DOI: 10.1007/s12011-022-03155-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/09/2022] [Indexed: 01/11/2023]
Abstract
To evaluate the molybdenum (Mo)-induced changes of intestinal morphology and the relationship of intestinal tight junction (TJ) proteins expression and intestinal barrier function, a total of 20 healthy sheep were randomly divided into five groups of four: 0, 5, 10, 20, and 50 mg/kg BW/day Na2MoO4·2H2O were administrated in five groups named control group, Mo 5 group, Mo 10 group, Mo 20 group, and Mo 50 group, respectively. After 28 days of Mo treatment, the duodenum, the jejunum, and the ileum tissue were collected. The histopathology and the developmental parameters were evaluated by hematoxylin-eosin staining. The intestinal epithelial cell DNA damage was detected by TdT-mediated dUTP nick end labeling assay. The intestinal glycoprotein and the goblet cells were analyzed by Alcian Blue-Periodic Acid-Schiff (AB-PAS) staining and PAS staining, respectively. TJ proteins were determined by immunofluorescence technology. Results showed that excessive Mo significantly decreased the small intestinal villus height (VH), crypt depth (CD), VH/CD, and mucosal thickness (P < 0.05 or P < 0.01) while induced the damage of DNA in small intestinal epithelial cells. Moreover, excessive Mo injured intestinal barrier function by decreasing the percent of glycoprotein distribution area (P < 0.05) and the relative density of intestinal goblet cells (P < 0.05). Mo treatment induced decreased (P < 0.01) expression of Zonula Occludens-1, Occludin, and Claudin-1. In conclusion, excessive Mo interfered with the expression of TJ proteins, inhibited intestinal epithelial development, and further aggravated the intestinal barrier function damage, leading to disturbing the small intestinal microenvironment balance.
Collapse
Affiliation(s)
- Chen-Yu Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471023, Henan, People's Republic of China
| | - Jing Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471023, Henan, People's Republic of China
| | - Ming-Xian Mao
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471023, Henan, People's Republic of China
| | - Zhan-Qin Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471023, Henan, People's Republic of China
| | - Feng-Jun Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471023, Henan, People's Republic of China.
| | - Hong-Wei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471023, Henan, People's Republic of China.
| |
Collapse
|
10
|
Ren Y, Wu W, Zhang X. The feasibility of oral targeted drug delivery: gut immune to particulates? Acta Pharm Sin B 2022. [DOI: 10.1016/j.apsb.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
11
|
Functionalized chitosan as a promising platform for cancer immunotherapy: A review. Carbohydr Polym 2022; 290:119452. [DOI: 10.1016/j.carbpol.2022.119452] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/20/2022]
|
12
|
Surendranath M, M R R, Parameswaran R. Recent advances in functionally modified polymers for mucoadhesive drug delivery. J Mater Chem B 2022; 10:5913-5924. [PMID: 35880449 DOI: 10.1039/d2tb00856d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel methods for the delivery of drugs other than the conventional method of oral administration have been a thrust area of research for a few decades. Mucoadhesive delivery of drugs opened up a new domain where rapid and patient-friendly delivery of drugs can be achieved. Delivery of drugs through the mucosal sites such as buccal, nasal, ocular, sublingual, rectal and vaginal facilitates bypassing the first-pass metabolism and the drug reaches the systemic circulation directly. This helps to increase the bioavailability of the drug. The study of the chemical characteristics of polymers with mucoadhesive properties and how the molecules or the pharmaceuticals are transported across the mucosa is very much needed for the advancement of research in this field. And at the same time, it is very pertinent to know about the anatomy and the physiology of the mucosal tissue and its variation in different regions of the body. In this review, we try to present a comprehensive understanding of relevant topics of mucoadhesion giving more emphasis on the mechanism of transport of drugs across mucosa, and different possible functional modifications of polymers to enhance the property of mucoadhesion.
Collapse
Affiliation(s)
- Medha Surendranath
- Division of Polymeric Medical Devices, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India.
| | - Rekha M R
- Division of Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Ramesh Parameswaran
- Division of Polymeric Medical Devices, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
13
|
Application of Chitosan and Its Derivative Polymers in Clinical Medicine and Agriculture. Polymers (Basel) 2022; 14:polym14050958. [PMID: 35267781 PMCID: PMC8912330 DOI: 10.3390/polym14050958] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/21/2022] Open
Abstract
Chitosan is a biodegradable natural polymer derived from the exoskeleton of crustaceans. Because of its biocompatibility and non-biotoxicity, chitosan is widely used in the fields of medicine and agriculture. With the latest technology and technological progress, different active functional groups can be connected by modification, surface modification, or other configurations with various physical, chemical, and biological properties. These changes can significantly expand the application range and efficacy of chitosan polymers. This paper reviews the different uses of chitosan, such as catheter bridging to repair nerve broken ends, making wound auxiliaries, as tissue engineering repair materials for bone or cartilage, or as carriers for a variety of drugs to expand the volume or slow-release and even show potential in the fight against COVID-19. In addition, it is also discussed that chitosan in agriculture can improve the growth of crops and can be used as an antioxidant coating because its natural antibacterial properties are used alone or in conjunction with a variety of endophytic bacteria and metal ions. Generally speaking, chitosan is a kind of polymer material with excellent development prospects in medicine and agriculture.
Collapse
|
14
|
Hock N, Racaniello GF, Aspinall S, Denora N, Khutoryanskiy VV, Bernkop‐Schnürch A. Thiolated Nanoparticles for Biomedical Applications: Mimicking the Workhorses of Our Body. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102451. [PMID: 34773391 PMCID: PMC8728822 DOI: 10.1002/advs.202102451] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/13/2021] [Indexed: 05/03/2023]
Abstract
Advances in nanotechnology have generated a broad range of nanoparticles (NPs) for numerous biomedical applications. Among the various properties of NPs are functionalities being related to thiol substructures. Numerous biological processes that are mediated by cysteine or cystine subunits of proteins representing the workhorses of the bodies can be transferred to NPs. This review focuses on the interface between thiol chemistry and NPs. Pros and cons of different techniques for thiolation of NPs are discussed. Furthermore, the various functionalities gained by thiolation are highlighted. These include overall bio- and mucoadhesive, cellular uptake enhancing, and permeation enhancing properties. Drugs being either covalently attached to thiolated NPs via disulfide bonds or being entrapped in thiolated polymeric NPs that are stabilized via inter- and intrachain crosslinking can be released at the diseased tissue or in target cells under reducing conditions. Moreover, drugs, targeting ligands, biological analytes, and enzymes bearing thiol substructures can be immobilized on noble metal NPs and quantum dots for therapeutic, theranostic, diagnostic, biosensing, and analytical reasons. Within this review a concise summary and analysis of the current knowledge, future directions, and potential clinical use of thiolated NPs are provided.
Collapse
Affiliation(s)
- Nathalie Hock
- Thiomatrix Forschungs und Beratungs GmbHTrientlgasse 65Innsbruck6020Austria
| | | | - Sam Aspinall
- Reading School of PharmacyUniversity of ReadingWhiteknights PO Box 224, Room 122 (Chemistry and Pharmacy Building)ReadingRG66DXUK
| | - Nunzio Denora
- Department of Pharmacy – Pharmaceutical SciencesUniversity of Bari “Aldo Moro”Bari70125Italy
| | - Vitaliy V. Khutoryanskiy
- Reading School of PharmacyUniversity of ReadingWhiteknights PO Box 224, Room 122 (Chemistry and Pharmacy Building)ReadingRG66DXUK
| | - Andreas Bernkop‐Schnürch
- Department of Pharmaceutical Technology, Institute of PharmacyUniversity of InnsbruckInnrain 80/82Innsbruck6020Austria
| |
Collapse
|
15
|
Grosso R, de-Paz MV. Thiolated-Polymer-Based Nanoparticles as an Avant-Garde Approach for Anticancer Therapies-Reviewing Thiomers from Chitosan and Hyaluronic Acid. Pharmaceutics 2021; 13:854. [PMID: 34201403 PMCID: PMC8227107 DOI: 10.3390/pharmaceutics13060854] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/21/2022] Open
Abstract
Thiomers (or thiolated polymers) have broken through as avant-garde approaches in anticancer therapy. Their distinguished reactivity and properties, closely linked to their final applications, justify the extensive research conducted on their preparation and use as smart drug-delivery systems (DDSs). Multiple studies have demonstrated that thiomer-rich nanoformulations can overcome major drawbacks found when administering diverse active pharmaceutical ingredients (APIs), especially in cancer therapy. This work focuses on providing a complete and concise review of the synthetic tools available to thiolate cationic and anionic polymers, in particular chitosan (CTS) and hyaluronic acid (HA), respectively, drawing attention to the most successful procedures. Their chemical reactivity and most relevant properties regarding their use in anticancer formulations are also discussed. In addition, a variety of NP formation procedures are outlined, as well as their use in cancer therapy, particularly for taxanes and siRNA. It is expected that the current work could clarify the main synthetic strategies available, with their scope and drawbacks, as well as provide some insight into thiomer chemistry. Therefore, this review can inspire new research strategies in the development of efficient formulations for the treatment of cancer.
Collapse
Affiliation(s)
| | - M.-Violante de-Paz
- Departamento Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain;
| |
Collapse
|
16
|
|
17
|
Federer C, Kurpiers M, Bernkop-Schnürch A. Thiolated Chitosans: A Multi-talented Class of Polymers for Various Applications. Biomacromolecules 2020; 22:24-56. [PMID: 32567846 PMCID: PMC7805012 DOI: 10.1021/acs.biomac.0c00663] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Various properties of chitosan can be customized by thiolation for very specific needs in a wide range of application areas. Since the discovery of thiolated chitosans, many studies have proven their advantageous characteristics, such as adhesion to biological surfaces, adjustable cross-linking and swelling behavior, controllable drug release, permeation as well as cellular uptake enhancement, inhibition of efflux pumps and enzymes, complexation of metal ions, antioxidative properties, and radical scavenging activity. Simultaneously, these polymers remain biodegradable without increased toxicity. Within this Review, an overview about the different possibilities to covalently attach sulfhydryl ligands to the polymeric backbone of chitosan is given, and the resulting versatile physiochemical properties are discussed in detail. Furthermore, the broad spectrum of applications for thiolated chitosans in science and industry, ranging from their most advanced use in pharmaceutical and medical science over wastewater treatment to the impregnation of textiles, is addressed.
Collapse
Affiliation(s)
- Christoph Federer
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.,Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Markus Kurpiers
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.,Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
18
|
Shahzadi I, Fürst A, Akkus-Dagdeviren ZB, Arshad S, Kurpiers M, Matuszczak B, Bernkop-Schnürch A. Less Reactive Thiol Ligands: Key towards Highly Mucoadhesive Drug Delivery Systems. Polymers (Basel) 2020; 12:polym12061259. [PMID: 32486313 PMCID: PMC7362194 DOI: 10.3390/polym12061259] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 11/30/2022] Open
Abstract
As less reactive s-protected thiomers can likely interpenetrate the mucus gel layer to a higher extent before getting immobilized via disulfide bond formation with mucins, it was the aim of this study to develop a novel type of s-protected thiomer based on the less reactive substructure cysteine-N-acetyl cysteine (Cys-NAC) in order to obtain improved mucoadhesive properties. For this purpose, two types of s-protected thiomers, polyacrylic acid-cysteine-mercaptonicotinic acid (PAA-Cys-MNA) and polyacrylic acid-cysteine-N-acetyl cysteine (PAA-Cys-NAC), were synthesized and characterized by Fourier-transform infrared spectroscopy (FT-IR) and the quantification of attached disulfide ligands. The viscosity of both products was measured in the presence of NAC and mucus. Both thiomers were also evaluated regarding swelling behavior, tensile studies and retention time on the porcine intestinal mucosa. The FT-IR spectra confirmed the successful attachment of Cys-MNA and Cys-NAC ligands to PAA. The number of attached sulfhydryl groups was in the range of 660–683 µmol/g. The viscosity of both s-protected thiomers increased due to the addition of increasing amounts of NAC. The viscosity of the mucus increased in the presence of 1% PAA-Cys-MNA and PAA-Cys-NAC 5.6- and 10.9-fold, respectively, in comparison to only 1% PAA. Both s-protected thiomers showed higher water uptake than unmodified PAA. The maximum detachment force (MDF) and the total work of adhesion (TWA) increased in the case of PAA-Cys-MNA up to 1.4- and 1.6-fold and up to 2.4- and 2.8-fold in the case of PAA-Cys-NAC. The retention of PAA, PAA-Cys-MNA, and PAA-Cys-NAC on porcine intestinal mucosa was 25%, 49%, and 76% within 3 h, respectively. The results of this study provide evidence that less reactive s-protected thiomers exhibit higher mucoadhesive properties than highly reactive s-protected thiomers.
Collapse
Affiliation(s)
- Iram Shahzadi
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria; (I.S.); (A.F.); (Z.B.A.-D.); (S.A.); (M.K.)
| | - Andrea Fürst
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria; (I.S.); (A.F.); (Z.B.A.-D.); (S.A.); (M.K.)
| | - Zeynep Burcu Akkus-Dagdeviren
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria; (I.S.); (A.F.); (Z.B.A.-D.); (S.A.); (M.K.)
| | - Shumaila Arshad
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria; (I.S.); (A.F.); (Z.B.A.-D.); (S.A.); (M.K.)
- Faculty of Pharmacy, The University of Lahore, 54000 Lahore, Pakistan
| | - Markus Kurpiers
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria; (I.S.); (A.F.); (Z.B.A.-D.); (S.A.); (M.K.)
- Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, A-6020 Innsbruck, Austria
| | - Barbara Matuszczak
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria;
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria; (I.S.); (A.F.); (Z.B.A.-D.); (S.A.); (M.K.)
- Correspondence: ; Tel.: +43-512-507-58601; Fax: +43-512-507-8699
| |
Collapse
|
19
|
Wen X, Zhao H, Wang L, Wang L, Du G, Guan W, Liu J, Cao X, Jiang X, Tian J, Wang M, Ho CT, Li S. Nobiletin Attenuates DSS-Induced Intestinal Barrier Damage through the HNF4α-Claudin-7 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4641-4649. [PMID: 32249565 DOI: 10.1021/acs.jafc.0c01217] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The intestinal epithelium barrier functions to protect human bodies from damages such as harmful microorganisms, antigens, and toxins. In this study, we evaluated the protective effect and molecular mechanism of a dominant polymethoxyflavone nobiletin (NOB) from tangerine peels on intestinal epithelial integrity. The results from transepithelial electrical resistance (TEER) suggested that NOB pretreatment counteracts epithelial injury induced by inflammatory cytokines (TEER value in 48 h: vehicle, 135.6 ± 3.9 Ω/cm2; TNF-α + IL-1β, 90.7 ± 0.5 Ω/cm2; 10 μM NOB + TNF-α + IL-1β, 126.1 ± 0.8 Ω/cm2; 100 μM NOB + TNF-α + IL-1β, 125.3 ± 0.5 Ω/cm2. P < 0.001). Clinical and pathological test results suggested that administration of NOB effectively alleviates intestinal barrier injury induced by dextran sulfate sodium (DSS) as evidenced by the length of colon villi on day 7 (control, 253.7 ± 4.8 μm, DSS 131.6 ± 4.6 μm, NOB + DSS, 234.5 ± 5.1 μm. P < 0.001). Interestingly, when screening tight junction molecules for intestinal barrier integrity, we observed that independent treatment with NOB sharply increased claudin-7 levels (ratio of claudin-7 over GAPDH: control, 1.0 ± 0.06; DSS, 0.02 ± 0.001; NOB + DSS, 0.3 ± 0.07. P < 0.001), which was previously suppressed upon DSS stimulation. Furthermore, hepatocyte nuclear factor 4α (HNF-4α) transcriptional regulation of claudin-7 contributed to intestinal barrier homeostasis. Therefore, our study suggests potential intestinal protective strategies based on polymethoxyflavones of aged tangerine peels.
Collapse
Affiliation(s)
- Xiang Wen
- Tianjin Key Laboratory of Food and Biotechnology, State Experimental and Training Centre of Food and Drug, School of Biotechnology and Food Science, Tianjin University of Commerce, No. 409 Guangrong Road, Beichen, Tianjin 300134, China
| | - Hui Zhao
- Tianjin Key Laboratory of Food and Biotechnology, State Experimental and Training Centre of Food and Drug, School of Biotechnology and Food Science, Tianjin University of Commerce, No. 409 Guangrong Road, Beichen, Tianjin 300134, China
| | - Liwen Wang
- Tianjin Key Laboratory of Food and Biotechnology, State Experimental and Training Centre of Food and Drug, School of Biotechnology and Food Science, Tianjin University of Commerce, No. 409 Guangrong Road, Beichen, Tianjin 300134, China
| | - Liang Wang
- Tianjin Key Laboratory of Food and Biotechnology, State Experimental and Training Centre of Food and Drug, School of Biotechnology and Food Science, Tianjin University of Commerce, No. 409 Guangrong Road, Beichen, Tianjin 300134, China
| | - Gang Du
- Tianjin Key Laboratory of Food and Biotechnology, State Experimental and Training Centre of Food and Drug, School of Biotechnology and Food Science, Tianjin University of Commerce, No. 409 Guangrong Road, Beichen, Tianjin 300134, China
| | - Wenqiang Guan
- Tianjin Key Laboratory of Food and Biotechnology, State Experimental and Training Centre of Food and Drug, School of Biotechnology and Food Science, Tianjin University of Commerce, No. 409 Guangrong Road, Beichen, Tianjin 300134, China
| | - Jianfu Liu
- Tianjin Key Laboratory of Food and Biotechnology, State Experimental and Training Centre of Food and Drug, School of Biotechnology and Food Science, Tianjin University of Commerce, No. 409 Guangrong Road, Beichen, Tianjin 300134, China
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, No. 154 Anshan Road, Heping, Tianjin 300020, China
| | - Xiaohua Jiang
- Department of Histlolgy and Embrylolgy, School of Basic Medicine, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan, Hebei 063210, China
| | - Jingrui Tian
- Department of Histlolgy and Embrylolgy, School of Basic Medicine, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan, Hebei 063210, China
| | - Meiyan Wang
- Tianjin Key Laboratory of Food and Biotechnology, State Experimental and Training Centre of Food and Drug, School of Biotechnology and Food Science, Tianjin University of Commerce, No. 409 Guangrong Road, Beichen, Tianjin 300134, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 07102, United States
| | - Shiming Li
- Hubei Key Laboratory of EFGIR, Huanggang Normal University, Huanggang, Hubei 438000, China
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 07102, United States
| |
Collapse
|
20
|
Asim MH, Nazir I, Jalil A, Laffleur F, Matuszczak B, Bernkop-Schnürch A. Per-6-Thiolated Cyclodextrins: A Novel Type of Permeation Enhancing Excipients for BCS Class IV Drugs. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7942-7950. [PMID: 31985207 PMCID: PMC7205388 DOI: 10.1021/acsami.9b21335] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The purpose of the study was to develop a per-6-thiolated α-cyclodextrin (α-CD) by substituting all primary hydroxyl groups of α-CD with thiol groups and to assess its solubility-improving and permeation-enhancing properties for a BCS Class IV drug in vitro as well as in vivo. The primary hydroxyl groups of α-CD were replaced by iodine, followed by substitution with -SH groups. The structure of per-6-thiolated α-CD was approved by FT-IR and 1H NMR spectroscopy. The per-6-thiolated was characterized for thiol content, -SH stability, cytotoxicity, and solubility-improving properties by using the model BCS Class IV drug furosemide (FUR). The mucoadhesive properties of the thiolated oligomer were investigated via viscoelastic measurements with porcine mucus, whereas permeation-enhancing features were evaluated on the Caco-2 cell monolayer and rat gut mucosa. Furthermore, oral bioavailability studies were performed in rats. The per-6-thiolated α-CD oligomer displayed 4244 ± 402 μmol/g thiol groups. These -SH groups were stable at pH ≤ 4, exhibiting a pKa value of 8.1, but subject to oxidation at higher pH. Per-6-thiolated α-CD was not cytotoxic to Caco-2 cells in 0.5% (m/v) concentration within 24 h. It improved the solubility of FUR in the same manner as unmodified α-CD. The addition of per-6-thiolated α-CD (0.5% m/v) increased the mucus viscosity up to 5.8-fold at 37 °C within 4 h. Because of the incorporation in per-6-thiolated α-CD, the apparent permeability coefficient (Papp) of FUR was 6.87-fold improved on the Caco-2 cell monolayer and 6.55-fold on the intestinal mucosa. Moreover, in vivo studies showed a 4.9-fold improved oral bioavailability of FUR due to the incorporation in per-6-thiolated α-CD. These results indicate that per-6-thiolated α-CD would be a promising auxiliary agent for the mucosal delivery of, in particular, BCS Class IV drugs.
Collapse
Affiliation(s)
- Mulazim Hussain Asim
- CCB, Department
of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80, L.04.184, 6020 Innsbruck, Austria
- College of Pharmacy, University of Sargodha, 40100 Sargodha, Punjab, Pakistan
| | - Imran Nazir
- CCB, Department
of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80, L.04.184, 6020 Innsbruck, Austria
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Khyber Pakhtunkhwa, Pakistan
| | - Aamir Jalil
- CCB, Department
of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80, L.04.184, 6020 Innsbruck, Austria
| | - Flavia Laffleur
- CCB, Department
of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80, L.04.184, 6020 Innsbruck, Austria
| | - Barbara Matuszczak
- CCB, Department of Pharmaceutical Chemistry,
Institute of Pharmacy, University of Innsbruck, Innrain 80, L.04.132, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- CCB, Department
of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80, L.04.184, 6020 Innsbruck, Austria
- E-mail: . Phone: +43 512 507 58601. Fax: +43 512 507 58699
| |
Collapse
|
21
|
Zhou S, Deng H, Zhang Y, Wu P, He B, Dai W, Zhang H, Zhang Q, Zhao R, Wang X. Thiolated Nanoparticles Overcome the Mucus Barrier and Epithelial Barrier for Oral Delivery of Insulin. Mol Pharm 2019; 17:239-250. [PMID: 31800258 DOI: 10.1021/acs.molpharmaceut.9b00971] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | - Rongsheng Zhao
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | | |
Collapse
|
22
|
Han X, Zhang E, Shi Y, Song B, Du H, Cao Z. Biomaterial-tight junction interaction and potential impacts. J Mater Chem B 2019; 7:6310-6320. [PMID: 31364678 PMCID: PMC6812605 DOI: 10.1039/c9tb01081e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The active pharmaceutical ingredients (APIs) have to cross the natural barriers and get into the blood to impart the pharmacological effects. The tight junctions (TJs) between the epithelial cells serve as the major selectively permeable barriers and control the paracellular transport of the majority of hydrophilic drugs, in particular, peptides and proteins. TJs perfectly balance the targeted transport and the exclusion of other unexpected pathogens under the normal conditions. Many biomaterials have shown the capability to open the TJs and improve the oral bioavailability and targeting efficacy of the APIs. Nevertheless, there is limited understanding of the biomaterial-TJ interactions. The opening of the TJs further poses the risk of autoimmune diseases and infections. This review article summarizes the most updated literature and presents insights into the TJ structure, the biomaterial-TJ interaction mechanism, the benefits and drawbacks of TJ disruption, and methods for evaluating such interactions.
Collapse
Affiliation(s)
- Xiangfei Han
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, USA.
| | - Ershuai Zhang
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, USA.
| | - Yuanjie Shi
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, USA.
| | - Boyi Song
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, USA.
| | - Hong Du
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, USA.
| | - Zhiqiang Cao
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, USA.
| |
Collapse
|
23
|
Leichner C, Jelkmann M, Bernkop-Schnürch A. Thiolated polymers: Bioinspired polymers utilizing one of the most important bridging structures in nature. Adv Drug Deliv Rev 2019; 151-152:191-221. [PMID: 31028759 DOI: 10.1016/j.addr.2019.04.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022]
Abstract
Thiolated polymers designated "thiomers" are obtained by covalent attachment of thiol functionalities on the polymeric backbone of polymers. In 1998 these polymers were first described as mucoadhesive and in situ gelling compounds forming disulfide bonds with cysteine-rich substructures of mucus glycoproteins and crosslinking through inter- and intrachain disulfide bond formation. In the following, it was shown that thiomers are able to form disulfides with keratins and membrane-associated proteins exhibiting also cysteine-rich substructures. Furthermore, permeation enhancing, enzyme inhibiting and efflux pump inhibiting properties were demonstrated. Because of these capabilities thiomers are promising tools for drug delivery guaranteeing a strongly prolonged residence time as well as sustained release on mucosal membranes. Apart from that, thiomers are used as drugs per se. In particular, for treatment of dry eye syndrome various thiolated polymers are in development and a first product has already reached the market. Within this review an overview about the thiomer-technology and its potential for different applications is provided discussing especially the outcome of studies in non-rodent animal models and that of numerous clinical trials. Moreover, an overview on product developments is given.
Collapse
|
24
|
Combinatorial Use of Chitosan Nanoparticles, Reversine, and Ionising Radiation on Breast Cancer Cells Associated with Mitosis Deregulation. Biomolecules 2019; 9:biom9050186. [PMID: 31083605 PMCID: PMC6571805 DOI: 10.3390/biom9050186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/26/2022] Open
Abstract
Breast cancer is the most commonly occurring cancer in women worldwide and the second most common cancer overall. The development of new therapies to treat this devastating malignancy is needed urgently. Nanoparticles are one class of nanomaterial with multiple applications in medicine, ranging from their use as drug delivery systems and the promotion of changes in cell morphology to the control of gene transcription. Nanoparticles made of the natural polymer chitosan are easy to produce, have a very low immunogenic profile, and diffuse easily into cells. One hallmark feature of cancer, including breast tumours, is the genome instability caused by defects in the spindle-assembly checkpoint (SAC), the molecular signalling mechanism that ensures the timely and high-fidelity transmission of the genetic material to an offspring. In recent years, the use of nanoparticles to treat cancer cells has gained momentum. This is in part because nanoparticles made of different materials can sensitise cancer cells to chemotherapy and radiotherapy. These advances prompted us to study the potential sensitising effect of chitosan-based nanoparticles on breast cancer cells treated with reversine, which is a small molecule inhibitor of Mps1 and Aurora B that induces premature exit from mitosis, aneuploidy, and cell death, before and after exposure of the cancer cells to X-ray irradiation. Our measurements of metabolic activity as an indicator of cell viability, DNA damage by alkaline comet assay, and immunofluorescence using anti-P-H3 as a mitotic biomarker indicate that chitosan nanoparticles elicit cellular responses that affect mitosis and cell viability and can sensitise breast cancer cells to X-ray radiation (2Gy). We also show that such a sensitisation effect is not caused by direct damage to the DNA by the nanoparticles. Taken together, our data indicates that chitosan nanoparticles have potential application for the treatment of breast cancer as adjunct to radiotherapy.
Collapse
|
25
|
Ling C, Liu Z, Song M, Zhang W, Wang S, Liu X, Ma S, Sun S, Fu L, Chu Q, Belmonte JCI, Wang Z, Qu J, Yuan Y, Liu GH. Modeling CADASIL vascular pathologies with patient-derived induced pluripotent stem cells. Protein Cell 2019; 10:249-271. [PMID: 30778920 PMCID: PMC6418078 DOI: 10.1007/s13238-019-0608-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 12/29/2018] [Indexed: 12/23/2022] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a rare hereditary cerebrovascular disease caused by a NOTCH3 mutation. However, the underlying cellular and molecular mechanisms remain unidentified. Here, we generated non-integrative induced pluripotent stem cells (iPSCs) from fibroblasts of a CADASIL patient harboring a heterozygous NOTCH3 mutation (c.3226C>T, p.R1076C). Vascular smooth muscle cells (VSMCs) differentiated from CADASIL-specific iPSCs showed gene expression changes associated with disease phenotypes, including activation of the NOTCH and NF-κB signaling pathway, cytoskeleton disorganization, and excessive cell proliferation. In comparison, these abnormalities were not observed in vascular endothelial cells (VECs) derived from the patient's iPSCs. Importantly, the abnormal upregulation of NF-κB target genes in CADASIL VSMCs was diminished by a NOTCH pathway inhibitor, providing a potential therapeutic strategy for CADASIL. Overall, using this iPSC-based disease model, our study identified clues for studying the pathogenic mechanisms of CADASIL and developing treatment strategies for this disease.
Collapse
Affiliation(s)
- Chen Ling
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Weiqi Zhang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Shuhui Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lina Fu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qun Chu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China.
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China.
| | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China.
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|