1
|
Gil-Vives M, Hernández M, Hernáez Á, Borrós S, Fornaguera C. Safety of nanoparticle therapies during pregnancy: A systematic review and meta-analysis. J Control Release 2025; 382:113655. [PMID: 40122240 DOI: 10.1016/j.jconrel.2025.113655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
The exclusion of pregnant women from clinical trials has led to insufficient safety data for many treatments, making it necessary to evaluate their potential benefits and risks during preclinical stages. Nanomedicines show potential for reduced toxicity but there is limited evidence about their safety for pregnant women and their fetuses. We conducted the first systematic review and meta-analysis of the effect of nanoparticles (NPs) on a key outcome of fetal toxicity (low birth weight) in murine models. In the meta-analysis of mouse models, negatively charged NPs tended to decrease birth weight (-69.8 mg, 95 % CI: -196 to 56.5), as did small (-191 mg, 95 % CI: -369 to -13.3) and plain inorganic nanosystems (-249 mg, 95 % CI: -535 to 37.4). In contrast, positively charged NPs resulted in increased birth weight (+29.3 mg, 95 % CI: 23.4 to 35.2). All findings were validated in studies with low heterogeneity and low risk of publication bias. Neither large NPs (+4.37 mg; 95 % CI: -45.3 to 54.0) nor polymer-coated NPs (+16.5 mg; 95 % CI: -44.7 to 77.6) had any clear association with birth weight. Similar results were observed in other models and experimental designs from articles not included in the meta-analysis, although no conclusions were drawn for other parameters due to high variability. Our findings pave the way for future research and the rational development of safer nanomedicines for use during pregnancy.
Collapse
Affiliation(s)
- Maria Gil-Vives
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Via Augusta 390, 08017 Barcelona, Spain; Blanquerna School of Health Sciences, Universitat Ramon Llull (URL), Padilla 326, 08025 Barcelona, Spain
| | - Marta Hernández
- Blanquerna School of Health Sciences, Universitat Ramon Llull (URL), Padilla 326, 08025 Barcelona, Spain.
| | - Álvaro Hernáez
- Blanquerna School of Health Sciences, Universitat Ramon Llull (URL), Padilla 326, 08025 Barcelona, Spain; Hospital del Mar Research Institute (IMIM), Doctor Aiguader 88, 08003 Barcelona, Spain.; CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Av. Monforte de Lemos 5, 28029 Madrid, Spain
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Via Augusta 390, 08017 Barcelona, Spain
| | - Cristina Fornaguera
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Via Augusta 390, 08017 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain..
| |
Collapse
|
2
|
Abostait A, Abdelkarim M, Bao Z, Miyake Y, Tse WH, Di Ciano-Oliveir C, Buerki-Thurnherr T, Allen C, Keijzer R, Labouta HI. Optimizing lipid nanoparticles for fetal gene delivery in vitro, ex vivo, and aided with machine learning. J Control Release 2024; 376:678-700. [PMID: 39447842 DOI: 10.1016/j.jconrel.2024.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/23/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
There is a clinical need to develop lipid nanoparticles (LNPs) to deliver congenital therapies to the fetus during pregnancy. The aim of these therapies is to restore normal fetal development and prevent irreversible conditions after birth. As a first step, LNPs need to be optimized for transplacental transport, safety on the placental barrier and fetal organs and transfection efficiency. We developed and characterized a library of LNPs of varying compositions and used machine learning (ML) models to delineate the determinants of LNP size and zeta potential. Utilizing different in vitro placental models with the help of a Random Forest algorithm, we could identify the top features driving percentage LNP transport and kinetics at 24 h, out of a total of 18 input features represented by 41 LNP formulations and 48 different transport experiments. We further evaluated the LNPs for safety, placental cell uptake, transfection efficiency in placental trophoblasts and fetal lung fibroblasts. To ensure the integrity of the LNPs following transplacental transport, we screened LNPs for transport and transfection using a high-throughput integrated transport-transfection in vitro model. Finally, we assessed toxicity of the LNPs in a tracheal occlusion fetal lung explant model. LNPs showed little to no toxicity to fetal and placental cells. Immunoglobin G (IgG) orientation on the surface of LNPs, PEGylated lipids, and ionizable lipids had significant effects on placental transport. The Random Forest algorithm identified the top features driving LNPs placental transport percentage and kinetics. Zeta potential emerged in the top driving features. Building on the ML model results, we developed new LNP formulations to further optimize the transport leading to 622 % increase in transport at 24 h versus control LNP formulation. To induce preferential siRNA transfection of fetal lung, we further optimized cationic lipid percentage and the lipid-to-siRNA ratio. Studying LNPs in an integrated placental and fetal lung fibroblasts model showed a strong correlation between zeta potential and fetal lung transfection. Finally, we assessed the toxicity of LNPs in a tracheal occlusion lung explant model. The optimized formulations appeared to be safe on ex vivo fetal lungs as indicated by insignificant changes in apoptosis (Caspase-3) and proliferation (Ki67) markers. In conclusion, we have optimized an LNP formulation that is safe, with high transplacental transport and preferential transfection in fetal lung cells. Our research findings represent an important step toward establishing the safety and effectiveness of LNPs for gene delivery to the fetal organs.
Collapse
Affiliation(s)
- Amr Abostait
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto M5B 1T8, Canada; College of Pharmacy, University of Manitoba, Winnipeg R3E 0T5, Canada
| | - Mahmoud Abdelkarim
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto M5B 1T8, Canada; Biomedical Engineering, Faculty of Engineering, University of Toronto, Toronto M5S 3G9, Canada
| | - Zeqing Bao
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Yuichiro Miyake
- Department of Surgery, Division of Pediatric Surgery, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba and Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo 113-8421, Japan
| | - Wai Hei Tse
- Department of Surgery, Division of Pediatric Surgery, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba and Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | | | - Tina Buerki-Thurnherr
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen 9014, Switzerland
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Richard Keijzer
- Department of Surgery, Division of Pediatric Surgery, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba and Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Hagar I Labouta
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto M5B 1T8, Canada; College of Pharmacy, University of Manitoba, Winnipeg R3E 0T5, Canada; Biomedical Engineering, Faculty of Engineering, University of Toronto, Toronto M5S 3G9, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.
| |
Collapse
|
3
|
Gao M, Yang Z, Zhang Z, Chen L, Xu B. Nervous system exposure of different classes of nanoparticles: A review on potential toxicity and mechanistic studies. ENVIRONMENTAL RESEARCH 2024; 259:119473. [PMID: 38908667 DOI: 10.1016/j.envres.2024.119473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Nanoparticles (NPs) are generally defined as very small particles in the size range of 1-100 nm. Due to the rapid development of modern society, many new materials have been developed. The widespread use of NPs in medical applications, the food industry and the textile industry has led to an increase in NPs in the environment and the possibility of human contact, which poses a serious threat to human health. The nervous system plays a leading role in maintaining the integrity and unity of the body and maintaining a harmonious balance with the external environment. Therefore, based on two categories of organic and inorganic NPs, this paper systematically summarizes the toxic effects and mechanisms of NPs released into the nervous system. The results showed that exposure to NPs may damage the nervous system, decrease learning and cognitive ability, and affect embryonic development. Finally, a remediation scheme for NPs entering the body via the environment is also introduced. This scheme aims to reduce the neurotoxicity caused by NPs by supplementing NPs with a combination of antioxidant and anti-inflammatory compounds. The results provide a valuable reference for future research in this field.
Collapse
Affiliation(s)
- Mingyang Gao
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China; Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Ziye Yang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China; School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhen Zhang
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| | - Baoshan Xu
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China.
| |
Collapse
|
4
|
Cao R, Guo Y, Liu J, Guo Y, Li X, Xie F, Wang Y, Qin J. Assessment of nanotoxicity in a human placenta-on-a-chip from trophoblast stem cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117051. [PMID: 39288735 DOI: 10.1016/j.ecoenv.2024.117051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Maternal exposure to nanoparticles during gestation poses potential risks to fetal development. The placenta, serving as a vital interface for maternal-fetal interaction, plays a pivotal role in shielding the fetus from direct nanoparticle exposure. However, the impact of nanoparticles on placental function is still poorly understood, primarily due to the absence of proper human placental models. In this study, we established a placenta-on-a-chip model capable of recapitulating nanoparticle exposure to assess potential nanotoxicity. The model was assembled by coculturing human trophoblast stem cells (hTSCs) and endothelial cells within a dynamic microsystem. hTSCs exhibited progressive differentiation into syncytiotrophoblasts under continuous fluid flow, forming a bilayered trophoblastic epithelium that mimicking both structural and functional aspects of human placental villi. Copper oxide nanoparticles (CuO NPs) were introduced into the trophoblastic side to simulate maternal blood exposure. Our findings revealed that CuO NPs hindered hTSCs differentiation, leading to diminished hormone secretion and impaired glucose transport. Subsequent analysis indicated that CuO NPs disrupted the autophagic flux in trophoblasts and induced apoptosis. Furthermore, the placenta-on-a-chip model exhibited inflammatory responses to CuO NP exposure, including maternal macrophage activation, inflammatory cytokine secretion, and endothelial barrier disruption. Dysfunction of the placental barrier and the ensuing inflammatory cascades may contribute to aberrant fetal development. Overall, our placenta-on-a-chip model offers a promising platform for assessing nanoparticle exposure-related risks and conducting toxicology studies.
Collapse
Affiliation(s)
- Rongkai Cao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuxin Guo
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jiayue Liu
- University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Yaqiong Guo
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xiang Li
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Fuwei Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Yaqing Wang
- University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China.
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China; University of Chinese Academy of Sciences, Beijing, China; University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China; Beijing Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Campagnolo L, Lacconi V, Filippi J, Martinelli E. Twenty years of in vitro nanotoxicology: how AI could make the difference. FRONTIERS IN TOXICOLOGY 2024; 6:1470439. [PMID: 39376973 PMCID: PMC11457712 DOI: 10.3389/ftox.2024.1470439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/30/2024] [Indexed: 10/09/2024] Open
Abstract
More than two decades ago, the advent of Nanotechnology has marked the onset of a new and critical field in science and technology, highlighting the importance of multidisciplinary approaches to assess and model the potential human hazard of newly developed advanced materials in the nanoscale, the nanomaterials (NMs). Nanotechnology is, by definition, a multidisciplinary field, that integrates knowledge and techniques from physics, chemistry, biology, materials science, and engineering to manipulate matter at the nanoscale, defined as anything comprised between 1 and 100 nm. The emergence of nanotechnology has undoubtedly led to significant innovations in many fields, from medical diagnostics and targeted drug delivery systems to advanced materials and energy solutions. However, the unique properties of nanomaterials, such as the increased surface to volume ratio, which provides increased reactivity and hence the ability to penetrate biological barriers, have been also considered as potential risk factors for unforeseen toxicological effects, stimulating the scientific community to investigate to which extent this new field of applications could pose a risk to human health and the environment.
Collapse
Affiliation(s)
- Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Lacconi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Joanna Filippi
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Eugenio Martinelli
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
6
|
Park S, Hunter ES. Modeling the human placenta: in vitro applications in developmental and reproductive toxicology. Crit Rev Toxicol 2024; 54:431-464. [PMID: 39016688 DOI: 10.1080/10408444.2023.2295349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 07/18/2024]
Abstract
During its temporary tenure, the placenta has extensive and specialized functions that are critical for pre- and post-natal development. The consequences of chemical exposure in utero can have profound effects on the structure and function of pregnancy-associated tissues and the life-long health of the birthing person and their offspring. However, the toxicological importance and critical functions of the placenta to embryonic and fetal development and maturation have been understudied. This narrative will review early placental development in humans and highlight some in vitro models currently in use that are or can be applied to better understand placental processes underlying developmental toxicity due to in utero environmental exposures.
Collapse
Affiliation(s)
- Sarah Park
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
- Center for Computational Toxicology and Exposure, ORD, US EPA, Research Triangle Park, NC, USA
| | - Edward Sidney Hunter
- Center for Computational Toxicology and Exposure, ORD, US EPA, Research Triangle Park, NC, USA
| |
Collapse
|
7
|
Dugershaw‐Kurzer B, Bossart J, Buljan M, Hannig Y, Zehnder S, Gupta G, Kissling VM, Nowak‐Sliwinska P, van Beijnum JR, Griffioen AW, Masjosthusmann S, Zühr E, Fritsche E, Hornung R, Rduch T, Buerki‐Thurnherr T. Nanoparticles Dysregulate the Human Placental Secretome with Consequences on Angiogenesis and Vascularization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401060. [PMID: 38767187 PMCID: PMC11267331 DOI: 10.1002/advs.202401060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/05/2024] [Indexed: 05/22/2024]
Abstract
Exposure to nanoparticles (NPs) in pregnancy is increasingly linked to adverse effects on embryo-fetal development and health later in life. However, the developmental toxicity mechanisms of NPs are largely unknown, in particular potential effects on the placental secretome, which orchestrates many developmental processes pivotal for pregnancy success. This study demonstrates extensive material- and pregnancy stage-specific deregulation of placental signaling from a single exposure of human placental explants to physiologically relevant concentrations of engineered (silica (SiO2) and titanium dioxide (TiO2) NPs) and environmental NPs (diesel exhaust particles, DEPs). This includes a multitude of secreted inflammatory, vascular, and endocrine placental factors as well as extracellular vesicle (EV)-associated proteins. Moreover, conditioned media (CM) from NP-exposed explants induce pronounced anti-angiogenic and anti-vasculogenic effects, while early neurodevelopmental processes are only marginally affected. These findings underscore the potential of metal oxide NPs and DEPs for widespread interference with the placental secretome and identify vascular morphogenesis as a sensitive outcome for the indirect developmental toxicity of different NPs. Overall, this work has profound implications for the future safety assessment of NPs for industrial, commercial, or medical applications in pregnancy, which should consider placenta-mediated toxicity by holistic secretomics approaches to ensure the development of safe nanotechnologies.
Collapse
Affiliation(s)
- Battuja Dugershaw‐Kurzer
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. Gallen9014Switzerland
- Department of Health Sciences and TechnologyETH ZurichZurich8093Switzerland
| | - Jonas Bossart
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. Gallen9014Switzerland
- Department of Health Sciences and TechnologyETH ZurichZurich8093Switzerland
- SIBSwiss Institute of BioinformaticsLausanne1015Switzerland
| | - Marija Buljan
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. Gallen9014Switzerland
- SIBSwiss Institute of BioinformaticsLausanne1015Switzerland
| | - Yvette Hannig
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. Gallen9014Switzerland
| | - Sarah Zehnder
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. Gallen9014Switzerland
| | - Govind Gupta
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. Gallen9014Switzerland
| | - Vera M. Kissling
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. Gallen9014Switzerland
| | - Patrycja Nowak‐Sliwinska
- Institute of Pharmaceutical Sciences of Western SwitzerlandGeneva1211Switzerland
- School of Pharmaceutical SciencesUniversity of GenevaGeneva1205Switzerland
| | - Judy R. van Beijnum
- Angiogenesis LaboratoryDepartment of Medical OncologyUMC loacation Vrije Universiteit AmsterdamAmsterdam1081The Netherlands
| | - Arjan W. Griffioen
- Angiogenesis LaboratoryDepartment of Medical OncologyUMC loacation Vrije Universiteit AmsterdamAmsterdam1081The Netherlands
| | | | - Etta Zühr
- IUF—Leibniz Research Institute for Environmental Medicine40225DuesseldorfGermany
| | - Ellen Fritsche
- IUF—Leibniz Research Institute for Environmental Medicine40225DuesseldorfGermany
- Medical FacultyHeinrich Heine University40225DuesseldorfGermany
- DNTOX GmbH40223DuesseldorfGermany
| | - René Hornung
- Department of Gynaecology and ObstetricsCantonal Hospital St.Gallen (KSSG)St. Gallen9007Switzerland
| | - Thomas Rduch
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. Gallen9014Switzerland
- Department of Gynaecology and ObstetricsCantonal Hospital St.Gallen (KSSG)St. Gallen9007Switzerland
| | - Tina Buerki‐Thurnherr
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. Gallen9014Switzerland
| |
Collapse
|
8
|
Tang M, Zhang X, Fei W, Xin Y, Zhang M, Yao Y, Zhao Y, Zheng C, Sun D. Advance in placenta drug delivery: concern for placenta-originated disease therapy. Drug Deliv 2023; 30:2184315. [PMID: 36883905 PMCID: PMC10003143 DOI: 10.1080/10717544.2023.2184315] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
In the therapy of placenta-originated diseases during pregnancy, the main challenges are fetal exposure to drugs, which can pass through the placenta and cause safety concerns for fetal development. The design of placenta-resident drug delivery system is an advantageous method to minimize fetal exposure as well as reduce adverse maternal off-target effects. By utilizing the placenta as a biological barrier, the placenta-resident nanodrugs could be trapped in the local placenta to concentrate on the treatment of this abnormal originated tissue. Therefore, the success of such systems largely depends on the placental retention capacity. This paper expounds on the transport mechanism of nanodrugs in the placenta, analyzes the factors that affect the placental retention of nanodrugs, and summarizes the advantages and concerns of current nanoplatforms in the treatment of placenta-originated diseases. In general, this review aims to provide a theoretical basis for the construction of placenta-resident drug delivery systems, which will potentially enable safe and efficient clinical treatment for placenta-originated diseases in the future.
Collapse
Affiliation(s)
- Miao Tang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiao Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yu Xin
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Meng Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yao Yao
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yunchun Zhao
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Dongli Sun
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| |
Collapse
|
9
|
Adams S, Stapleton PA. Nanoparticles at the maternal-fetal interface. Mol Cell Endocrinol 2023; 578:112067. [PMID: 37689342 PMCID: PMC10591848 DOI: 10.1016/j.mce.2023.112067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
The increasing production of intentional and unintentional nanoparticles (NPs) has led to their accumulation in the environment as air and ground pollution. The heterogeneity of these particles primarily relies on the NP physicochemical properties (i.e., chemical composition, size, shape, surface chemistry, etc.). Pregnancy represents a vulnerable life stage for both the woman and the developing fetus. The ubiquitous nature of these NPs creates a concern for developmental fetal exposures. At the maternal-fetal interface lies the placenta, a temporary endocrine organ that facilitates nutrient and waste exchange as well as communication between maternal and fetal tissues. Recent evidence in human and animal models identifies that gestational exposure to NPs results in placental translocation leading to local effects and endocrine disruption. Currently, the mechanisms underlying placental translocation and cellular uptake of NPs in the placenta are poorly understood. The purpose of this review is to assess the current understanding of the physiochemical factors influencing NP translocation, cellular uptake, and endocrine disruption at the maternal-fetal interface within the available literature.
Collapse
Affiliation(s)
- S Adams
- Department of Pharmacology and Toxicology, USA
| | - P A Stapleton
- Department of Pharmacology and Toxicology, USA; Environmental Occupational and Health Sciences Institute, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
10
|
Cary C, Stapleton P. Determinants and mechanisms of inorganic nanoparticle translocation across mammalian biological barriers. Arch Toxicol 2023; 97:2111-2131. [PMID: 37303009 PMCID: PMC10540313 DOI: 10.1007/s00204-023-03528-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023]
Abstract
Biological barriers protect delicate internal tissues from exposures to and interactions with hazardous materials. Primary anatomical barriers prevent external agents from reaching systemic circulation and include the pulmonary, gastrointestinal, and dermal barriers. Secondary barriers include the blood-brain, blood-testis, and placental barriers. The tissues protected by secondary barriers are particularly sensitive to agents in systemic circulation. Neurons of the brain cannot regenerate and therefore must have limited interaction with cytotoxic agents. In the testis, the delicate process of spermatogenesis requires a specific milieu distinct from the blood. The placenta protects the developing fetus from compounds in the maternal circulation that would impair limb or organ development. Many biological barriers are semi-permeable, allowing only materials or chemicals, with a specific set of properties, that easily pass through or between cells. Nanoparticles (particles less than 100 nm) have recently drawn specific concern due to the possibility of biological barrier translocation and contact with distal tissues. Current evidence suggests that nanoparticles translocate across both primary and secondary barriers. It is known that the physicochemical properties of nanoparticles can affect biological interactions, and it has been shown that nanoparticles can breach primary and some secondary barriers. However, the mechanism by which nanoparticles cross biological barriers has yet to be determined. Therefore, the purpose of this review is to summarize how different nanoparticle physicochemical properties interact with biological barriers and barrier products to govern translocation.
Collapse
Affiliation(s)
- Chelsea Cary
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Phoebe Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
11
|
S C, G G, LA S, W N, P M, L A, A W, V F, P W, D G, T BT. Transcriptomic profiling reveals differential cellular response to copper oxide nanoparticles and polystyrene nanoplastics in perfused human placenta. ENVIRONMENT INTERNATIONAL 2023; 177:108015. [PMID: 37315489 DOI: 10.1016/j.envint.2023.108015] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023]
Abstract
The growing nanoparticulate pollution (e.g. engineered nanoparticles (NPs) or nanoplastics) has been shown to pose potential threats to human health. In particular, sensitive populations such as pregnant women and their unborn children need to be protected from harmful environmental exposures. However, developmental toxicity from prenatal exposure to pollution particles is not yet well studied despite evidence of particle accumulation in human placenta. Our study aimed to investigate how copper oxide NPs (CuO NPs; 10-20 nm) and polystyrene nanoplastics (PS NPs; 70 nm) impact on gene expression in ex vivo perfused human placental tissue. Whole genome microarray analysis revealed changes in global gene expression profile after 6 h of perfusion with sub-cytotoxic concentrations of CuO (10 µg/mL) and PS NPs (25 µg/mL). Pathway and gene ontology enrichment analysis of the differentially expressed genes suggested that CuO and PS NPs trigger distinct cellular response in placental tissue. While CuO NPs induced pathways related to angiogenesis, protein misfolding and heat shock responses, PS NPs affected the expression of genes related to inflammation and iron homeostasis. The observed effects on protein misfolding, cytokine signaling, and hormones were corroborated by western blot (accumulation of polyubiquitinated proteins) or qPCR analysis. Overall, the results of the present study revealed extensive and material-specific interference of CuO and PS NPs with placental gene expression from a single short-term exposure which deserves increasing attention. In addition, the placenta, which is often neglected in developmental toxicity studies, should be a key focus in the future safety assessment of NPs in pregnancy.
Collapse
Affiliation(s)
- Chortarea S
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), 9014 St. Gallen, Switzerland
| | - Gupta G
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), 9014 St. Gallen, Switzerland
| | - Saarimäki LA
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Netkueakul W
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), 9014 St. Gallen, Switzerland
| | - Manser P
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), 9014 St. Gallen, Switzerland
| | - Aengenheister L
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), 9014 St. Gallen, Switzerland; Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health (LIH), 1 A-B, Rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - Wichser A
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials, Science and Technology, Dübendorf, Switzerland
| | - Fortino V
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Wick P
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), 9014 St. Gallen, Switzerland
| | - Greco D
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Buerki-Thurnherr T
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), 9014 St. Gallen, Switzerland.
| |
Collapse
|
12
|
Zhou Z, Luo D, Li M, Lao G, Zhou Z, Dinnyés A, Xu W, Sun Q. A Novel Multicellular Placental Barrier Model to Investigate the Effect of Maternal Aflatoxin B 1 Exposure on Fetal-Side Neural Stem Cells. Toxins (Basel) 2023; 15:toxins15050312. [PMID: 37235346 DOI: 10.3390/toxins15050312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Ingestion of food toxins such as aflatoxin B1 (AFB1) during pregnancy may impair fetal neurodevelopment. However, animal model results may not be accurate due to the species' differences, and testing on humans is ethically impermissible. Here, we developed an in vitro human maternal-fetal multicellular model composed of a human hepatic compartment, a bilayer placental barrier, and a human fetal central nervous system compartment using neural stem cells (NSCs) to investigate the effect of AFB1 on fetal-side NSCs. AFB1 passed through the HepG2 hepatocellular carcinoma cells to mimic the maternal metabolic effects. Importantly, even at the limited concentration (0.0641 ± 0.0046 μM) of AFB1, close to the national safety level standard of China (GB-2761-2011), the mixture of AFB1 crossing the placental barrier induced NSC apoptosis. The level of reactive oxygen species in NSCs was significantly elevated and the cell membrane was damaged, causing the release of intracellular lactate dehydrogenase (p < 0.05). The comet experiment and γ-H2AX immunofluorescence assay showed that AFB1 caused significant DNA damage to NSCs (p < 0.05). This study provided a new model for the toxicological evaluation of the effect of food mycotoxin exposure during pregnancy on fetal neurodevelopment.
Collapse
Affiliation(s)
- Zhiwei Zhou
- Key Laboratory of Bio-Resources and Eco-Environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Dongmei Luo
- Key Laboratory of Bio-Resources and Eco-Environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Mengxue Li
- Key Laboratory of Bio-Resources and Eco-Environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Guangjie Lao
- Key Laboratory of Bio-Resources and Eco-Environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Zhiqiang Zhou
- Department of Food Engineering, Sichuan University, Chengdu 610064, China
| | - András Dinnyés
- Key Laboratory of Bio-Resources and Eco-Environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
- BioTalentum Ltd., Aulich Lajos Str. 26, 2100 Godollo, Hungary
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Wenming Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610064, China
- Reproductive Endocrinology and Regulation Laboratory West China Second University Hospital, Sichuan University, Chengdu 610064, China
| | - Qun Sun
- Key Laboratory of Bio-Resources and Eco-Environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
13
|
Dusza HM, van Boxel J, van Duursen MBM, Forsberg MM, Legler J, Vähäkangas KH. Experimental human placental models for studying uptake, transport and toxicity of micro- and nanoplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160403. [PMID: 36417947 DOI: 10.1016/j.scitotenv.2022.160403] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Micro- and nanoplastics (MNPs) are ubiquitous in the environment and have recently been found in human lungs, blood and placenta. However, data on the possible effects of MNPs on human health is extremely scarce. The potential toxicity of MNPs during pregnancy, a period of increased susceptibility to environmental insults, is of particular concern. The placenta provides a unique interface between maternal and fetal circulation which is essential for in utero survival and healthy pregnancy. Placental toxicokinetics and toxicity of MNPs are still largely unexplored and the limited studies performed up to now focus mainly on polystyrene particles. Practical and ethical considerations limit research options in humans, and extrapolation from animal studies is challenging due to marked differences between species. Nevertheless, diverse in vitro and ex vivo human placental models exist e.g., plasma membrane vesicles, mono-culture and co-culture of placental cells, placenta-on-a-chip, villous tissue explants, and placental perfusion that can be used to advance this research area. The objective of this concise review is to recapitulate different human placental models, summarize the current understanding of placental uptake, transport and toxicity of MNPs and define knowledge gaps. Moreover, we provide perspectives for future research urgently needed to assess the potential hazards and risks of MNP exposure to maternal and fetal health.
Collapse
Affiliation(s)
- Hanna M Dusza
- Division of Toxicology, Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - Jeske van Boxel
- Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Majorie B M van Duursen
- Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Markus M Forsberg
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Juliette Legler
- Division of Toxicology, Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Kirsi H Vähäkangas
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
14
|
Issa M, Rivière G, Houdeau E, Adel-Patient K. Perinatal exposure to foodborne inorganic nanoparticles: A role in the susceptibility to food allergy? FRONTIERS IN ALLERGY 2022; 3:1067281. [PMID: 36545344 PMCID: PMC9760876 DOI: 10.3389/falgy.2022.1067281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Food allergy (FA) is an inappropriate immune response against dietary antigens. Various environmental factors during perinatal life may alter the establishment of intestinal homeostasis, thereby predisposing individuals to the development of such immune-related diseases. Among these factors, recent studies have emphasized the chronic dietary exposure of the mother to foodborne inorganic nanoparticles (NP) such as nano-sized silicon dioxide (SiO2), titanium dioxide (TiO2) or silver (Ag). Indeed, there is growing evidence that these inorganic agents, used as food additives in various products, as processing aids during food manufacturing or in food contact materials, can cross the placental barrier and reach the developing fetus. Excretion in milk is also suggested, hence continuing to expose the neonate during a critical window of susceptibility. Due to their immunotoxical and biocidal properties, such exposure may disrupt the host-intestinal microbiota's beneficial exchanges and may interfere with intestinal barrier and gut-associated immune system development in fetuses then the neonates. The resulting dysregulated intestinal homeostasis in the infant may significantly impede the induction of oral tolerance, a crucial process of immune unresponsiveness to food antigens. The current review focuses on the possible impacts of perinatal exposure to foodborne NP during pregnancy and early life on the susceptibility to developing FA.
Collapse
Affiliation(s)
- Mohammad Issa
- Département Médicaments et Technologies Pour la Santé (MTS), SPI/Laboratoire d’Immuno-Allergie Alimentaire, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Gilles Rivière
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES, Agence Nationale De Sécurité Sanitaire De l’alimentation, De l’environnement et du Travail), Direction de l’Evaluation des Risques, Maisons-Alfort, France
| | - Eric Houdeau
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Karine Adel-Patient
- Département Médicaments et Technologies Pour la Santé (MTS), SPI/Laboratoire d’Immuno-Allergie Alimentaire, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| |
Collapse
|
15
|
Furer LA, Abad ÁD, Manser P, Hannig Y, Schuerle S, Fortunato G, Buerki-Thurnherr T. Novel electrospun chitosan/PEO membranes for more predictive nanoparticle transport studies at biological barriers. NANOSCALE 2022; 14:12136-12152. [PMID: 35968642 DOI: 10.1039/d2nr01742c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The design of safe and effective nanoparticles (NPs) for commercial and medical applications requires a profound understanding of NP translocation and effects at biological barriers. To gain mechanistic insights, physiologically relevant and accurate human in vitro biobarrier models are indispensable. However, current transfer models largely rely on artificial porous polymer membranes for the cultivation of cells, which do not provide a close mimic of the natural basal membrane and intrinsically provide limited permeability for NPs. In this study, electrospinning is exploited to develop thin chitosan/polyethylene oxide (PEO) membranes with a high porosity and nanofibrous morphology for more predictive NP transfer studies. The nanofiber membranes allow the cultivation of a tight and functional placental monolayer (BeWo trophoblasts). Translocation studies with differently sized molecules and NPs (Na-fluorescein; 40 kDa FITC-Dextran; 25 nm PMMA; 70, 180 and 520 nm polystyrene NPs) across empty and cell containing membranes reveal a considerably enhanced permeability compared to commercial microporous membranes. Importantly, the transfer data of NPs is highly similar to data from ex vivo perfusion studies of intact human placental tissue. Therefore, the newly developed membranes may decisively contribute to establish physiologically relevant in vitro biobarrier transfer models with superior permeability for a wide range of molecules and particles.
Collapse
Affiliation(s)
- Lea A Furer
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland.
- ETH Zürich, Responsive Biomedical Systems Lab, 8093 Zürich, Switzerland
| | - Ángela Díaz Abad
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland.
| | - Pius Manser
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland.
| | - Yvette Hannig
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland.
| | - Simone Schuerle
- ETH Zürich, Responsive Biomedical Systems Lab, 8093 Zürich, Switzerland
| | - Giuseppino Fortunato
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 9014 St. Gallen, Switzerland
| | - Tina Buerki-Thurnherr
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland.
| |
Collapse
|
16
|
Cornu R, Béduneau A, Martin H. Ingestion of titanium dioxide nanoparticles: a definite health risk for consumers and their progeny. Arch Toxicol 2022; 96:2655-2686. [PMID: 35895099 DOI: 10.1007/s00204-022-03334-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/05/2022] [Indexed: 01/13/2023]
Abstract
Titanium dioxide (TiO2) is one of the most commonly used nanomaterials in the world. Additive E171, which is used in the food industry, contains a nanometric particle fraction of TiO2. Oral exposure of humans to these nanoparticles (NPs) is intensive, leading to the question of their impact on health. Daily oral intake by rats of amounts of E171 that are relevant to human intake has been associated with an increased risk of chronic intestinal inflammation and carcinogenesis. Due to their food preferences, children are very exposed to this NP. Furthermore, maternal-foetal transfer of TiO2 NPs during pregnancy, as well as exposure of the offspring by breastfeeding, have been recently described. In France, the use of E171 in the production of foodstuffs was suspended in January 2020 as a precautionary measure. To provide some answers to this public health problem and help global regulatory agencies finalize their decisions, we reviewed in vitro and in vivo studies that address the effects of TiO2 NPs through oral exposure, especially their effects on the gastrointestinal tract, one of the most exposed tissues. Our review also highlights the effects of exposure on the offspring during pregnancy and by breastfeeding.
Collapse
Affiliation(s)
- Raphaël Cornu
- PEPITE EA4267, Univ. Bourgogne Franche-Comté, F-25000, Besançon, France
| | - Arnaud Béduneau
- PEPITE EA4267, Univ. Bourgogne Franche-Comté, F-25000, Besançon, France
| | - Hélène Martin
- PEPITE EA4267, Univ. Bourgogne Franche-Comté, F-25000, Besançon, France.
| |
Collapse
|
17
|
How Could Nanomedicine Improve the Safety of Contrast Agents for MRI during Pregnancy? SCI 2022. [DOI: 10.3390/sci4010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pregnancy is a delicate state, during which timely investigation of possible physiological anomalies is essential to reduce the risk of maternal and fetal complications. Medical imaging encompasses different technologies to image the human body for the diagnosis, course of treatment management, and follow-up of diseases. Ultrasound (US) is currently the imaging system of choice for pregnant patients. However, sonographic evaluations can be non-effective or give ambiguous results. Therefore, magnetic resonance imaging (MRI), due to its excellent tissue penetration, the possibility of acquisition of three-dimensional anatomical information, and its high spatial resolution, is considered a valid diagnostical alternative. Nevertheless, currently employed contrast agents to improve the MRI image quality are harmful to the fetus. Because of their ability to cross the placenta, their use on pregnant patients is avoided. This review will firstly recapitulate the most common non-obstetrical, obstetrical, and fetal indications for magnetic resonance imaging on pregnant women. Fetal safety risks, due to the use of strong magnetic fields and exogenous contrast agents, will be presented. Then, possible advantages of nanostructured contrast agents compared to current molecular ones are explored. Nanosystems’ characteristics affecting contrast efficiency, and their potential for improving contrast-enhanced MRI’s safety in pregnant women, are discussed. Lastly, promising examples of nanoparticles as safer alternatives to current MRI contrast agents in pregnancy are discussed.
Collapse
|
18
|
D'Errico JN, Doherty C, Reyes George JJ, Buckley B, Stapleton PA. Maternal, placental, and fetal distribution of titanium after repeated titanium dioxide nanoparticle inhalation through pregnancy. Placenta 2022; 121:99-108. [PMID: 35305398 PMCID: PMC9010360 DOI: 10.1016/j.placenta.2022.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/07/2022] [Accepted: 03/03/2022] [Indexed: 12/11/2022]
Abstract
Epidemiological studies have associated ambient engineered nanomaterials or ultrafine particulate matter (PM0.1), collectively referred to as nanoparticles (NPs), with adverse pregnancy outcomes including miscarriage, preterm labor, and fetal growth restriction. Evidence from non-pregnant models demonstrate that NPs can cross the lung air-blood barrier and circulate systemically. Therefore, inhalation of NPs during pregnancy leading to fetoplacental exposure has garnered attention. The purpose of this study was to evaluate the distribution of inhaled titanium dioxide nanoparticles (nano-TiO2) from the maternal lung to maternal and fetal systemic tissues. Pregnant Sprague Dawley rats were administered whole-body exposure to filtered air or of nano-TiO2 aerosols (9.96 ± 0.06 mg/m3) between gestational day (GD) 4 and 19. On GD 20 maternal, placental, and fetal tissues were harvested then digested for ICP-MS analysis to measure concentrations of titanium (Ti). TEM was used to visualize particle internalization by the placental syncytium. The results demonstrate the extrapulmonary distribution of Ti to various maternal organs during pregnancy. Our study found Ti accumulation in the decidua/junctional and labyrinth zones of placentas embedded in all sections of uterine horns. Further, NPs deposited in the placenta, identified by TEM, were found intracellularly within nuclear, endoplasmic reticulum, and vesicle organelles. This study identified the systemic distribution and placental accumulation of Ti after nano-TiO2 aerosol inhalation in a pregnancy model. These findings arouse concerns for poor air quality for pregnant women and possible contributions to adverse pregnancy outcomes.
Collapse
Affiliation(s)
- J N D'Errico
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - C Doherty
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - J J Reyes George
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - B Buckley
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd, Piscataway, NJ, 08854, USA; Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - P A Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd, Piscataway, NJ, 08854, USA; Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| |
Collapse
|
19
|
Environmental Nanoparticles Reach Human Fetal Brains. Biomedicines 2022; 10:biomedicines10020410. [PMID: 35203619 PMCID: PMC8962421 DOI: 10.3390/biomedicines10020410] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 12/10/2022] Open
Abstract
Anthropogenic ultrafine particulate matter (UFPM) and industrial and natural nanoparticles (NPs) are ubiquitous. Normal term, preeclamptic, and postconceptional weeks(PCW) 8–15 human placentas and brains from polluted Mexican cities were analyzed by TEM and energy-dispersive X-ray spectroscopy. We documented NPs in maternal erythrocytes, early syncytiotrophoblast, Hofbauer cells, and fetal endothelium (ECs). Fetal ECs exhibited caveolar NP activity and widespread erythroblast contact. Brain ECs displayed micropodial extensions reaching luminal NP-loaded erythroblasts. Neurons and primitive glia displayed nuclear, organelle, and cytoplasmic NPs in both singles and conglomerates. Nanoscale Fe, Ti, and Al alloys, Hg, Cu, Ca, Sn, and Si were detected in placentas and fetal brains. Preeclamptic fetal blood NP vesicles are prospective neonate UFPM exposure biomarkers. NPs are reaching brain tissues at the early developmental PCW 8–15 stage, and NPs in maternal and fetal placental tissue compartments strongly suggests the placental barrier is not limiting the access of environmental NPs. Erythroblasts are the main early NP carriers to fetal tissues. The passage of UFPM/NPs from mothers to fetuses is documented and fingerprinting placental single particle composition could be useful for postnatal risk assessments. Fetal brain combustion and industrial NPs raise medical concerns about prenatal and postnatal health, including neurological and neurodegenerative lifelong consequences.
Collapse
|
20
|
Huang W, Tao Y, Zhang X, Zhang X. TGF-β1/SMADs signaling involved in alleviating inflammation induced by nanoparticulate titanium dioxide in BV2 cells. Toxicol In Vitro 2022; 80:105303. [PMID: 34990773 DOI: 10.1016/j.tiv.2021.105303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
Abstract
There are increasing safety concerns accompanying the widespread use of nanoparticulate titanium dioxide (nano-TiO2). It has been demonstrated that nano-TiO2 can cross the blood-brain barrier and enter the brain, causing damage to the nervous system, consisting mainly of neuroinflammation and neuronal apoptosis. Several studies have linked the TGF-β1/SMADs signaling to the development of inflammatory response in various organs. However, no studies have connected the induction of microglial inflammation by nano-TiO2 to this signaling. Therefore, this study aimed to investigate the role of TGF-β1/SMADs signaling in microglia inflammatory response induced by nano-TiO2. The results showed that nano-TiO2 increased the secretions of pro-inflammatory cytokines (IL-1α, IL-6, and TNF-α) and decreased the expressions of TGF-β1 and SMAD1/2/3 proteins in BV2 cells. When TGF-β1/SMADs signaling was inhibited, the inflammatory effect induced by nano-TiO2 increased, suggesting a suppressive effect of this signaling on the inflammation. In addition, exogenous TGF-β1 upregulated the expressions of TGF-β1 and SMADs1/2/3 proteins as well as decreased the secretions of pro-inflammatory cytokines (IL-1α, IL-6, and TNF-α) compared to BV2 cells treated with only nano-TiO2. Our results suggest that nano-TiO2 may inhibit the TGF-β1/SMADs signaling by suppressing the intracellular secretion of active TGF-β1, leading to microglial activation and the induction or exacerbation of inflammatory responses.
Collapse
Affiliation(s)
- Wendi Huang
- School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yifan Tao
- School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing 210009, Jiangsu, China
| | - Xiuwen Zhang
- School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing 210009, Jiangsu, China
| | - Xiaoqiang Zhang
- School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
21
|
Sea Bass Primary Cultures versus RTgill-W1 Cell Line: Influence of Cell Model on the Sensitivity to Nanoparticles. NANOMATERIALS 2021; 11:nano11113136. [PMID: 34835900 PMCID: PMC8620814 DOI: 10.3390/nano11113136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 01/09/2023]
Abstract
Determination of acute toxicity to vertebrates in aquatic environments is mainly performed following OECD test guideline 203, requiring the use of a large number of fish and with mortality as endpoint. This test is also used to determine toxicity of nanomaterials in aquatic environments. Since a replacement method for animal testing in nanotoxicity studies is desirable, the feasibility of fish primary cultures or cell lines as a model for nanotoxicity screenings is investigated here. Dicentrarchus labrax primary cultures and RTgill-W1 cell line were exposed to several concentrations (0.1 to 200 ug/mL) of different nanoparticles (TiO2, polystyrene and silver), and cytotoxicity, metabolic activity and reactive oxygen species formation were investigated after 24 and 48 h of exposure. Protein corona as amount of protein bound, as well as the influence of surface modification (-COOH, -NH2), exposure media (Leibovitz’s L15 or seawater), weathering and cell type were the experimental variables included to test their influence on the results of the assays. Data from all scenarios was split based on the significance each experimental variable had in the result of the cytotoxicity tests, in an exploratory approach that allows for better understanding of the determining factors affecting toxicity. Data shows that more variables significantly influenced the outcome of toxicity tests when the primary cultures were exposed to the different nanoparticles. Toxicity tests performed in RTgill-W1 were influenced only by exposure time and nanoparticle concentration. The whole data set was integrated in a biological response index to show the overall impact of nanoparticle exposures.
Collapse
|
22
|
Murrieta-Coxca JM, Aengenheister L, Schmidt A, Markert UR, Buerki-Thurnherr T, Morales-Prieto DM. Addressing microchimerism in pregnancy by ex vivo human placenta perfusion. Placenta 2021; 117:78-86. [PMID: 34773744 DOI: 10.1016/j.placenta.2021.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 12/20/2022]
Abstract
The physical connection of mother and offspring during pregnancy allows the bi-directional exchange of a small number of cells through the placenta. These cells, which can persist long-term in the recipient individual are genetically foreign to it and therefore fulfill the principle of microchimerism. Over the last years, pioneer research on microchimeric cells revealed their role in immune adaptation during pregnancy and priming of tolerogenic responses in the progeny. However, the mechanisms involved in cell transfer across the placenta barrier remain poorly investigated. In this review, we summarize the evidence of fetomaternal microchimerism, propose a mechanism for cell trafficking through the placenta and discuss the different models and techniques available for its analysis. Likewise, we aim to generate interest in the use of ex vivo placenta perfusion to investigate microchimerism in physiological and pathological settings.
Collapse
Affiliation(s)
| | - Leonie Aengenheister
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Astrid Schmidt
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | - Udo R Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany.
| | - Tina Buerki-Thurnherr
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | | |
Collapse
|
23
|
Wong MK, Li EW, Adam M, Selvaganapathy PR, Raha S. Establishment of an in vitro placental barrier model cultured under physiologically relevant oxygen levels. Mol Hum Reprod 2021; 26:353-365. [PMID: 32159799 DOI: 10.1093/molehr/gaaa018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
The human placental barrier facilitates many key functions during pregnancy, most notably the exchange of all substances between the mother and fetus. However, preclinical models of the placental barrier often lacked the multiple cell layers, syncytialization of the trophoblast cells and the low oxygen levels that are present within the body. Therefore, we aimed to design and develop an in vitro model of the placental barrier that would reinstate these factors and enable improved investigations of barrier function. BeWo placental trophoblastic cells and human umbilical vein endothelial cells were co-cultured on contralateral sides of an extracellular matrix-coated transwell insert to establish a multilayered barrier. Epidermal growth factor and forskolin led to significantly increased multi-nucleation of the BeWo cell layer and increased biochemical markers of syncytial fusion, for example syncytin-1 and hCGβ. Our in vitro placental barrier possessed size-specific permeability, with 4000-Da molecules experiencing greater transport and a lower apparent permeability coefficient than 70 000-Da molecules. We further demonstrated that the BeWo layer had greater resistance to smaller molecules compared to the endothelial layer. Chronic, physiologically low oxygen exposure (3-8%) increased the expression of hypoxia-inducible factor 1α and syncytin-1, further increased multi-nucleation of the BeWo cell layer and decreased barrier permeability only against smaller molecules (457 Da/4000 Da). In conclusion, we built a novel in vitro co-culture model of the placental barrier that possessed size-specific permeability and could function under physiologically low oxygen levels. Importantly, this will enable future researchers to better study the maternal-fetal transport of nutrients and drugs during pregnancy.
Collapse
Affiliation(s)
- Michael K Wong
- Graduate Program of Medical Science, McMaster University, Hamilton, Ontario, Canada.,Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Edward W Li
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Mohamed Adam
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | - Sandeep Raha
- Graduate Program of Medical Science, McMaster University, Hamilton, Ontario, Canada.,Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada.,Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| |
Collapse
|
24
|
Shojaei S, Ali MS, Suresh M, Upreti T, Mogourian V, Helewa M, Labouta HI. Dynamic placenta-on-a-chip model for fetal risk assessment of nanoparticles intended to treat pregnancy-associated diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166131. [PMID: 33766738 DOI: 10.1016/j.bbadis.2021.166131] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022]
Abstract
Pregnant women often have to take medication either for pregnancy-related diseases or for previously existing medical conditions. Current maternal medications pose fetal risks due to off target accumulation in the fetus. Nanoparticles, engineered particles in the nanometer scale, have been used for targeted drug delivery to the site of action without off-target effects. This has opened new avenues for treatment of pregnancy-associated diseases while minimizing risks on the fetus. It is therefore instrumental to study the potential transfer of nanoparticles from the mother to the fetus. Due to limitations of in vivo and ex vivo models, an in vitro model mimicking the in vivo situation is essential. Placenta-on-a-chip provides a microphysiological recapitulation of the human placenta. Here, we reviewed the fetal risks associated with current therapeutic approaches during pregnancy, analyzed the advantages and limitations of current models used for nanoparticle assessment, and highlighted the current need for using dynamic placenta-on-a-chip models for assessing the safety of novel nanoparticle-based therapies during pregnancy.
Collapse
Affiliation(s)
- Shahla Shojaei
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - Moustafa S Ali
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada.
| | - Madhumita Suresh
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - Tushar Upreti
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - Victoria Mogourian
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - Michael Helewa
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, Canada.
| | - Hagar I Labouta
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada; Biomedical Engineering, University of Manitoba, Winnipeg, Canada; Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
25
|
Teng C, Jiang C, Gao S, Liu X, Zhai S. Fetotoxicity of Nanoparticles: Causes and Mechanisms. NANOMATERIALS 2021; 11:nano11030791. [PMID: 33808794 PMCID: PMC8003602 DOI: 10.3390/nano11030791] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
The application of nanoparticles in consumer products and nanomedicines has increased dramatically in the last decade. Concerns for the nano-safety of susceptible populations are growing. Due to the small size, nanoparticles have the potential to cross the placental barrier and cause toxicity in the fetus. This review aims to identify factors associated with nanoparticle-induced fetotoxicity and the mechanisms involved, providing a better understanding of nanotoxicity at the maternal–fetal interface. The contribution of the physicochemical properties of nanoparticles (NPs), maternal physiological, and pathological conditions to the fetotoxicity is highlighted. The underlying molecular mechanisms, including oxidative stress, DNA damage, apoptosis, and autophagy are summarized. Finally, perspectives and challenges related to nanoparticle-induced fetotoxicity are also discussed.
Collapse
Affiliation(s)
- Chuanfeng Teng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Cuijuan Jiang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China;
| | - Sulian Gao
- Jinan Eco-Environmental Monitoring Center of Shandong Province, Jinan 250101, China;
| | - Xiaojing Liu
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
| | - Shumei Zhai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
- Correspondence: ; Tel.: +86-531-8836-4464
| |
Collapse
|
26
|
Abstract
The burden imposed by pollution falls more on those living in low-income and middle-income countries, affecting children more than adults. Most air pollution results from incomplete combustion and contains a mixture of particulate matter and gases. Air pollution exposure has negative impacts on respiratory health. This article concentrates on air pollution in 2 settings, the child's home and the ambient environment. There is an inextricable 2-way link between air pollution and climate change, and the effects of climate change on childhood respiratory health also are discussed.
Collapse
|
27
|
Jin Y, Li Z, An H, Pang Y, Li K, Zhang Y, Zhang L, Yan L, Wang B, Ye R, Li Z, Ren A. Environmental titanium exposure and reproductive health: Risk of low birth weight associated with maternal titanium exposure from a nested case-control study in northern China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111632. [PMID: 33396152 DOI: 10.1016/j.ecoenv.2020.111632] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 05/12/2023]
Abstract
Titanium (Ti) is commonly used in additives in the form of titanium dioxide (TiO2). However, our understanding of the effect of Ti on reproductive health remains limited. This nested case-control study, performed in a Ti mining exposure field, investigated the association between maternal blood Ti concentration and the risk of low birth weight (LBW), as well as the potential biological mechanism. A total of 45 women who delivered LBW infants (cases) and 352 women with normal birth weight infants (controls) were included. We collected maternal peripheral blood samples in the first or early second trimester to measure Ti concentration in serum (Tisr) and blood cells (Tibc), as well as inflammatory, lipid, and oxidative stress biomarkers thereof. The demographic characteristics of the women included in the study were also obtained. The results showed that the median total blood Ti concentration (Titb) in the case group was significantly higher than that in the control group (134 vs. 129 ng/mL, P = 0.039). A higher Titb level was associated with a greater risk of LBW [odds ratio = 2.62; 95% confidence interval (CI): 1.16-5.90], but no such association was observed for Tisr or Tibc after adjusting for potential confounders. The serum lipid biomarkers TC, TG, and total lipids (TL) were all negatively associated with Tisr and Titb. Serum 8-OHdG was positively associated with Tibc. We concluded that a high Titb during early pregnancy may increase the risk of LBW. Lipid metabolism and oxidative stress may play an important role in the adverse health effects associated with Ti exposure. Thus, our results merit more attention to the probable adverse effects of titanium exposure during pregnancy.
Collapse
Affiliation(s)
- Yu Jin
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Zhiyi Li
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, PR China
| | - Hang An
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Yiming Pang
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Kexin Li
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, PR China
| | - Yali Zhang
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Le Zhang
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, PR China
| | - Bin Wang
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Rongwei Ye
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China.
| | - Zhiwen Li
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Aiguo Ren
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| |
Collapse
|
28
|
Aengenheister L, Favaro RR, Morales-Prieto DM, Furer LA, Gruber M, Wadsack C, Markert UR, Buerki-Thurnherr T. Research on nanoparticles in human perfused placenta: State of the art and perspectives. Placenta 2020; 104:199-207. [PMID: 33418345 DOI: 10.1016/j.placenta.2020.12.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/27/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022]
Abstract
Increasing human exposure to nanoparticles (NPs) from various sources raises concerns for public health, especially for vulnerable risk groups like pregnant women and their developing fetuses. However, nanomedicine and the prospect of creating safe and effective NP-based formulations of drugs hold great promise to revolutionize treatment during pregnancy. With maternal and fetal health at stake, risks and opportunities of NPs in pregnancy need to be carefully investigated. Importantly, a comprehensive understanding of NP transport and effects at the placenta is urgently needed considering the central position of the placenta at the maternal-fetal interface and its many essential functions to enable successful pregnancy. The perfusion of human placental tissue provides a great opportunity to achieve predictive human relevant insights, circumventing uncertainties due to considerable differences in placental structure and function across species. Here, we have reviewed the current literature on the ex vivo human placenta perfusion of NPs. From 16 available studies, it was evident that placental uptake and transfer of NPs are highly dependent on their characteristics like size and surface modifications, which is in line with previous observations from in vitro and animal transport studies. These studies further revealed that special considerations apply for the perfusion of NPs and we identified relevant controls that should be implemented in future perfusion studies. While current studies mostly focused on placental transfer of NPs to conclude on potential fetal exposure, the ex vivo placental perfusion model has considerable potential to reveal novel insights on NP effects on placental tissue functionality and signaling that could indirectly affect maternal-fetal health.
Collapse
Affiliation(s)
- Leonie Aengenheister
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland; Placenta Lab, Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Rodolfo R Favaro
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Diana M Morales-Prieto
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Lea A Furer
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Michael Gruber
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036, Graz, Austria
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036, Graz, Austria
| | - Udo R Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Tina Buerki-Thurnherr
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland.
| |
Collapse
|
29
|
Bongaerts E, Nawrot TS, Van Pee T, Ameloot M, Bové H. Translocation of (ultra)fine particles and nanoparticles across the placenta; a systematic review on the evidence of in vitro, ex vivo, and in vivo studies. Part Fibre Toxicol 2020; 17:56. [PMID: 33138843 PMCID: PMC7607677 DOI: 10.1186/s12989-020-00386-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Fetal development is a crucial window of susceptibility in which exposure may lead to detrimental health outcomes at birth and later in life. The placenta serves as a gatekeeper between mother and fetus. Knowledge regarding the barrier capacity of the placenta for nanoparticles is limited, mostly due to technical obstacles and ethical issues. We systematically summarize and discuss the current evidence and define knowledge gaps concerning the maternal-fetal transport and fetoplacental accumulation of (ultra)fine particles and nanoparticles. We included 73 studies on placental translocation of particles, of which 21 in vitro/ex vivo studies, 50 animal studies, and 2 human studies on transplacental particle transfer. This systematic review shows that (i) (ultra)fine particles and engineered nanoparticles can bypass the placenta and reach fetal units as observed for all the applied models irrespective of the species origin (i.e., rodent, rabbit, or human) or the complexity (i.e., in vitro, ex vivo, or in vivo), (ii) particle size, particle material, dose, particle dissolution, gestational stage of the model, and surface composition influence maternal-fetal translocation, and (iii) no simple, standardized method for nanoparticle detection and/or quantification in biological matrices is available to date. Existing evidence, research gaps, and perspectives of maternal-fetal particle transfer are highlighted.
Collapse
Affiliation(s)
- Eva Bongaerts
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
- Department of Public Health and Primary Care, KU Leuven, Herestraat 49, Box 703, 3000, Leuven, Belgium
| | - Thessa Van Pee
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590, Diepenbeek, Belgium
| | - Hannelore Bové
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.
- Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590, Diepenbeek, Belgium.
| |
Collapse
|
30
|
Guillard A, Gaultier E, Cartier C, Devoille L, Noireaux J, Chevalier L, Morin M, Grandin F, Lacroix MZ, Coméra C, Cazanave A, de Place A, Gayrard V, Bach V, Chardon K, Bekhti N, Adel-Patient K, Vayssière C, Fisicaro P, Feltin N, de la Farge F, Picard-Hagen N, Lamas B, Houdeau E. Basal Ti level in the human placenta and meconium and evidence of a materno-foetal transfer of food-grade TiO 2 nanoparticles in an ex vivo placental perfusion model. Part Fibre Toxicol 2020; 17:51. [PMID: 33023621 PMCID: PMC7541303 DOI: 10.1186/s12989-020-00381-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Background Titanium dioxide (TiO2) is broadly used in common consumer goods, including as a food additive (E171 in Europe) for colouring and opacifying properties. The E171 additive contains TiO2 nanoparticles (NPs), part of them being absorbed in the intestine and accumulated in several systemic organs. Exposure to TiO2-NPs in rodents during pregnancy resulted in alteration of placental functions and a materno-foetal transfer of NPs, both with toxic effects on the foetus. However, no human data are available for pregnant women exposed to food-grade TiO2-NPs and their potential transfer to the foetus. In this study, human placentae collected at term from normal pregnancies and meconium (the first stool of newborns) from unpaired mothers/children were analysed using inductively coupled plasma mass spectrometry (ICP-MS) and scanning transmission electron microscopy (STEM) coupled to energy-dispersive X-ray (EDX) spectroscopy for their titanium (Ti) contents and for analysis of TiO2 particle deposition, respectively. Using an ex vivo placenta perfusion model, we also assessed the transplacental passage of food-grade TiO2 particles. Results By ICP-MS analysis, we evidenced the presence of Ti in all placentae (basal level ranging from 0.01 to 0.48 mg/kg of tissue) and in 50% of the meconium samples (0.02–1.50 mg/kg), suggesting a materno-foetal passage of Ti. STEM-EDX observation of the placental tissues confirmed the presence of TiO2-NPs in addition to iron (Fe), tin (Sn), aluminium (Al) and silicon (Si) as mixed or isolated particle deposits. TiO2 particles, as well as Si, Al, Fe and zinc (Zn) particles were also recovered in the meconium. In placenta perfusion experiments, confocal imaging and SEM-EDX analysis of foetal exudate confirmed a low transfer of food-grade TiO2 particles to the foetal side, which was barely quantifiable by ICP-MS. Diameter measurements showed that 70 to 100% of the TiO2 particles recovered in the foetal exudate were nanosized. Conclusions Altogether, these results show a materno-foetal transfer of TiO2 particles during pregnancy, with food-grade TiO2 as a potential source for foetal exposure to NPs. These data emphasize the need for risk assessment of chronic exposure to TiO2-NPs during pregnancy.
Collapse
Affiliation(s)
- A Guillard
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - E Gaultier
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - C Cartier
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - L Devoille
- Department of materials, LNE, Trappes, France
| | - J Noireaux
- Department for biomedical and inorganic chemistry, LNE, Paris, France
| | - L Chevalier
- Group Physic of Materials, GPM-UMR6634, CNRS, Rouen University, Rouen, France
| | - M Morin
- Department of Obstetrics and Gynecology, Paule de Viguier Hospital, CHU Toulouse, Toulouse, France
| | - F Grandin
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - M Z Lacroix
- INTHERES, UMR 1436 Toulouse University, INRAE, ENVT, Toulouse, France
| | - C Coméra
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - A Cazanave
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - A de Place
- Department of Obstetrics and Gynecology, Paule de Viguier Hospital, CHU Toulouse, Toulouse, France
| | - V Gayrard
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - V Bach
- Péritox UMR-I 01 (Perinatality and Toxic Risk), Jules Verne University, Amiens, France
| | - K Chardon
- Péritox UMR-I 01 (Perinatality and Toxic Risk), Jules Verne University, Amiens, France
| | - N Bekhti
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191, Gif-sur-Yvette, France
| | - K Adel-Patient
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191, Gif-sur-Yvette, France
| | - C Vayssière
- Department of Obstetrics and Gynecology, Paule de Viguier Hospital, CHU Toulouse, Toulouse, France.,UMR 1027 INSERM, Team SPHERE, Toulouse III University, Toulouse, France
| | - P Fisicaro
- Department for biomedical and inorganic chemistry, LNE, Paris, France
| | - N Feltin
- Department of materials, LNE, Trappes, France
| | - F de la Farge
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - N Picard-Hagen
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - B Lamas
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - E Houdeau
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
31
|
Pereira KV, Giacomeli R, Gomes de Gomes M, Haas SE. The challenge of using nanotherapy during pregnancy: Technological aspects and biomedical implications. Placenta 2020; 100:75-80. [PMID: 32862059 PMCID: PMC7431318 DOI: 10.1016/j.placenta.2020.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/05/2020] [Indexed: 01/08/2023]
Abstract
During the period of pregnancy, several processes and physiological adaptations occur in the body and metabolism of pregnant woman. These physiological adaptations in pregnant woman end up leading to a suppression in immune system favoring obstetric complications to the mother, fetus and placental tissue. An effective pharmacological therapy for these complications is still a challenge, since some drugs during pregnancy can have deleterious and teratogenic effects. An emerging alternative to pharmacological therapy during pregnancy is drugs encapsulated in nanoparticles (NP), recent area called nano-obstetrics. NP have the advantage of drug targeting and reduction of side effects. Then, maternal, placental or fetal uptake can be expected, depending on the characteristics of NP. Inorganic NP, crossing placental barrier effectively, but have several nanotoxicological effects. While organic NP appear to have a better targeting capacity and have few toxicological effects, but the studies are still scarce. Thus, in this review, were examined questions related to use and impact of physicochemical aspects of inorganic and organic NP during pregnancy.
Collapse
Affiliation(s)
- Kelle Velasques Pereira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, UFSM, Av. Roraima n.1000, 97105-900, Santa Maria, RS, Brazil
| | - Renata Giacomeli
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Pampa, UNIPAMPA, Campus Uruguaiana, BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil
| | - Marcelo Gomes de Gomes
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Pampa, UNIPAMPA, Campus Uruguaiana, BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil
| | - Sandra Elisa Haas
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Pampa, UNIPAMPA, Campus Uruguaiana, BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil; Postgraduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, UFSM, Av. Roraima n.1000, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
32
|
Wu Y, Chen L, Chen F, Zou H, Wang Z. A key moment for TiO 2: Prenatal exposure to TiO 2 nanoparticles may inhibit the development of offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110911. [PMID: 32800246 DOI: 10.1016/j.ecoenv.2020.110911] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 05/12/2023]
Abstract
Applications of TiO2 nanoparticles (NPs) in food, personal care products and industries pose risks on human health, particularly on vulnerable populations including pregnant women and infants. Fetus, deficient in mature defense system, is more susceptible to NPs. Publications on the developmental toxicity of TiO2 NPs on the maternal-exposed progeny have emerged. This review presents the main exposure routes of TiO2 NPs during pregnancy, including skin penetration, ingestion and inhalation, followed by transport of TiO2 NPs to the placenta. Accumulation of TiO2 NPs in placenta may cause dysfunction in nutrient transfer. TiO2 NPs can be even transported to the fetus and generate toxicities, such as impairments of nervous and reproductive system, and failure in lung and cardiovascular development. The toxicities rely on the crystalline phase and concentrations, and the main mechanisms include the accumulation of excessive reactive oxygen species, DNA damage, and over-activation of signaling pathways such as MAPK which impairs neurotransmission. Finally, this review remarks on the significance for identifying TiO2 NPs dosage safe for both mother and fetus, and particular attention should be paid at TiO2 NPs concentrations safe for mother but toxic to fetus. Importantly, research on the epigenetic trans-generational inheritance of TiO2 NPs is urgently needed to provide insights for deciding the prospects of TiO2 NPs applications.
Collapse
Affiliation(s)
- Yi Wu
- Institute of Environmental Processes and Pollution Control, And School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Limei Chen
- Institute of Environmental Processes and Pollution Control, And School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, And School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, And School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
33
|
Dugershaw BB, Aengenheister L, Hansen SSK, Hougaard KS, Buerki-Thurnherr T. Recent insights on indirect mechanisms in developmental toxicity of nanomaterials. Part Fibre Toxicol 2020; 17:31. [PMID: 32653006 PMCID: PMC7353685 DOI: 10.1186/s12989-020-00359-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/14/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Epidemiological and animal studies provide compelling indications that environmental and engineered nanomaterials (NMs) pose a risk for pregnancy, fetal development and offspring health later in life. Understanding the origin and mechanisms underlying NM-induced developmental toxicity will be a cornerstone in the protection of sensitive populations and the design of safe and sustainable nanotechnology applications. MAIN BODY Direct toxicity originating from NMs crossing the placental barrier is frequently assumed to be the key pathway in developmental toxicity. However, placental transfer of particles is often highly limited, and evidence is growing that NMs can also indirectly interfere with fetal development. Here, we outline current knowledge on potential indirect mechanisms in developmental toxicity of NMs. SHORT CONCLUSION Until now, research on developmental toxicity has mainly focused on the biodistribution and placental translocation of NMs to the fetus to delineate underlying processes. Systematic research addressing NM impact on maternal and placental tissues as potential contributors to mechanistic pathways in developmental toxicity is only slowly gathering momentum. So far, maternal and placental oxidative stress and inflammation, activation of placental toll-like receptors (TLRs), impairment of placental growth and secretion of placental hormones, and vascular factors have been suggested to mediate indirect developmental toxicity of NMs. Therefore, NM effects on maternal and placental tissue function ought to be comprehensively evaluated in addition to placental transfer in the design of future studies of developmental toxicity and risk assessment of NM exposure during pregnancy.
Collapse
Affiliation(s)
- Battuja Batbajar Dugershaw
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Empa, Lerchenfeldstrasse 5, 9014, St.Gallen, Switzerland
| | - Leonie Aengenheister
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Empa, Lerchenfeldstrasse 5, 9014, St.Gallen, Switzerland
| | - Signe Schmidt Kjølner Hansen
- National Research Centre for the Working Environment, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Karin Sørig Hougaard
- National Research Centre for the Working Environment, Copenhagen, Denmark.,Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Tina Buerki-Thurnherr
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Empa, Lerchenfeldstrasse 5, 9014, St.Gallen, Switzerland.
| |
Collapse
|
34
|
Nedder M, Boland S, Devineau S, Zerrad-Saadi A, Rogozarski J, Lai-Kuen R, Baya I, Guibourdenche J, Vibert F, Chissey A, Gil S, Coumoul X, Fournier T, Ferecatu I. Uptake of Cerium Dioxide Nanoparticles and Impact on Viability, Differentiation and Functions of Primary Trophoblast Cells from Human Placenta. NANOMATERIALS 2020; 10:nano10071309. [PMID: 32635405 PMCID: PMC7407216 DOI: 10.3390/nano10071309] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
The human placenta is at the interface between maternal and fetal circulations, and is crucial for fetal development. The nanoparticles of cerium dioxide (CeO2 NPs) from air pollution are an unevaluated risk during pregnancy. Assessing the consequences of placenta exposure to CeO2 NPs could contribute to a better understanding of NPs’ effect on the development and functions of the placenta and pregnancy outcome. We used primary villous cytotrophoblasts purified from term human placenta, with a wide range of CeO2 NPs concentrations (0.1–101 μg/cm2) and exposure time (24–72 h), to assess trophoblast uptake, toxicity and impact on trophoblast differentiation and endocrine function. We have shown the capacity of both cytotrophoblasts and syncytiotrophoblasts to internalize CeO2 NPs. CeO2 NPs affected trophoblast metabolic activity in a dose and time dependency, induced caspase activation and a LDH release in the absence of oxidative stress. CeO2 NPs decreased the fusion capacity of cytotrophoblasts to form a syncytiotrophoblast and disturbed secretion of the pregnancy hormones hCG, hPL, PlGF, P4 and E2, in accordance with NPs concentration. This is the first study on the impact of CeO2 NPs using human primary trophoblasts that decrypts their toxicity and impact on placental formation and functions.
Collapse
Affiliation(s)
- Margaux Nedder
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, F-75006 Paris, France; (M.N.); (A.Z.-S.); (J.R.); (I.B.); (J.G.); (F.V.); (A.C.); (S.G.); (T.F.)
| | - Sonja Boland
- BFA, Université de Paris, UMR 8251, CNRS, F-75013 Paris, France; (S.B.); (S.D.)
| | - Stéphanie Devineau
- BFA, Université de Paris, UMR 8251, CNRS, F-75013 Paris, France; (S.B.); (S.D.)
| | - Amal Zerrad-Saadi
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, F-75006 Paris, France; (M.N.); (A.Z.-S.); (J.R.); (I.B.); (J.G.); (F.V.); (A.C.); (S.G.); (T.F.)
| | - Jasmina Rogozarski
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, F-75006 Paris, France; (M.N.); (A.Z.-S.); (J.R.); (I.B.); (J.G.); (F.V.); (A.C.); (S.G.); (T.F.)
| | - René Lai-Kuen
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMS 025—CNRS UMS 3612, F-75006 Paris, France;
| | - Ibtissem Baya
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, F-75006 Paris, France; (M.N.); (A.Z.-S.); (J.R.); (I.B.); (J.G.); (F.V.); (A.C.); (S.G.); (T.F.)
| | - Jean Guibourdenche
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, F-75006 Paris, France; (M.N.); (A.Z.-S.); (J.R.); (I.B.); (J.G.); (F.V.); (A.C.); (S.G.); (T.F.)
- Assistance Publique—Hôpitaux de Paris, Hôpital Cochin, Service d’hormonologie, F-75014 Paris, France
| | - Francoise Vibert
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, F-75006 Paris, France; (M.N.); (A.Z.-S.); (J.R.); (I.B.); (J.G.); (F.V.); (A.C.); (S.G.); (T.F.)
| | - Audrey Chissey
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, F-75006 Paris, France; (M.N.); (A.Z.-S.); (J.R.); (I.B.); (J.G.); (F.V.); (A.C.); (S.G.); (T.F.)
| | - Sophie Gil
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, F-75006 Paris, France; (M.N.); (A.Z.-S.); (J.R.); (I.B.); (J.G.); (F.V.); (A.C.); (S.G.); (T.F.)
| | - Xavier Coumoul
- Université de Paris, INSERM UMR-S 1124, F-75006 Paris, France;
| | - Thierry Fournier
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, F-75006 Paris, France; (M.N.); (A.Z.-S.); (J.R.); (I.B.); (J.G.); (F.V.); (A.C.); (S.G.); (T.F.)
| | - Ioana Ferecatu
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, F-75006 Paris, France; (M.N.); (A.Z.-S.); (J.R.); (I.B.); (J.G.); (F.V.); (A.C.); (S.G.); (T.F.)
- Correspondence: ; Tel.: +33-1-53-73-96-05; Fax: +33-1-44-07-39-92
| |
Collapse
|