1
|
Payamifar S, Khalili Y, Foroozandeh A, Abdouss M, Hasanzadeh M. Magnetic mesoporous silica nanoparticles as advanced polymeric scaffolds for efficient cancer chemotherapy: recent progress and challenges. RSC Adv 2025; 15:16050-16074. [PMID: 40370857 PMCID: PMC12076205 DOI: 10.1039/d5ra00948k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/29/2025] [Indexed: 05/16/2025] Open
Abstract
Magnetic mesoporous silica nanoparticles (MMS NPs) stand out as excellent options for targeted chemotherapy owing to their remarkable features, such as extensive surface area, substantial pore volume, adjustable and uniform pore size, facile scalability, and versatile surface chemistry. This review comprehensively explores the latest developments in MMS NPs, emphasizing their design, functionalization, and application in cancer therapy. Initially, we discuss the critical need for targeted and controlled drug delivery (DD) in oncology, highlighting the role of magnetic and MMs in addressing some challenges. Subsequently, the key features of MMS NPs, such as their high surface area, pore structure, and functionalization strategies, are examined for their impact on their DD performance for efficient cancer chemotherapy. The integration of chemotherapy methods such as photothermal therapy and photodynamic therapy with MMS NPs is also explored, showcasing multifunctional platforms that combine imaging and therapeutic capabilities. Finally, we identify the current challenges and provide future perspectives for the development and clinical translation of MMS NPs, underscoring their potential to reshape CT paradigms.
Collapse
Affiliation(s)
- Sara Payamifar
- Department of Chemistry, Amirkabir University of Technology Tehran Iran
| | - Yasaman Khalili
- School of Chemistry, Faculty of Science, University of Tehran Iran
| | - Amin Foroozandeh
- Department of Chemistry, Amirkabir University of Technology Tehran Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology Tehran Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
2
|
Shah K, Singh D, Agrawal R, Garg A. Current Developments in the Delivery of Gastro-Retentive Drugs. AAPS PharmSciTech 2025; 26:57. [PMID: 39920556 DOI: 10.1208/s12249-025-03052-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
The pharmaceutical industry has expressed a lot of interest in site specific drug delivery & oral controlled release to increase treatment efficiency. The idea of a unique drug delivery system was developed to address several concerns with the physicochemical characteristics of drug molecules and the associated formulations. The use of gastro retentive systems for drug delivery, which focus on site-specific drug release for either systemic or local effects in the stomach, is one of these cutting-edge strategies for lengthening gastric residency time. This approach is especially useful for drugs that have a small window of upper gastro intestinal tract absorption. This review has discussed various gastro-retentive techniques, including floating & non-floating systems. With a focus on the numerous gastro retentive approaches that have lately emerged as the most efficient methods for site specific oral controlled release drug administration, the aim of this study on gastro retentive drug delivery systems was to synthesise the most current findings. We have highlighted the major reasons affecting gastric retention so that you may comprehend the many physiological challenges involved. Next, we discussed the different gastro retentive strategies that have been developed and improved to date, including floating, high density, mucoadhesive, unfoldable, expandable, super porous hydrogel, & magnetic systems. The benefits of gastro retentive medication administration techniques were then thoroughly discussed.
Collapse
Affiliation(s)
- Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, 281406, India.
| | - Disha Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, 281406, India
| | - Rutvi Agrawal
- Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, 281001, India
| | - Akash Garg
- Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, 281001, India
| |
Collapse
|
3
|
Li Q, Liu W, Liu K, Dong Z, Kong W, Lu X, Wei Y, Wu W, Yang J, Qi J. The Role of Nanoparticle Morphology on Enhancing Delivery of Budesonide for Treatment of Inflammatory Bowel Disease. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33081-33092. [PMID: 38888094 DOI: 10.1021/acsami.4c05214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurrent inflammatory disease that affects the gastrointestinal tract. The major hurdles impeding IBD treatment are the low targeting efficiency and short retention time of drugs in IBD sites. Nanoparticles with specific shapes have demonstrated the ability to improve mucus retention and cellular uptake. Herein, mesoporous silica nanoparticles (MSNs) with various morphologies were used to deliver budesonide (BUD) for the treatment of IBD. The therapeutic efficacy is strongly dependent on their shapes. The system comprises different shapes of MSNs as carriers for budesonide (BUD), along with Eudragit S100 as the enteric release shell. The encapsulation of Eudragit S100 not only improved the stability of MSNs-BUD in the gastrointestinal tract but also conferred pH-responsive drug release properties. Then, MSNs efficiently deliver BUD to the colon site, and the special shape of MSNs plays a critical role in enhancing their permeability and retention in the mucus layer. Among them, dendritic MSNs (MSND) effectively reduced myeloperoxidase (MPO) activity and levels of inflammatory cytokines in the colon due to long retention time and rapid release in IBD sites, thereby enhancing the therapeutic efficacy against colitis. Given the special shapes of MSNs and pH-responsivity of Eudragit S100, BUD loaded in the voids of MSND (E@MSNs-BUD) could penetrate the mucous layer and be accurately delivered to the colon with minor side effects. This system is expected to complement current treatment strategies for the IBD.
Collapse
Affiliation(s)
- Qiuyu Li
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wenjuan Liu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Kaiheng Liu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zirong Dong
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Weiwen Kong
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xinrui Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yuning Wei
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jinlong Yang
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Jianping Qi
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
4
|
Jvus C, Kothuri N, Singh S, Verma S, Shafi H, Reddy DVS, Kedar A, Rana R, Mishra K, Sharma D, Chourasia MK. A Quality by Design Approach for Developing SNEDDS Loaded with Vemurafenib for Enhanced Oral Bioavailability. AAPS PharmSciTech 2024; 25:14. [PMID: 38191830 DOI: 10.1208/s12249-023-02725-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
Vemurafenib (VMF) is a practically insoluble (< 0.1 μg/mL) and least bioavailable (1%) drug. To enhance its oral bioavailability and solubility, we formulated a reliable self-nano emulsifying drug delivery system (SNEDDS). A Quality by Design (QbD) approach was used to optimize the ratio of Capryol 90, Tween 80, and Transcutol HP. VMF-loaded SNEDDS was characterized for its size, polydispersity index (PDI), zeta potential, drug content, and transmittance. The in vitro release profile of the drug loaded in SNEDDS was compared to the free drug in two media, pH 6.8 and 1.2, and the data obtained were analyzed with different mathematical models. A reverse-phase ultra-pressure liquid chromatography (UPLC) technique with high sensitivity and selectivity was developed and validated for the quantification of VMF in analytical and bioanalytical samples. Dissolution efficiency for SNEDDS was estimated using different models, which proved that the developed novel SNEDDS formulation had a better in vitro dissolution profile than the free drug. A 2.13-fold enhanced oral bioavailability of VMF-loaded SNEDDS compared to the free drug demonstrates the superiority of the developed formulation. This work thus presents an overview of VMF-loaded SNEDDS as a promising alternative to improve the oral bioavailability of the drug.
Collapse
Affiliation(s)
- Chakradhar Jvus
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Naresh Kothuri
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Sanjay Singh
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Sonia Verma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hasham Shafi
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - D V Siva Reddy
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ashwini Kedar
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Rafquat Rana
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Keerti Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Deepak Sharma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India.
| |
Collapse
|
5
|
Kirla H, Henry DJ, Jansen S, Thompson PL, Hamzah J. Use of Silica Nanoparticles for Drug Delivery in Cardiovascular Disease. Clin Ther 2023; 45:1060-1068. [PMID: 37783646 DOI: 10.1016/j.clinthera.2023.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 10/04/2023]
Abstract
PURPOSE Cardiovascular disease (CVD) is the leading cause of death worldwide. The current CVD therapeutic drugs require long-term treatment with high doses, which increases the risk of adverse effects while offering only marginal treatment efficacy. Silica nanoparticles (SNPs) have been proven to be an efficient drug delivery vehicle for numerous diseases, including CVD. This article reviews recent progress and advancement in targeted delivery for drugs and diagnostic and theranostic agents using silica nanoparticles to achieve therapeutic efficacy and improved detection of CVD in clinical and preclinical settings. METHODS A search of PubMed, Scopus, and Google Scholar databases from 1990 to 2023 was conducted. Current clinical trials on silica nanoparticles were identified through ClinicalTrials.gov. Search terms include silica nanoparticles, cardiovascular diseases, drug delivery, and therapy. FINDINGS Silica nanoparticles exhibit biocompatibility in biological systems, and their shape, size, surface area, and surface functionalization can be customized for the safe transport and protection of drugs in blood circulation. These properties also enable effective drug uptake in specific tissues and controlled drug release after systemic, localized, or oral delivery. A range of silica nanoparticles have been used as nanocarrier for drug delivery to treat conditions such as atherosclerosis, hypertension, ischemia, thrombosis, and myocardial infarction. IMPLICATIONS The use of silica nanoparticles for drug delivery and their ongoing development has emerged as a promising strategy to improve the effectiveness of drugs, imaging agents, and theranostics with the potential to revolutionize the treatment of CVD.
Collapse
Affiliation(s)
- Haritha Kirla
- Targeted Drug Delivery, Imaging & Therapy Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia; Chemistry and Physics, College of Science, Health, Engineering and Education, Murdoch University, Western Australia, Australia.
| | - David J Henry
- Chemistry and Physics, College of Science, Health, Engineering and Education, Murdoch University, Western Australia, Australia
| | - Shirley Jansen
- Targeted Drug Delivery, Imaging & Therapy Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia; Curtin Health Innovation Research Institute and Curtin Medical School, Curtin University, Perth, Western Australia, Australia; Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia; Department of Vascular and Endovascular Surgery, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Peter L Thompson
- Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
| | - Juliana Hamzah
- Targeted Drug Delivery, Imaging & Therapy Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia; Curtin Health Innovation Research Institute and Curtin Medical School, Curtin University, Perth, Western Australia, Australia; Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia.
| |
Collapse
|
6
|
Peng H, Wang J, Chen J, Peng Y, Wang X, Chen Y, Kaplan DL, Wang Q. Challenges and opportunities in delivering oral peptides and proteins. Expert Opin Drug Deliv 2023; 20:1349-1369. [PMID: 37450427 PMCID: PMC10990675 DOI: 10.1080/17425247.2023.2237408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION Rapid advances in bioengineering enable the use of complex proteins as therapeutic agents to treat diseases. Compared with conventional small molecule drugs, proteins have multiple advantages, including high bioactivity and specificity with low toxicity. Developing oral dosage forms with active proteins is a route to improve patient compliance and significantly reduce production costs. However, the gastrointestinal environment remains a challenge to this delivery path due to enzymatic degradation, low permeability, and weak absorption, leading to reduced delivery efficiency and poor clinical outcomes. AREAS COVERED This review describes the barriers to oral delivery of peptides and complex proteins, current oral delivery strategies utilized and the opportunities and challenges ahead to try and circumvent these barriers. Oral protein drugs on the market and clinical trials provide insights and approaches for advancing delivery strategies. EXPERT OPINION Although most current studies on oral protein delivery rely on in vitro and in vivo animal data, the safety and limitations of the approach in humans remain uncertain. The shortage of clinical data limits the development of new or alternative strategies. Therefore, designing appropriate oral delivery strategies remains a significant challenge and requires new ideas, innovative design strategies and novel model systems.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, China
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Jiahe Wang
- Department of Humanities, Daqing Branch, Harbin Medical University, Daqing, China
| | - Jiayu Chen
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, China
| | - Yanbo Peng
- Department of Pharmaceutical Engineering, China Pharmaceutical University, 639 Longmian Rd, Nanjing 211198, China
| | - Xiaoxian Wang
- The Affiliated Hospital of Medical College, University of Shaoxing, Shaoxing, Zhejiang Province, China
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
7
|
Mesoporous silica gated mixed micelle for the targeted co-delivery of doxorubicin and paclitaxel. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Xiao S, Shoaib A, Xu J, Lin D. Mesoporous silica size, charge, and hydrophobicity affect the loading and releasing performance of lambda-cyhalothrin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154914. [PMID: 35364147 DOI: 10.1016/j.scitotenv.2022.154914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Nanopesticides are attracting increasing attention as a promising technology in agriculture to improve insecticidal efficacy, decrease pesticides uses, and reduce potential environmental impacts. We synthesized mesoporous silica nanoparticles, i.e., Mobil Composition of Matter No.48 (MCM-48), with different sizes (63-130 nm), charges (-22 to 12 mV), and hydrophobicity (water contact angle 29-103°) to assess their loading amount and release of a typical poorly soluble halogenated pyrethroid (i.e., lambda-cyhalothrin particles, LCNS). The smallest MCM-48 displayed relatively higher loading amount of LCNS (~16%) compared to the larger MCM-48 nanoparticles, likely because of its higher pore volume (1.46 cm3 g-1) and pore size (3.56 nm). LCNS loading amount was further improved to ~26% and ~36% after -NH2 (positively charged) and -CH3 (hydrophobic) functionalization, respectively, probably due to hydrogen bonding, electrostatic, and hydrophobic interactions with LCNS. Loading LCNS in MCM-48 nanoparticles also significantly improved its dispersion in water and ultraviolet (UV) light stability, with a 3-7 times longer half-life than that of free LCNS. Although the -NH2 and -CH3 modifications of MCM-48 slightly decreased the UV stability of LCNS, they significantly decreased the release efficiency of LCNS, possibly because of their stronger interactions with LCNS. In addition, the insecticidal effects of LCNS-loaded MCM-48 were more efficient and longer than those of free LCNS. The findings clarify the relationships between physicochemical properties and performance of mesoporous silica nanoparticles, and will inform the rational design of materials for controlled release of pesticides and sustainable control of pests.
Collapse
Affiliation(s)
- Shuting Xiao
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Ali Shoaib
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jiang Xu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Huang Y, Li P, Zhao R, Zhao L, Liu J, Peng S, Fu X, Wang X, Luo R, Wang R, Zhang Z. Silica nanoparticles: Biomedical applications and toxicity. Biomed Pharmacother 2022; 151:113053. [PMID: 35594717 DOI: 10.1016/j.biopha.2022.113053] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/19/2022] Open
Abstract
Silica nanoparticles (SiNPs) are composed of silicon dioxide, the most abundant compound on Earth, and are used widely in many applications including the food industry, synthetic processes, medical diagnosis, and drug delivery due to their controllable particle size, large surface area, and great biocompatibility. Building on basic synthetic methods, convenient and economical strategies have been developed for the synthesis of SiNPs. Numerous studies have assessed the biomedical applications of SiNPs, including the surface and structural modification of SiNPs to target various cancers and diagnose diseases. However, studies on the in vitro and in vivo toxicity of SiNPs remain in the exploratory stage, and the toxicity mechanisms of SiNPs are poorly understood. This review covers recent studies on the biomedical applications of SiNPs, including their uses in drug delivery systems to diagnose and treat various diseases in the human body. SiNP toxicity is discussed in terms of the different systems of the human body and the individual organs in those systems. This comprehensive review includes both fundamental discoveries and exploratory progress in SiNP research that may lead to practical developments in the future.
Collapse
Affiliation(s)
- Yanmei Huang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Peng Li
- Department of Nephrology, Yantai Yuhuangding Hospital, Qingdao University, Yantai 264005, Shandong, PR China
| | - Ruikang Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Laien Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Jia Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Shengjun Peng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Xiaoxuan Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Xiaojie Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Rongrui Luo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Rong Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Zhuhong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
10
|
β-Lactoglobulin-Modified Mesoporous Silica Nanoparticles: A Promising Carrier for the Targeted Delivery of Fenbendazole into Prostate Cancer Cells. Pharmaceutics 2022; 14:pharmaceutics14040884. [PMID: 35456716 PMCID: PMC9024783 DOI: 10.3390/pharmaceutics14040884] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
The clinical utilization of fenbendazole (FBZ) as a potential anticancer drug has been limited due to its low water solubility, which causes its low bioavailability. The development of a drug nanoformulation that includes the solubilizing agent as a drug carrier can improve solubility and bioavailability. In this study, Mobil Composition of Matter Number 48 (MCM-48) nanoparticles were synthesized and functionalized with succinylated β-lactoglobulin (BLG) to prevent early-burst drug release. The BLG-modified amine-functionalized MCM-48 (MCM-BLG) nanoparticles were loaded with FBZ to produce the drug nanoformulation (FBZ-MCM-BLG) and improved the water solubility and, consequently, its anticancer effects against human prostate cancer PC-3 cells. The prepared FBZ-MCM-BLG was characterized in terms of size, zeta potential, drug loading capacity, morphology, thermal and chemical analyses, drug release, cellular uptake, cell viability, cell proliferation, production of reactive oxygen species (ROS), and cell migration. The results demonstrated that the FBZ-MCM-BLG nanoparticles have a spherical morphology with a size and zeta potential of 369 ± 28 nm and 28 ± 0.4 mV, respectively. The drug loading efficiency of the new nanoformulation was 19%. The release of FBZ was pH-dependent; a maximum cumulative release of about 76 and 62% in 12 h and a burst release of 53 and 38% in the first 0.5 h was observed at pH 1.2 and 6.8, respectively. The prepared FBZ-MCM-BLG formulation demonstrated higher cytotoxicity effects against PC-3 cells by 5.6- and 1.8-fold, respectively, when compared to FBZ and FBZ-MCM nanoparticles. The new formulation also increased the production of ROS by 1.6- and 1.2-fold and inhibited the migration of PC-3 cells when compared to the FBZ and FBZ-MCM nanoparticles, respectively. Overall, FBZ-MCM-BLG nanoparticles improved FBZ delivery to PC-3 cells and have the potential to be evaluated for the treatment of prostate cancer following a comprehensive in vivo study.
Collapse
|
11
|
Multifunctional Mesoporous Silica Nanoparticles for Oral Drug Delivery. COATINGS 2022. [DOI: 10.3390/coatings12030358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nanotechnology has transformed engineering designs across a wide spectrum of materials and applications. Mesoporous Silica Nanoparticles (MSNs) are one of the new fabrications of nanostructures as medication delivery systems. MSNs have pore sizes varying from 2 to 50 nm, making them ideal for a variety of biological applications. They offer unique characteristics such as a tunable surface area, well-defined surface properties, and the ability to improve drug pharmacokinetic characteristics. Moreover, they have the potential to reduce adverse effects by delivering a precise dose of medications to a specific spot rather than the more frequent systemic delivery, which diffuses across tissues and organs. In addition, the vast number of pores allow drug incorporation and transportation of drugs to various sites making MSNs a feasible platform for orally administered drugs. Though the oral route is the most suitable and convenient platform for drug delivery, conventional oral drug delivery systems are associated with several limitations. Surpassing gastrointestinal barriers and the low oral bioavailability of poorly soluble medicines pose a major challenge in the pharmaceutical industry. This review provides insights into the role of MSNs and its mechanism as an oral drug delivery system.
Collapse
|
12
|
Parekh K, Hariharan K, Qu Z, Rewatkar P, Cao Y, Moniruzzaman M, Pandey P, Popat A, Mehta T. Tacrolimus encapsulated mesoporous silica nanoparticles embedded hydrogel for the treatment of atopic dermatitis. Int J Pharm 2021; 608:121079. [PMID: 34500058 DOI: 10.1016/j.ijpharm.2021.121079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 11/25/2022]
Abstract
Atopic dermatitis (AD) is a repetitive inflammatory skin disorder with limited treatment options. Innovative targeted therapies are gaining significant interest and momentum towards disease control including better ways to deliver drugs topically. Tacrolimus is one such compound which is used to manage moderate to severe AD without causing atrophy which is one of the common side effects of steroids. However, Tacrolimus suffers from poor solubility and retention in the skin when used alone in hydrogel. Therefore, we have prepared Tacrolimus loaded mesoporous silica nanoparticles (TMSNs) to overcome the issues related to its solubility and effective topical delivery. Mesoporous silica nanoparticles (MSNs) were synthesized using sol gel technique and surface functionalized using amino (-NH2+) and phosphonate (-PO3-) groups. Tacrolimus was loaded into MSNs and the particles were characterized for particle size (TEM and DLS), zeta potential (DLS), solubility studies, FTIR, TGA, XRD, BET and cytotoxicity studies. Water solubility of Tacrolimus was increased by 7 folds with phosphonate functionalized MSNs compared to free Tacrolimus. Further the TMSNs were incorporated in to carbopol gel, and the gel formulation was evaluated for various gel characterization tests (pH, spreadability, viscosity), in vitro tests (drug release, permeability studies) and in vivo tests (skin irritation study and efficacy studies) using 1-Fluoro-2,4-dinitrobenzene (DNFB) induced dermatitis in Balb/c mice. Results of in vitro and in vivo study showed that TMSNs loaded gel showed significantly higher amount of Tacrolimus retained (ex vivo - rat skin) and much higher reduction in ear thickness and improved histology (in vivo - in mice). Our data collectively suggest that MSNs incorporated hydrogel as a promising new formulation strategy for topical delivery of poorly soluble drugs.
Collapse
Affiliation(s)
- Khushali Parekh
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad - 382481, Gujarat, India
| | - Kartik Hariharan
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad - 382481, Gujarat, India
| | - Zhi Qu
- School of Pharmacy, The University of Brisbane, Queensland 4102, Australia
| | - Prarthana Rewatkar
- School of Pharmacy, The University of Brisbane, Queensland 4102, Australia
| | - Yuxue Cao
- School of Pharmacy, The University of Brisbane, Queensland 4102, Australia
| | - Md Moniruzzaman
- School of Pharmacy, The University of Brisbane, Queensland 4102, Australia; Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Qld 4102, Australia
| | - Preeti Pandey
- School of Pharmacy, The University of Brisbane, Queensland 4102, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Brisbane, Queensland 4102, Australia; Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Qld 4102, Australia.
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad - 382481, Gujarat, India.
| |
Collapse
|
13
|
Ndayishimiye J, Cao Y, Kumeria T, Blaskovich MAT, Falconer JR, Popat A. Engineering mesoporous silica nanoparticles towards oral delivery of vancomycin. J Mater Chem B 2021; 9:7145-7166. [PMID: 34525166 DOI: 10.1039/d1tb01430g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Vancomycin (Van) is a key antibiotic of choice for the treatment of systemic methicillin resistant Staphylococcus aureus (MRSA) infections. However, due to its poor membrane permeability, it is administered parenterally, adding to the cost and effort of treatment. The poor oral bioavailability of Van is mainly due to its physico-chemical properties that limit its paracellular and transcellular transport across gastrointestinal (GI) epithelium. Herein we report the development of silica nanoparticles (SNPs)-based formulations that are able to enhance the epithelial permeability of Van. We synthesized SNPs of different pore sizes (2 nm and 9 nm) and modified their surface charge and polarity by attaching different functional groups (-NH2, -PO3, and -CH3). Van was loaded within these SNPs at a loading capacity in the range of ca. 18-29 wt%. The Van-loaded SNPs exhibited a controlled release behaviour when compared to un-encapsulated Van which showed rapid release due to its hydrophilic nature. Among Van-loaded SNPs, SNPs with large pores showed a prolonged release compared to SNPs with small pores while SNPs functionalised with -CH3 groups exhibited a slowest release among the functionalised SNPs. Importantly, Van-loaded SNPs, especially the large pore SNPs with negative charge, enhanced the permeability of Van across an epithelial cell monolayer (Caco-2 cell model) by up to 6-fold, with Papp values up to 1.716 × 10-5 cm s-1 (vs. 0.304 × 10-5 cm s-1 for un-encapsulated Van) after 3 h. The enhancement was dependent on both the type of SNPs and their surface functionalisation. The permeation enhancing effect of SNPs was due to its ability to transiently open the tight junctions measured by decrease in transepithelial resistance (TEER) which was reversible after 3 h. All in all, our data highlights the potential of SNPs (especially SNPs with large pores) for oral delivery of Van or other antimicrobial peptides.
Collapse
Affiliation(s)
- John Ndayishimiye
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, Queensland 4102, Australia.
| | - Yuxue Cao
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, Queensland 4102, Australia.
| | - Tushar Kumeria
- School of Materials Science and Engineering, University of New South Wales, New South Wales, Australia
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - James Robert Falconer
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, Queensland 4102, Australia.
| | - Amirali Popat
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, Queensland 4102, Australia. .,Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
14
|
Wang Y, Tan X, Fan X, Zhao L, Wang S, He H, Yin T, Zhang Y, Tang X, Jian L, Jin J, Gou J. Current strategies for oral delivery of BCS IV drug nanocrystals: challenges, solutions and future trends. Expert Opin Drug Deliv 2021; 18:1211-1228. [PMID: 33719798 DOI: 10.1080/17425247.2021.1903428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Oral absorption of BCS IV drug benefits little from improved dissolution. Therefore, the absorption of BCS IV drug nanocrystals 'as a whole' strategy is preferred, and structural modification of nanocrystals is required. Surface modification helps the nanocrystals maintain particle structure before drug dissolution is needed, thus enhancing the oral absorption of BCS IV drugs and promoting therapeutic effect. Here, the main challenges and solutions of oral BCS IV drug nanocrystals delivery are discussed. Moreover, strategies for nanocrystal surface modification that facilitates oral bioavailability of BCS IV drugs are highlighted, and provide insights for the innovation in oral drug delivery. AREAS COVERED Promising size, shape, and surface modification of nanocrystals have gained interests for application in oral BCS IV drugs. EXPERT OPINION Nanocrystal surface modification is a feasible method to maintain the structural integrity of nanocrystals, and the introduced materials can also be modified to integrate additional functions to further facilitate the absorption of nanocrystals. It is expected that the absorption 'as a whole' strategy of nanocrystals will provide different choices for the oral BCS IV drugs.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.,Department of Pharmaceutics, School of Pharmacy, Jilin University, Changchun, China
| | - Xinyi Tan
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xinyu Fan
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Linxuan Zhao
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.,Department of Pharmaceutics, School of Pharmacy, Jilin University, Changchun, China
| | - Shuhang Wang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.,Department of Pharmaceutics, School of Pharmacy, Jilin University, Changchun, China
| | - Haibing He
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Yu Zhang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xing Tang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Lingyan Jian
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jian Jin
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Jingxin Gou
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
15
|
Wang PP, Luo ZG, Tamer TM. Spiral-Dextrin Complex Crystals: Efficient Approach for Colon-Targeted Resveratrol Delivery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:474-482. [PMID: 33372794 DOI: 10.1021/acs.jafc.0c05668] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, spiral dextrin/resveratrol (SD/Res) crystal, a new colon-specific drug-delivery system, was established by a novel method of encapsulation and cocrystallization to improve the antidigestion ability compared with the SD/Res inclusion complex (SD/Res IC) prepared by encapsulation and coprecipitation. X-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed that the SD/Res crystal formed a more regular and perfect crystallite than SD/Res IC. Moreover, the encapsulation ability and thermostability of the SD/Res crystal were enhanced as the chain length of SD was increased. In vitro digestion indicated that SD/Res IC merely achieved small intestine-targeted release of resveratrol, while the SD/Res crystal could act as a colon-specific delivery system to protect resveratrol from degradation by gastric acid and pancreatic enzymes. The SD-1/Res crystal presented much higher thermal stability and stronger gastrointestinal stability than other SD/Res crystals and SD/Res ICs, which facilitated its application as a novel colon-target delivery system for resveratrol.
Collapse
Affiliation(s)
- Ping-Ping Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhi-Gang Luo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- South China Institute of Collaborative Innovation, Dongguan 523808, China
- Food Nutrition and Human Health Overseas Expertise Introduction Center for Discipline Innovation (111 Center), Guangzhou 510640, China
| | - Tamer Mahmoud Tamer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Egypt
| |
Collapse
|
16
|
Raza A, Sime FB, Cabot PJ, Roberts JA, Falconer JR, Kumeria T, Popat A. Liquid CO2 Formulated Mesoporous Silica Nanoparticles for pH-Responsive Oral Delivery of Meropenem. ACS Biomater Sci Eng 2021; 7:1836-1853. [DOI: 10.1021/acsbiomaterials.0c01284] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Aun Raza
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Fekade Bruck Sime
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Peter J. Cabot
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Jason A. Roberts
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
- Department of Pharmacy, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
| | - James R. Falconer
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Tushar Kumeria
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
- School of Materials Science and Engineering, The University of New South Wales, Sydney NSW 2052, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Mater Research Institute, The University of Queensland Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
17
|
Das S, Kaur S, Rai VK. Gastro-retentive drug delivery systems: a recent update on clinical pertinence and drug delivery. Drug Deliv Transl Res 2021; 11:1849-1877. [PMID: 33403646 DOI: 10.1007/s13346-020-00875-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2020] [Indexed: 01/20/2023]
Abstract
Gastro-retentive drug delivery systems are some of the best technologies delivered through oral route. These mainly came into picture for their effective local action in the GI region, specifically for the drugs with narrow absorption window. In the recent decades, several technologies have evolved showing different mechanisms for retaining the drug in GI region for longer duration with increased bioavailability. Floatable, mucoadhesive, swelable, magnetic, nanofibrous, high-density, and expandable systems have been investigated extensively as the potential gastro-retentive strategies. The advances in the technologies studied, their clinical pertinence, and methods of drug delivery are described in this review with their immense future utilities. Their entry into the pharmaceutical market is a huge matter to look into as most of the studied strategies are facing problems and hence are underrated to overcome the clinical trials. Their success in the clinical trials are enormously required for gaining their access into the pharmaceutical market. Selection of the right technology for the right purpose through the right mechanism of action is to be done for obtaining the system with desired activity.
Collapse
Affiliation(s)
- Supratim Das
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sukhbir Kaur
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Vineet Kumar Rai
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
18
|
Pujara N, Giri R, Wong KY, Qu Z, Rewatkar P, Moniruzzaman M, Begun J, Ross BP, McGuckin M, Popat A. pH - Responsive colloidal carriers assembled from β-lactoglobulin and Epsilon poly-L-lysine for oral drug delivery. J Colloid Interface Sci 2020; 589:45-55. [PMID: 33450459 DOI: 10.1016/j.jcis.2020.12.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023]
Abstract
Site specific oral delivery of many biopharmaceutical classification system (BCS) class II and IV drugs is challenging due to their poor solubility, low permeability and degradation in the gastrointestinal tract. Whilst colloidal carriers have been used to improve the bioavailability of such drugs, most nanocarriers based drug delivery systems suffer from multiple disadvantages, including low encapsulation efficiency (liposomes, polymeric nanoparticles), complex synthesis methods (silica, silicon-based materials) and poorly understood biodegradability (inorganic nanoparticles). Herein, a novel pH responsive nanocolloids were self-assembled using natural compounds such as bovine β-lactoglobulin (BLG) and succinylated β-lactoglobulin (succ. BLG) cross-linked with epsilon poly l-lysine (BCEP and BCP), and found to possess high loading capacity, high aqueous solubility and site-specific oral delivery of a poorly soluble nutraceutical (curcumin), improving its physicochemical properties and biological activity in-vitro and ex-vivo. Our optimized synthesis formed colloids of around 200 nm which were capable of encapsulating curcumin with ~100% encapsulation efficiency and ~10% w/w drug loading. By forming nanocomplexes of curcumin with BLG and succ. BLG, the aqueous solubility of curcumin was markedly increased by ~160-fold and ~86-fold, respectively. Encapsulation with BLG increased the solubility, whereas succ. BLG prevent release of encapsulated curcumin when subjected to gastric fluids as it is resistant to breakdown on exposure to pepsin at acidic pH. In conditions mimicking the small intestine, Succ. BLG was more soluble resulting in sustained release of the encapsulated drug at pH 7.4. Additionally, crosslinking succ. BLG with E-PLL significantly enhanced curcumin's permeability in an in-vitro Caco-2 cell monolayer model compared to curcumin solution (dissolved in 1% DMSO), or non-crosslinked BLG/succ. and BLG. In a mouse-derived intestinal epithelial 3D organoid culture stimulated with IL-1β, BLG-CUR and crosslinked BCEP nanoparticles reduced the production of inflammatory cytokines and chemokines such as Tnfα and Cxcl10 more than curcumin solution or suspension while these nanoparticles were non-toxic to organoids. Overall this work demonstrates the promise of nutraceutical-based hybrid self-assembled colloidal system to protect hydrophobic drugs from harsh gastrointestinal conditions and improve their solubility, dissolution, permeability and biological activity.
Collapse
Affiliation(s)
- Naisarg Pujara
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Rabina Giri
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Kuan Yau Wong
- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Zhi Qu
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Prarthana Rewatkar
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Md Moniruzzaman
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Jakob Begun
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Benjamin P Ross
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Michael McGuckin
- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, VIC 3010, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
19
|
Cabellos J, Gimeno-Benito I, Catalán J, Lindberg HK, Vales G, Fernandez-Rosas E, Ghemis R, Jensen KA, Atluri R, Vázquez-Campos S, Janer G. Short-term oral administration of non-porous and mesoporous silica did not induce local or systemic toxicity in mice. Nanotoxicology 2020; 14:1324-1341. [PMID: 33108958 DOI: 10.1080/17435390.2020.1818325] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, two sets of methyl-coated non-porous and mesoporous amorphous silica materials of two target sizes (100 and 300 nm; 10-844 m2/g) were used to investigate the potential role of specific surface area (SSA) and porosity on the oral toxicity in mice. Female Swiss mice were administered by oral gavage for 5 consecutive days. Two silica dose levels (100 and 1000 mg/kg b.w.) were tested for all four materials. All dispersions were characterized by transmission electron microscopy (TEM) and Nanoparticle tracking analysis (NTA). Batch dispersions of porous silica were rather unstable due to agglomeration. Animals were sacrificed one day after the last administration or after a three-week recovery period. No relevant toxicological effects were induced by any of the silica materials tested, as evaluated by body weight, gross pathology, relative organ weights (liver, spleen, kidneys), hematology, blood biochemistry, genotoxicity (Comet assay in jejunum cells and micronucleus test in peripheral blood erythrocytes), liver and small intestine histopathology, and intestinal inflammation. The presence of silica particles in the intestine was evaluated by a hyperspectral imaging microscopy system (CytoViva) using histological samples of jejunum tissue. Silica spectral signatures were found in jejunum samples with all the treatments, but only statistically significant in one of the treatment groups.
Collapse
Affiliation(s)
| | | | - Julia Catalán
- Finnish Institute of Occupational Health, Helsinki, Finland.,Department of Anatomy, Embryology and Genetics, University of Zaragoza, Zaragoza, Spain
| | - Hanna K Lindberg
- Finnish Institute of Occupational Health, Helsinki, Finland.,Finnish Safety and Chemicals Agency, Helsinki, Finland
| | - Gerard Vales
- Finnish Institute of Occupational Health, Helsinki, Finland
| | | | - Radu Ghemis
- Leitat Technological Center, Terrassa, Spain
| | - Keld A Jensen
- The National Research Centre for the Working Environment, Copenhague, Denmark
| | - Rambabu Atluri
- The National Research Centre for the Working Environment, Copenhague, Denmark.,INFINGENT Innovations AB, Medeon Science Park, Malmö, Sweden
| | | | - Gemma Janer
- Leitat Technological Center, Terrassa, Spain
| |
Collapse
|
20
|
Qu Z, Wong KY, Moniruzzaman M, Begun J, Santos HA, Hasnain SZ, Kumeria T, McGuckin MA, Popat A. One‐Pot Synthesis of pH‐Responsive Eudragit‐Mesoporous Silica Nanocomposites Enable Colonic Delivery of Glucocorticoids for the Treatment of Inflammatory Bowel Disease. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000165] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhi Qu
- School of Pharmacy The University of Queensland Brisbane QLD 4102 Australia
- Immunopathology Group Mater Research Institute –The University of Queensland Translational Research Institute Brisbane QLD 4102 Australia
| | - Kuan Yau Wong
- Immunopathology Group Mater Research Institute –The University of Queensland Translational Research Institute Brisbane QLD 4102 Australia
| | - Md. Moniruzzaman
- School of Pharmacy The University of Queensland Brisbane QLD 4102 Australia
- Inflammatory Bowel Disease Group, Mater Research Institute–The University of Queensland Translational Research Institute Brisbane QLD 4102 Australia
| | - Jakob Begun
- Inflammatory Bowel Disease Group, Mater Research Institute–The University of Queensland Translational Research Institute Brisbane QLD 4102 Australia
- Mater Hospital Brisbane Mater Health Services South Brisbane QLD 4102 Australia
| | - Hélder A Santos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Helsinki Institute of Life Science (HiLIFE) University of Helsinki Helsinki FI‐00014 Finland
| | - Sumaira Z. Hasnain
- School of Pharmacy The University of Queensland Brisbane QLD 4102 Australia
- Immunopathology Group Mater Research Institute –The University of Queensland Translational Research Institute Brisbane QLD 4102 Australia
| | - Tushar Kumeria
- School of Pharmacy The University of Queensland Brisbane QLD 4102 Australia
- Immunopathology Group Mater Research Institute –The University of Queensland Translational Research Institute Brisbane QLD 4102 Australia
| | - Michael A. McGuckin
- Faculty of Medicine Dentistry and Health Sciences the University of Melbourne Melbourne VIC 3010 Australia
| | - Amirali Popat
- School of Pharmacy The University of Queensland Brisbane QLD 4102 Australia
- Immunopathology Group Mater Research Institute –The University of Queensland Translational Research Institute Brisbane QLD 4102 Australia
| |
Collapse
|
21
|
Abeer MM, Rewatkar P, Qu Z, Talekar M, Kleitz F, Schmid R, Lindén M, Kumeria T, Popat A. Silica nanoparticles: A promising platform for enhanced oral delivery of macromolecules. J Control Release 2020; 326:544-555. [DOI: 10.1016/j.jconrel.2020.07.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022]
|