1
|
Ali M, Huang W, Huang Y, Wu X, Namjoshi S, Prasadam I, Benson HAE, Kumeria T, Mohammad Y. NAD + modulation with nicotinamide mononucleotide coated 3D printed microneedle implants. J Mater Chem B 2025; 13:3564-3580. [PMID: 39950211 DOI: 10.1039/d4tb01856g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Nicotinamide adenine dinucleotide (NAD+) deficiency has been shown to cause pathogenesis of age-related functional decline and diseases. Investigational studies have demonstrated improvements in age-associated pathophysiology and disease conditions. However, invasive methods such as immunohistochemistry, metabolic assays, and polymerase chain reaction currently used to measure cell metabolism render cells unviable and unrecoverable for longitudinal studies and are incompatible with in vivo dynamic observations. We report a non-invasive optical technique to investigate the upregulation of nicotinamide adenine dinucleotide (NAD+) in keratinocytes (both in vitro and ex vivo) upon administration of nicotinamide mononucleotide (NMN) coated microneedle (μNDs) implants. Our technique exploits intrinsic autofluorescence of cells and tissues using multiphoton microscopy. Additionally, μND coating formulations to date have been evaluated using fluorescence microscopy to determine the coated amount, often an imprecise correlation between fluorescence intensity and the coated amount on the μND surface. We also show that rheomechanical attributes of the coating formulation (containing two different viscosity enhancers: sucrose and carboxy methyl cellulose) affect the flow mechanics of the coating formulation at micron scale, and thus the amount of drug coated on the μND surface. In vitro keratinocyte cells were investigated with four concentrations of NMN (50, 250, 500 and 1000 μg), and evaluated with time-dependent NMN (500 μg) treatment at 0, 5, 10, 30, 60, 360 and 1460 min. We demonstrate that intracellular keratinocyte fluorescence of the endogenous NADH shows a decreasing trend in both the average fluorescence lifetime (τm) and the free unbound NADH (τ1), with increasing dosage of NMN administration. A similar trend in the average fluorescence lifetime (τm) of endogenous NAD(P)H was also seen in mouse ear skin ex vivo skin upon administration of NMN. We show a promising, minimally invasive, alternative delivery system for the NAD+ precursor molecule that can enhance patient compliance and therapeutic outcomes.
Collapse
Affiliation(s)
- Masood Ali
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia.
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Wenhao Huang
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Yicheng Huang
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Xiaoxin Wu
- Department of Orthopaedic Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Research Centre for Computer-aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518005, China
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, QLD, 4059, Australia
| | - Sarika Namjoshi
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Indira Prasadam
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, QLD, 4059, Australia
| | | | - Tushar Kumeria
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
- Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW 2052, Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Yousuf Mohammad
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia.
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
2
|
Jing Y, Liu X, Zhu Y, Wu L, Nong W. Metal-organic framework microneedles for precision transdermal drug delivery: design strategy and therapeutic potential. NANOSCALE 2025; 17:5571-5604. [PMID: 39918280 DOI: 10.1039/d4nr03898c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Abstract
Metal-organic frameworks (MOFs) are porous materials renowned for their high porosity, large specific surface area, biocompatibility, and biodegradability. Hydrogel microneedles (MNs) is an emerging technology that minimally disrupts the skin or mucosal membranes, bypassing gastrointestinal absorption and the rapid metabolism typical of oral drug delivery. Over the past few decades, both MOFs and MNs have found applications across a range of fields. However, MOFs alone cannot penetrate the skin or mucosal barrier to deliver drugs effectively, and MNs have limited direct loading capacity. When combined, MOFs enhance the loading efficiency of therapeutic agents in hydrogel MNs and optimize their release kinetics. Additionally, the incorporation of MOFs improves the mechanical properties of hydrogel MNs, increasing their permeability to the skin. In turn, hydrogel MNs enable MOFs-whether therapeutically active or drug-loaded-to bypass the skin or mucosal barrier and deliver active compounds directly to the target site for localized treatment. This review discusses the structural features and preparation methods of MOFs and MOF-based MNs, explores their synergistic potential, and highlights strategies for integrating MOFs with MNs to enhance transdermal drug delivery in applications such as wound healing, scar management, acne treatment, and tumor suppression. Finally, we examine the challenges and future potential of MOF-based MNs and offer insights into their role in advancing transdermal therapies.
Collapse
Affiliation(s)
- Yutong Jing
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Xueting Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Yajing Zhu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Lichuan Wu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Wenqian Nong
- Institute of Oncology, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China.
| |
Collapse
|
3
|
Prabhu A, Baliga V, Shenoy R, Dessai AD, Nayak UY. 3D printed microneedles: revamping transdermal drug delivery systems. Drug Deliv Transl Res 2025; 15:436-454. [PMID: 39103595 PMCID: PMC11683023 DOI: 10.1007/s13346-024-01679-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 08/07/2024]
Abstract
One of the advancements of the transdermal drug delivery system (TDDS) is the development of microneedles (MNs). These micron-sized needles are used for delivering various types of drugs to address the disadvantage of other transdermal techniques as well as oral drug delivery systems. MNs have high patient acceptance due to self-administration with minimally invasive and pain compared to the parenteral drug delivery. Over the years, various methods have been adopted to evolve the MNs and make them more cost-effective, accurate, and suitable for multiple applications. One such method is the 3D printing of MNs. The development of MN platforms using 3D printing has been made possible by improved features like precision, printing resolution, and the feasibility of using low-cost raw materials. In this review, we have tried to explain various types of MNs, fabrication methods, materials used in the formulation of MNs, and the recent applications that utilize 3D-printed MNs.
Collapse
Affiliation(s)
- Ashlesh Prabhu
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vishal Baliga
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Raghavendra Shenoy
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Akanksha D Dessai
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
4
|
Kumar S, Shukla R. Advancements in microneedle technology: current status and next-generation innovations. J Microencapsul 2024; 41:782-803. [PMID: 39475226 DOI: 10.1080/02652048.2024.2418613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024]
Abstract
Microneedle technology is a pivotal component of third-generation transdermal drug delivery systems featuring tiny needles that create temporary microscopic channels in the stratum corneum which facilitate drug penetration in the dermis. This review offers a detailed examination of the current types of microneedles, including solid, coated, dissolving, hollow, and swelling microneedles, along with their preparation techniques as well as their benefits and challenges. Use of 3D printing technology is especially gaining significant attention due to its ability to achieve the high dimensional accuracy required for precise fabrication. Additionally, its customisability presents significant potential for exploring new designs and creating personalised microneedles products. Furthermore, this review explores next generation microneedles, especially stimuli-responsive microneedle, bioinspired microneedle and microneedles combined with other transdermal technology like sonophoresis, electroporation and iontophoresis. Regulatory aspects, characterisation techniques, safety considerations, and cost factors have also been addressed which are crucial for translation from lab to the market.
Collapse
Affiliation(s)
- Siddhant Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Raebareli, UP, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Raebareli, UP, India
| |
Collapse
|
5
|
Razzaghi M, Alexander Ninan J, Akbari M. Advancements in Materials for 3D-Printed Microneedle Arrays: Enhancing Performance and Biocompatibility. MICROMACHINES 2024; 15:1433. [PMID: 39770187 PMCID: PMC11678433 DOI: 10.3390/mi15121433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
The rapid advancement of 3D printing technology has revolutionized the fabrication of microneedle arrays (MNAs), which hold great promise in biomedical applications such as drug delivery, diagnostics, and therapeutic interventions. This review uniquely explores advanced materials used in the production of 3D-printed MNAs, including photopolymer resins, biocompatible materials, and composite resins, designed to improve mechanical properties, biocompatibility, and functional performance. Additionally, it introduces emerging trends such as 4D printing for programmable MNAs. By analyzing recent innovations, this review identifies critical challenges and proposes future directions to advance the field of 3D-printed MNAs. Unlike previous reviews, this paper emphasizes the integration of innovative materials with advanced 3D printing techniques to enhance both the performance and sustainability of MNAs.
Collapse
Affiliation(s)
- Mahmood Razzaghi
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada;
| | - Joel Alexander Ninan
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada;
| | - Mohsen Akbari
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada;
- Terasaki Institute for Biomedical Innovations, Los Angeles, CA 90050, USA
| |
Collapse
|
6
|
Monou PK, Andriotis EG, Saropoulou E, Tzimtzimis E, Tzetzis D, Komis G, Bekiari C, Bouropoulos N, Demiri E, Vizirianakis IS, Fatouros DG. Fabrication of Hybrid Coated Microneedles with Donepezil Utilizing Digital Light Processing and Semisolid Extrusion Printing for the Management of Alzheimer's Disease. Mol Pharm 2024; 21:4450-4464. [PMID: 39163171 PMCID: PMC11372831 DOI: 10.1021/acs.molpharmaceut.4c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Microneedle (MN) patches are gaining increasing attention as a cost-effective technology for delivering drugs directly into the skin. In the present study, two different 3D printing processes were utilized to produce coated MNs, namely, digital light processing (DLP) and semisolid extrusion (SSE). Donepezil (DN), a cholinesterase inhibitor administered for the treatment of Alzheimer's disease, was incorporated into the coating material. Physiochemical characterization of the coated MNs confirmed the successful incorporation of donepezil as well as the stability and suitability of the materials for transdermal delivery. Optical microscopy and SEM studies validated the uniform weight distribution and precise dimensions of the MN arrays, while mechanical testing ensured the MNs' robustness, ensuring efficient skin penetration. In vitro studies were conducted to evaluate the produced transdermal patches, indicating their potential use in clinical treatment. Permeation studies revealed a significant increase in DN permeation compared to plain coating material, affirming the effectiveness of the MNs in enhancing transdermal drug delivery. Confocal laser scanning microscopy (CLSM) elucidated the distribution of the API, within skin layers, demonstrating sustained drug release and transcellular transport pathways. Finally, cell studies were also conducted on NIH3T3 fibroblasts to evaluate the biocompatibility and safety of the printed objects for transdermal applications.
Collapse
Affiliation(s)
- Paraskevi-Kyriaki Monou
- Department of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece
| | - Eleftherios G Andriotis
- Department of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Eirini Saropoulou
- Department of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Emmanouil Tzimtzimis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, 14km Thessaloniki - N. Moudania, Thermi GR, Thessaloniki 57001, Greece
| | - Dimitrios Tzetzis
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece
| | - Georgios Komis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Chrysanthi Bekiari
- Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Nikolaos Bouropoulos
- Department of Materials Science, University of Patras, Rio, Patras 26504, Greece
| | - Efterpi Demiri
- Department of Plastic Surgery, Medical School, Papageorgiou Hospital, Aristotle University of Thessaloniki, Ag. Pavlos, Thessaloniki 56429, Greece
| | - Ioannis S Vizirianakis
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece
- Department of Pharmacy, Laboratory of Pharmacology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
- Department of Life and Health Sciences, University of Nicosia, Nicosia CY-1700, Cyprus
| | - Dimitrios G Fatouros
- Department of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece
| |
Collapse
|
7
|
Ziesmer J, Sondén I, Venckute Larsson J, Merkl P, Sotiriou GA. Customizable Fabrication of Photothermal Microneedles with Plasmonic Nanoparticles Using Low-Cost Stereolithography Three-Dimensional Printing. ACS APPLIED BIO MATERIALS 2024; 7:4533-4541. [PMID: 38877987 PMCID: PMC11253096 DOI: 10.1021/acsabm.4c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 07/16/2024]
Abstract
Photothermal microneedle (MN) arrays have the potential to improve the treatment of various skin conditions such as bacterial skin infections. However, the fabrication of photothermal MN arrays relies on time-consuming and potentially expensive microfabrication and molding techniques, which limits their size and translation to clinical application. Furthermore, the traditional mold-and-casting method is often limited in terms of the size customizability of the photothermal array. To overcome these challenges, we fabricated photothermal MN arrays directly via 3D-printing using plasmonic Ag/SiO2 (2 wt % SiO2) nanoaggregates dispersed in ultraviolet photocurable resin on a commercial low-cost liquid crystal display stereolithography printer. We successfully printed MN arrays in a single print with a translucent, nanoparticle-free support layer and photothermal MNs incorporating plasmonic nanoaggregates in a selective fashion. The photothermal MN arrays showed sufficient mechanical strength and heating efficiency to increase the intradermal temperature to clinically relevant temperatures. Finally, we explored the potential of photothermal MN arrays to improve antibacterial therapy by killing two bacterial species commonly found in skin infections. To the best of our knowledge, this is the first time describing the printing of photothermal MNs in a single step. The process introduced here allows for the translatable fabrication of photothermal MN arrays with customizable dimensions that can be applied to the treatment of various skin conditions such as bacterial infections.
Collapse
Affiliation(s)
- Jill Ziesmer
- Department of Microbiology,
Tumor and Cell Biology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Isabel Sondén
- Department of Microbiology,
Tumor and Cell Biology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Justina Venckute Larsson
- Department of Microbiology,
Tumor and Cell Biology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Padryk Merkl
- Department of Microbiology,
Tumor and Cell Biology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Georgios A. Sotiriou
- Department of Microbiology,
Tumor and Cell Biology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| |
Collapse
|
8
|
Fitaihi R, Abukhamees S, Chung SH, Craig DQM. Optimization of stereolithography 3D printing of microneedle micro-molds for ocular drug delivery. Int J Pharm 2024; 658:124195. [PMID: 38703935 DOI: 10.1016/j.ijpharm.2024.124195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Microneedles (MN) have emerged as an innovative technology for drug delivery, offering a minimally invasive approach to administer therapeutic agents. Recent applications have included ocular drug delivery, requiring the manufacture of sub-millimeter needle arrays in a reproducible and reliable manner. The development of 3D printing technologies has facilitated the fabrication of MN via mold production, although there is a paucity of information available regarding how the printing parameters may influence crucial issues such as sharpness and penetration efficacy. In this study, we have developed and optimized a 3D-printed MN micro-mold using stereolithography (SLA) 3D printing to prepare a dissolving ocular MN patch. The effects of a range of parameters including aspect ratio, layer thickness, length, mold shape and printing orientation have been examined with regard to both architecture and printing accuracy of the MN micro-mold, while the effects of printing angle on needle fidelity was also examined for a range of basic shapes (conical, pyramidal and triangular pyramidal). Mechanical strength and in vitro penetration of the polymeric (PVP/PVA) MN patch produced from reverse molds fabricated using MN with a range of shapes and height, and aspect ratios were assessed, followed by ex vivo studies of penetration into excised scleral and corneal tissues. The optimization process identified the parameters required to produce MN with the sharpest tips and highest dimensional fidelity, while the ex vivo studies indicated that these optimized systems would penetrate the ocular tissue with minimal applied pressure, thereby allowing ease of patient self-administration.
Collapse
Affiliation(s)
- Rawan Fitaihi
- Research Department of Pharmaceutics, University College London, School of Pharmacy, 29-39 Brunswick Square, WC1N 1AX London, UK; Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Shorooq Abukhamees
- Research Department of Pharmaceutics, University College London, School of Pharmacy, 29-39 Brunswick Square, WC1N 1AX London, UK; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan.
| | - Se Hun Chung
- Research Department of Pharmaceutics, University College London, School of Pharmacy, 29-39 Brunswick Square, WC1N 1AX London, UK; Academic Centre of Reconstructive Science, King's College London, London, UK.
| | - Duncan Q M Craig
- Research Department of Pharmaceutics, University College London, School of Pharmacy, 29-39 Brunswick Square, WC1N 1AX London, UK; Faculty of Science, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
9
|
Freundlich E, Shimony N, Gross A, Mizrahi B. Bioadhesive microneedle patches for tissue sealing. Bioeng Transl Med 2024; 9:e10578. [PMID: 38818121 PMCID: PMC11135150 DOI: 10.1002/btm2.10578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/06/2023] [Accepted: 07/05/2023] [Indexed: 06/01/2024] Open
Abstract
Sealing of soft tissues prevents leakage of gas and liquid, closes wounds, and promotes healing and is, therefore, of great significance in the clinical and medical fields. Although various formulations have been developed for reliable sealing of soft tissue, tradeoffs between adhesive properties, degradation profile, and tissue toxicity limit their clinical use. Hydrogel-based adhesives, for example, are highly biocompatible but adhere very weakly to the tissue and degrade quickly, while oxidized cellulose patches are poorly absorbed and may cause healing complications postoperatively. Here, we present a novel strategy for tissue sealing based on bioadhesive microneedle patches that can spontaneously adhere to tissue surface through electrostatic interactions and swell within it. A series of microneedle patches made of pullulan, chitosan, Carbopol, poly (lactic-co-glycolic acid), and a Carbopol/chitosan combination were fabricated and characterized for their use in tissue sealing. The effect of microneedle composition on the fabrication process, physical and mechanical properties, in vitro cytotoxicity, and in vivo biocompatibility were examined. The needle structure enables microneedles to strongly fix onto various tissues via physical interlocking, while their adhesive properties improve staying time and sealing capabilities. The microneedle patch comprising Carbopol needles and chitosan as a second pedestal layer presented the best results in terms of sealing and adhesion, a consequence of the needle's swelling and adhesion features combined with the supportive chitosan base layer. Finally, single Carbopol/chitosan patches stopped intense liver bleeding in a rat model significantly quicker and with less blood loss compared with commercial oxidized cellulose patches. These microneedles can be considered a promising cost-effective platform for adhering and sealing tissues as they can be applied quickly and painlessly, and require less trained medical staff and equipment.
Collapse
Affiliation(s)
- Eden Freundlich
- Faculty of Biotechnology and Food EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Neta Shimony
- Faculty of Biotechnology and Food EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Adi Gross
- Faculty of Biotechnology and Food EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Boaz Mizrahi
- Faculty of Biotechnology and Food EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
10
|
Chan AKC, Ranjitham Gopalakrishnan N, Traore YL, Ho EA. Formulating biopharmaceuticals using three-dimensional printing. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:12797. [PMID: 38558867 PMCID: PMC10979422 DOI: 10.3389/jpps.2024.12797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Additive manufacturing, commonly referred to as three-dimensional (3D) printing, has the potential to initiate a paradigm shift in the field of medicine and drug delivery. Ever since the advent of the first-ever United States Food and Drug Administration (US FDA)-approved 3D printed tablet, there has been an increased interest in the application of this technology in drug delivery and biomedical applications. 3D printing brings us one step closer to personalized medicine, hence rendering the "one size fits all" concept in drug dosing obsolete. In this review article, we focus on the recent developments in the field of modified drug delivery systems in which various types of additive manufacturing technologies are applied.
Collapse
Affiliation(s)
- Alistair K. C. Chan
- School of Pharmacy, University of Waterloo, Kitchener, ON, Canada
- Waterloo Institute for Nanotechnology, Waterloo, ON, Canada
| | - Nehil Ranjitham Gopalakrishnan
- School of Pharmacy, University of Waterloo, Kitchener, ON, Canada
- Waterloo Institute for Nanotechnology, Waterloo, ON, Canada
| | - Yannick Leandre Traore
- School of Pharmacy, University of Waterloo, Kitchener, ON, Canada
- Waterloo Institute for Nanotechnology, Waterloo, ON, Canada
| | - Emmanuel A. Ho
- School of Pharmacy, University of Waterloo, Kitchener, ON, Canada
- Waterloo Institute for Nanotechnology, Waterloo, ON, Canada
| |
Collapse
|
11
|
Loh JM, Lim YJL, Tay JT, Cheng HM, Tey HL, Liang K. Design and fabrication of customizable microneedles enabled by 3D printing for biomedical applications. Bioact Mater 2024; 32:222-241. [PMID: 37869723 PMCID: PMC10589728 DOI: 10.1016/j.bioactmat.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/22/2023] [Accepted: 09/30/2023] [Indexed: 10/24/2023] Open
Abstract
Microneedles (MNs) is an emerging technology that employs needles ranging from 10 to 1000 μm in height, as a minimally invasive technique for various procedures such as therapeutics, disease monitoring and diagnostics. The commonly used method of fabrication, micromolding, has the advantage of scalability, however, micromolding is unable to achieve rapid customizability in dimensions, geometries and architectures, which are the pivotal factors determining the functionality and efficacy of the MNs. 3D printing offers a promising alternative by enabling MN fabrication with high dimensional accuracy required for precise applications, leading to improved performance. Furthermore, enabled by its customizability and one-step process, there is propitious potential for growth for 3D-printed MNs especially in the field of personalized and on-demand medical devices. This review provides an overview of considerations for the key parameters in designing MNs, an introduction on the various 3D-printing techniques for fabricating this new generation of MNs, as well as highlighting the advancements in biomedical applications facilitated by 3D-printed MNs. Lastly, we offer some insights into the future prospects of 3D-printed MNs, specifically its progress towards translation and entry into market.
Collapse
Affiliation(s)
- Jia Min Loh
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yun Jie Larissa Lim
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jin Ting Tay
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - Hong Liang Tey
- National Skin Centre (NSC), Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Yong Loo Ling School of Medicine, National University of Singapore, Singapore
- Skin Research Institute of Singapore, Singapore
| | - Kun Liang
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
- Skin Research Institute of Singapore, Singapore
| |
Collapse
|
12
|
Xu K, Weng J, Li J, Chen X. Advances in Intelligent Stimuli-Responsive Microneedle for Biomedical Applications. Macromol Biosci 2023; 23:e2300014. [PMID: 37055877 DOI: 10.1002/mabi.202300014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/21/2023] [Indexed: 04/15/2023]
Abstract
Microneedles (MNs) are a new type of drug delivery method that can be regarded as an alternative to traditional transdermal drug delivery systems. Recently, MNs have attracted widespread attention for their advantages of effectiveness, safety, and painlessness. However, the functionality of traditional MNs is too monotonous and limits their application. To improve the efficiency of disease treatment and diagnosis by combining the advantages of MNs, the concept of intelligent stimulus-responsive MNs is proposed. Intelligent stimuli-responsive MNs can exhibit unique biomedical functions according to the internal and external environment changes. This review discusses the classification and principles of intelligent stimuli-responsive MNs, such as magnet, temperature, light, electricity, reactive oxygen species, pH, glucose, and protein. This review also highlights examples of intelligent stimuli-responsive MNs for biomedical applications, such as on-demand drug delivery, tissue repair, bioimaging, detection and monitoring, and photothermal therapy. These intelligent stimuli-responsive MNs offer the advantages of high biocompatibility, targeted therapy, selective detection, and precision treatment. Finally, the prospects and challenges for the application of intelligent stimuli-responsive MNs are discussed.
Collapse
Affiliation(s)
- Kai Xu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jie Weng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xingyu Chen
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
13
|
Lobita MC, El-Sayed N, Pinto JF, Santos HA. Development of fast dissolving polymer-based microneedles for delivery of an antigenic melanoma cell membrane. Int J Pharm 2023; 642:123143. [PMID: 37330154 DOI: 10.1016/j.ijpharm.2023.123143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
Delivery of cancer cell membranes (CM) is a new approach for the activation of the immune system and the induction of immunotherapy of cancer. Local delivery of melanoma CM into skin can induce efficient immune stimulation of antigen presenting cells (APCs), such as dendritic cells. In the current study, fast dissolving microneedles (MNs) were developed for the delivery of melanoma B16F10 CM. Two polymers were tested for the fabrication of MNs: poly(methyl vinyl ether-co-maleic acid) (PMVE-MA) and hyaluronic acid (HA). The incorporation of CM in MNs was achieved through coating of the MNs using a multi-step layering procedure or the micromolding technique. The CM loading and its stabilization were improved by adding sugars (sucrose and trehalose) and a surfactant (Poloxamer 188), respectively. In an ex vivo experiment, both PMVE-MA and HA showed fast dissolutions (<30 s) after insertion into porcine skin. However, HA-MN showed better mechanical properties, namely improved resistance to fracture when submitted to a compression force. Overall, a B16F10 melanoma CM-dissolving MN system was efficiently developed as a promising device suggesting further studies in immunotherapy and melanoma applications.
Collapse
Affiliation(s)
- Maria C Lobita
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Nesma El-Sayed
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, P.O. Box 56 (Viikinkaari 5 E), University of Helsinki, FI-00014 Helsinki, Finland; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt.
| | - João F Pinto
- iMED-Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1640-003 Lisbon, Portugal
| | - Hélder A Santos
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, P.O. Box 56 (Viikinkaari 5 E), University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
14
|
Al-Nimry SS, Daghmash RM. Three Dimensional Printing and Its Applications Focusing on Microneedles for Drug Delivery. Pharmaceutics 2023; 15:1597. [PMID: 37376046 DOI: 10.3390/pharmaceutics15061597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Microneedles (MNs) are considered to be a novel smart injection system that causes significantly low skin invasion upon puncturing, due to the micron-sized dimensions that pierce into the skin painlessly. This allows transdermal delivery of numerous therapeutic molecules, such as insulin and vaccines. The fabrication of MNs is carried out through conventional old methods such as molding, as well as through newer and more sophisticated technologies, such as three-dimensional (3D) printing, which is considered to be a superior, more accurate, and more time- and production-efficient method than conventional methods. Three-dimensional printing is becoming an innovative method that is used in education through building intricate models, as well as being employed in the synthesis of fabrics, medical devices, medical implants, and orthoses/prostheses. Moreover, it has revolutionary applications in the pharmaceutical, cosmeceutical, and medical fields. Having the capacity to design patient-tailored devices according to their dimensions, along with specified dosage forms, has allowed 3D printing to stand out in the medical field. The different techniques of 3D printing allow for the production of many types of needles with different materials, such as hollow MNs and solid MNs. This review covers the benefits and drawbacks of 3D printing, methods used in 3D printing, types of 3D-printed MNs, characterization of 3D-printed MNs, general applications of 3D printing, and transdermal delivery using 3D-printed MNs.
Collapse
Affiliation(s)
- Suhair S Al-Nimry
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Rawand M Daghmash
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
15
|
Sultana N, Waheed A, Ali A, Jahan S, Aqil M, Sultana Y, Mujeeb M. Exploring new frontiers in drug delivery with minimally invasive microneedles: fabrication techniques, biomedical applications and regulatory aspects. Expert Opin Drug Deliv 2023:1-17. [PMID: 37038271 DOI: 10.1080/17425247.2023.2201494] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
INTRODUCTION Transdermal drug delivery is limited by the stratum corneum, inhibiting the therapeutic potential of the permeants. Microneedles (MN) have opened new frontiers in transdermal drug delivery systems. These micro-sized needles offer painless and accentuated delivery of drugs even with high molecular weights. AREAS COVERED The review embodies drug delivery strategies with microneedles with a description of MN types and fabrication techniques using various materials. The application of MN is not limited to drug delivery, but it also encompasses in vaccine delivery, diagnosis, phlebotomy and even in the cosmetic industry. The review also tabulates microneedle-based marketed formulations. In a nutshell, we aim to present a panoramic view of microneedles including the design, applications, and regulatory aspects of MN. EXPERT OPINION With the availability of numerous materials at the disposal of pharmaceutical scientists; the microneedle-based drug delivery technology has offered significant interventions towards the management of chronic maladies including cardiovascular disorders, diabetes, asthma, mental depression, etc. As happens with any new technology there are concerns with MN also such as biocompatibility issues with the material used for the fabrication. Nevertheless, the pharmaceutical industry must strive for preparing harmless, efficient, and cost-effective MN based delivery systems for wider acceptance and patient compliance.
Collapse
Affiliation(s)
- Niha Sultana
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India-110062
| | - Ayesha Waheed
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India-110062
| | - Asad Ali
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India-110062
| | - Samreen Jahan
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India-110062
| | - Mohd Aqil
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India-110062
| | - Yasmin Sultana
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India-110062
| | - Mohd Mujeeb
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India-110062
| |
Collapse
|
16
|
Zhang L, Lv J, Yin Y, Ling G, Zhang P. Rapidly separable microneedle patch for the controlled and sustained release of 5-fluorouracil. Int J Pharm 2023; 635:122730. [PMID: 36796660 DOI: 10.1016/j.ijpharm.2023.122730] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/06/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
5-Fluorouracil (5-FU) is frequently used in the treatment of tumors and swollen tissues. However, traditional administration methods can result in poor patient compliance and require to administrate frequently due to the short T1/2 of 5-FU. Herein, the 5-FU@ZIF-8 loaded nanocapsules were prepared using multiple emulsion solvent evaporation methods to enable the controlled and sustained release of 5-FU. To decrease the drug release rate and enhance patient compliance, the obtained pure nanocapsules were added to the matrix to fabricate rapidly separable microneedles (SMNs). The entrapment efficiency (EE%) of 5-FU@ZIF-8 loaded nanocapsules was in the range of 41.55-46.29 %, and the particle size of ZIF-8, 5-FU@ZIF-8, and 5-FU@ZIF-8 loaded nanocapsules were 60 nm, 110 nm, and 250 nm respectively. According to the release study in vivo and in vitro, we concluded that 5-FU@ZIF-8 nanocapsules could achieve the sustained release of 5-FU and that the burst release of nanocapsules could be elegantly handled by incorporating nanocapsules into the SMNs. What's more, the use of SMNs could improve patient compliance due to the rapid separation of needles and backing of SMNs. The pharmacodynamics study also revealed that the formulation would be a better choice for the treatment of scars due to the advantages of painlessness, separation ability, and high delivery efficiency. In conclusion, the SMNs containing 5-FU@ZIF-8 loaded nanocapsules could serve as a potential strategy for some skin diseases therapy with controlled and sustained drug release behavior.
Collapse
Affiliation(s)
- Lijing Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jiatong Lv
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yannan Yin
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
17
|
Parhi R. Recent advances in 3D printed microneedles and their skin delivery application in the treatment of various diseases. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
18
|
Tan JY, Li Y, Chamani F, Tharzeen A, Prakash P, Natarajan B, Sheth RA, Park WM, Kim A, Yoon D, Kim J. Experimental Validation of Diffraction Lithography for Fabrication of Solid Microneedles. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8934. [PMID: 36556744 PMCID: PMC9787912 DOI: 10.3390/ma15248934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Microneedles are highly sought after for medicinal and cosmetic applications. However, the current manufacturing process for microneedles remains complicated, hindering its applicability to a broader variety of applications. As diffraction lithography has been recently reported as a simple method for fabricating solid microneedles, this paper presents the experimental validation of the use of ultraviolet light diffraction to control the liquid-to-solid transition of photosensitive resin to define the microneedle shape. The shapes of the resultant microneedles were investigated utilizing the primary experimental parameters including the photopattern size, ultraviolet light intensity, and the exposure time. Our fabrication results indicated that the fabricated microneedles became taller and larger in general when the experimental parameters were increased. Additionally, our investigation revealed four unique crosslinked resin morphologies during the first growth of the microneedle: microlens, first harmonic, first bell-tip, and second harmonic shapes. Additionally, by tilting the light exposure direction, a novel inclined microneedle array was fabricated for the first time. The fabricated microneedles were characterized with skin insertion and force-displacement tests. This experimental study enables the shapes and mechanical properties of the microneedles to be predicted in advance for mass production and wide practical use for biomedical or cosmetic applications.
Collapse
Affiliation(s)
- Jun Ying Tan
- Department of Electrical Engineering, University of North Texas, Denton, TX 76207, USA
| | - Yuankai Li
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Faraz Chamani
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Aabila Tharzeen
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Balasubramaniam Natarajan
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Rahul A. Sheth
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Won Min Park
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Albert Kim
- Department of Medical Engineering, The University of South Florida, Tampa, FL 33620, USA
| | - Donghoon Yoon
- College of Medicine, University of Arkansas for Medical Science, Little Rock, AR 72205, USA
| | - Jungkwun Kim
- Department of Electrical Engineering, University of North Texas, Denton, TX 76207, USA
| |
Collapse
|
19
|
Olowe M, Parupelli SK, Desai S. A Review of 3D-Printing of Microneedles. Pharmaceutics 2022; 14:2693. [PMID: 36559187 PMCID: PMC9786808 DOI: 10.3390/pharmaceutics14122693] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Microneedles are micron-sized devices that are used for the transdermal administration of a wide range of active pharmaceutics substances with minimally invasive pain. In the past decade, various additive manufacturing technologies have been used for the fabrication of microneedles; however, they have limitations due to material compatibility and bioavailability and are time-consuming and expensive processes. Additive manufacturing (AM), which is popularly known as 3D-printing, is an innovative technology that builds three-dimensional solid objects (3D). This article provides a comprehensive review of the different 3D-printing technologies that have the potential to revolutionize the manufacturing of microneedles. The application of 3D-printed microneedles in various fields, such as drug delivery, vaccine delivery, cosmetics, therapy, tissue engineering, and diagnostics, are presented. This review also enumerates the challenges that are posed by the 3D-printing technologies, including the manufacturing cost, which limits its viability for large-scale production, the compatibility of the microneedle-based materials with human cells, and concerns around the efficient administration of large dosages of loaded microneedles. Furthermore, the optimization of microneedle design parameters and features for the best printing outcomes is of paramount interest. The Food and Drug Administration (FDA) regulatory guidelines relating to the safe use of microneedle devices are outlined. Finally, this review delineates the implementation of futuristic technologies, such as artificial intelligence algorithms, for 3D-printed microneedles and 4D-printing capabilities.
Collapse
Affiliation(s)
- Michael Olowe
- Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
- Center of Excellence in Product Design and Advanced Manufacturing, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Santosh Kumar Parupelli
- Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
- Center of Excellence in Product Design and Advanced Manufacturing, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Salil Desai
- Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
- Center of Excellence in Product Design and Advanced Manufacturing, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| |
Collapse
|
20
|
Park S, Lee K, Ryu W. Research progress on detachable microneedles for advanced applications. Expert Opin Drug Deliv 2022; 19:1115-1131. [PMID: 36062366 DOI: 10.1080/17425247.2022.2121388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Microneedles (MNs) have undergone great advances in transdermal drug delivery, and commercialized MN applications are currently available in vaccination and cosmetic products. Despite the development of MN technologies, common limitations of MN products still exist. Typical MN patches are applied to target tissues, where the substrate of an MN patch must remain until the drug is delivered, which reduces patients' compliance and hinders the applicability of the MN technique to many diseases in various tissues. MN research is ongoing to solve this issue. AREAS COVERED Most recent MNs developed by combining various biomaterials with appropriate fabrication processes are detachable MNs (DeMNs). Because of advances in biomaterials and fabrication techniques, various DeMNs have been rapidly developed. In this review, we discuss four types of DeMN: substrate-separable, multi-layered, crack-inducing, and shell DeMN. These DeMNs deliver various therapeutic agents ranging from small- and large-molecular-weight drugs to proteins and even stem cells for regeneration therapy. Furthermore, DeMNs are applied to skin as well as non-transdermal tissues. EXPERT OPINION It has become increasingly evident that novel MN technologies can be expected in terms of designs, fabrication methods, materials, and even possible application sites given the recent advances in DeMNs.
Collapse
Affiliation(s)
- SeungHyun Park
- Department of Mechanical Engineering, Yonsei University, Republic of Korea
| | - KangJu Lee
- School of Healthcare and Biomedical Engineering, Chonnam National University, Republic of Korea
| | - WonHyoung Ryu
- Department of Mechanical Engineering, Yonsei University, Republic of Korea
| |
Collapse
|
21
|
Recent advances in microneedle designs and their applications in drug and cosmeceutical delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Fabricating High-Resolution and High-Dimensional Microneedle Mold through the Resolution Improvement of Stereolithography 3D Printing. Pharmaceutics 2022; 14:pharmaceutics14040766. [PMID: 35456599 PMCID: PMC9027855 DOI: 10.3390/pharmaceutics14040766] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 12/10/2022] Open
Abstract
Microneedles are transdermal drug delivery tools that can be fabricated simply, economically, and rapidly using SLA 3D printing. However, SLA 3D printing has a limitation in that the resolution is slightly lowered when the microneedle is precisely printed. To solve this issue, we optimized the SLA 3D printing conditions such as printing angle, needle height, aspect ratio, and spacing between the microneedles for high-resolution microneedle fabrication. The sharpest microneedle tip was obtained when the printing angle was adjusted to 60° in both the x and y axes. The aspect ratio and the spacing between the microneedles did not affect the output of the sharp tip. Under optimal conditions, the microneedles with 1180 ± 20 µm height, 490 ± 20 µm base, and 30.2 ± 3.4 µm tip diameter were obtained. The dissolving microneedle patch, prepared using the 3D printed microneedle as a mold, penetrated the porcine skin ex vivo. When the printing angle was 60° in the x and y axes, the area of the single stacking layer, including the microneedle tip, increased, and thus the sharp tip could be printed. A high-dimensional, side-notched arrowhead (SNA) microneedle was fabricated by applying the SLA 3D printing condition. Moreover, a letter-type microneedle patch was fabricated using the customized characteristics of 3D printing. Consequently, high-resolution and high-dimensional microneedles were successfully fabricated by adjusting the printing angle using a general SLA 3D printer, and this technology will be applied to the manufacture of drug delivery tools and various microstructures.
Collapse
|
23
|
Weimer P, Rossi RC, Koester LS. Dissolving Microneedles Developed in Association with Nanosystems: A Scoping Review on the Quality Parameters of These Emerging Systems for Drug or Protein Transdermal Delivery. Pharmaceutics 2021; 13:1601. [PMID: 34683895 PMCID: PMC8538119 DOI: 10.3390/pharmaceutics13101601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
The largest organ of the body provides the main challenge for the transdermal delivery of lipophilic or high molecular weight drugs. To cross the main barrier of the skin, the stratum corneum, many techniques have been developed and improved. In the last 20 years, the association of microneedles with nanostructured systems has gained prominence for its versatility and for enabling targeted drug delivery. Currently, the combination of these mechanisms is pointed to as an emerging technology; however, some gaps need to be answered to transcend the development of these devices from the laboratory scale to the pharmaceutical market. It is known that the lack of regulatory guidelines for quality control is a hindrance to market conquest. In this context, this study undertakes a scoping review of original papers concerning methods applied to evaluate both the quality and drug/protein delivery of dissolving and hydrogel-forming microneedles developed in association with nanostructured systems.
Collapse
Affiliation(s)
- Patrícia Weimer
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, Brazil;
| | - Rochele Cassanta Rossi
- Programa de Pós-Graduação em Nutrição e Alimentos, Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo 93022-000, Brazil;
| | - Letícia Scherer Koester
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, Brazil;
| |
Collapse
|
24
|
Polymeric microneedles for transdermal delivery of nanoparticles: Frontiers of formulation, sterility and stability aspects. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Faraji Rad Z, Prewett PD, Davies GJ. An overview of microneedle applications, materials, and fabrication methods. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:1034-1046. [PMID: 34621614 PMCID: PMC8450954 DOI: 10.3762/bjnano.12.77] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/30/2021] [Indexed: 05/19/2023]
Abstract
Microneedle-based microdevices promise to expand the scope for delivery of vaccines and therapeutic agents through the skin and withdrawing biofluids for point-of-care diagnostics - so-called theranostics. Unskilled and painless applications of microneedle patches for blood collection or drug delivery are two of the advantages of microneedle arrays over hypodermic needles. Developing the necessary microneedle fabrication processes has the potential to dramatically impact the health care delivery system by changing the landscape of fluid sampling and subcutaneous drug delivery. Microneedle designs which range from sub-micron to millimetre feature sizes are fabricated using the tools of the microelectronics industry from metals, silicon, and polymers. Various types of subtractive and additive manufacturing processes have been used to manufacture microneedles, but the development of microneedle-based systems using conventional subtractive methods has been constrained by the limitations and high cost of microfabrication technology. Additive manufacturing processes such as 3D printing and two-photon polymerization fabrication are promising transformative technologies developed in recent years. The present article provides an overview of microneedle systems applications, designs, material selection, and manufacturing methods.
Collapse
Affiliation(s)
- Zahra Faraji Rad
- School of Mechanical and Electrical Engineering, University of Southern Queensland, Springfield Central, QLD 4300, Australia
| | - Philip D Prewett
- Department of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Oxacus Ltd, Dorchester-on-Thames, OX10 7HN, United Kingdom
| | - Graham J Davies
- Faculty of Engineering, UNSW Australia, NSW 2052, Australia
- College of Engineering & Physical Sciences, School of Engineering, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
26
|
Ozyilmaz ED, Turan A, Comoglu T. An overview on the advantages and limitations of 3D printing of microneedles. Pharm Dev Technol 2021; 26:923-933. [PMID: 34369288 DOI: 10.1080/10837450.2021.1965163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The use of 3D printing (3DP) technology, which has been continuously evolving since the 1980s, has recently become common in healthcare services. The introduction of 3DP into the pharmaceutical industry particularly aims at the development of patient-centered dosage forms based on structure design. It is still a new research direction with potential to create the targeted release of drug delivery systems in freeform geometries. Although the use of 3DP technology for solid oral dosage forms is more preferable, studies on transdermal applications of the technology are also increasing. Microneedle sequences are one of the transdermal drug delivery (TDD) methods which are used to bypass the minimally invasive stratum corneum with novel delivery methods for small molecule drugs and vaccines. Microneedle arrays have advantages over many traditional methods. It is attractive with features such as ease of application, controlled release of active substances and patient compliance. Recently, 3D printers have been used for the production of microneedle patches. After giving a brief overview of 3DP technology, this article includes the materials necessary for the preparation of microneedles and microneedle patches specifically for penetration enhancement, preparation methods, quality parameters, and their application to TDD. In addition, the applicability of 3D microneedles in the pharmaceutical industry has been evaluated.
Collapse
Affiliation(s)
- Emine Dilek Ozyilmaz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus.,Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Aybuke Turan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Tansel Comoglu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
27
|
Sirbubalo M, Tucak A, Muhamedagic K, Hindija L, Rahić O, Hadžiabdić J, Cekic A, Begic-Hajdarevic D, Cohodar Husic M, Dervišević A, Vranić E. 3D Printing-A "Touch-Button" Approach to Manufacture Microneedles for Transdermal Drug Delivery. Pharmaceutics 2021; 13:924. [PMID: 34206285 PMCID: PMC8308681 DOI: 10.3390/pharmaceutics13070924] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/18/2022] Open
Abstract
Microneedles (MNs) represent the concept of attractive, minimally invasive puncture devices of micron-sized dimensions that penetrate the skin painlessly and thus facilitate the transdermal administration of a wide range of active substances. MNs have been manufactured by a variety of production technologies, from a range of materials, but most of these manufacturing methods are time-consuming and expensive for screening new designs and making any modifications. Additive manufacturing (AM) has become one of the most revolutionary tools in the pharmaceutical field, with its unique ability to manufacture personalized dosage forms and patient-specific medical devices such as MNs. This review aims to summarize various 3D printing technologies that can produce MNs from digital models in a single step, including a survey on their benefits and drawbacks. In addition, this paper highlights current research in the field of 3D printed MN-assisted transdermal drug delivery systems and analyzes parameters affecting the mechanical properties of 3D printed MNs. The current regulatory framework associated with 3D printed MNs as well as different methods for the analysis and evaluation of 3D printed MN properties are outlined.
Collapse
Affiliation(s)
- Merima Sirbubalo
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Amina Tucak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Kenan Muhamedagic
- Department of Mechanical Production Engineering, Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo Setaliste 9, 71000 Sarajevo, Bosnia and Herzegovina; (K.M.); (D.B.-H.); (M.C.H.)
| | - Lamija Hindija
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Ognjenka Rahić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Jasmina Hadžiabdić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Ahmet Cekic
- Department of Mechanical Production Engineering, Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo Setaliste 9, 71000 Sarajevo, Bosnia and Herzegovina; (K.M.); (D.B.-H.); (M.C.H.)
| | - Derzija Begic-Hajdarevic
- Department of Mechanical Production Engineering, Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo Setaliste 9, 71000 Sarajevo, Bosnia and Herzegovina; (K.M.); (D.B.-H.); (M.C.H.)
| | - Maida Cohodar Husic
- Department of Mechanical Production Engineering, Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo Setaliste 9, 71000 Sarajevo, Bosnia and Herzegovina; (K.M.); (D.B.-H.); (M.C.H.)
| | - Almir Dervišević
- Head and Neck Surgery, Clinical Center University of Sarajevo, Bolnička 25, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Edina Vranić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| |
Collapse
|
28
|
Economidou SN, Douroumis D. 3D printing as a transformative tool for microneedle systems: Recent advances, manufacturing considerations and market potential. Adv Drug Deliv Rev 2021; 173:60-69. [PMID: 33775705 DOI: 10.1016/j.addr.2021.03.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/29/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
The present review aims at identifying the key progress points that have been made on the use of 3D printing to manufacture microneedles in the past 3 years. The advances in the field of photopolymerization and extrusion-based 3D printing are outlined. The study revealed that the printing resolution and the material properties are the two critical parameters that have the most influential effect on the outcome of every microneedle printing endeavour. Finally, the authors attempt to estimate the impact of 3D printing on the transdermal drug delivery market.
Collapse
|
29
|
Makvandi P, Kirkby M, Hutton ARJ, Shabani M, Yiu CKY, Baghbantaraghdari Z, Jamaledin R, Carlotti M, Mazzolai B, Mattoli V, Donnelly RF. Engineering Microneedle Patches for Improved Penetration: Analysis, Skin Models and Factors Affecting Needle Insertion. NANO-MICRO LETTERS 2021; 13:93. [PMID: 34138349 PMCID: PMC8006208 DOI: 10.1007/s40820-021-00611-9] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/05/2021] [Indexed: 05/14/2023]
Abstract
Transdermal microneedle (MN) patches are a promising tool used to transport a wide variety of active compounds into the skin. To serve as a substitute for common hypodermic needles, MNs must pierce the human stratum corneum (~ 10 to 20 µm), without rupturing or bending during penetration. This ensures that the cargo is released at the predetermined place and time. Therefore, the ability of MN patches to sufficiently pierce the skin is a crucial requirement. In the current review, the pain signal and its management during application of MNs and typical hypodermic needles are presented and compared. This is followed by a discussion on mechanical analysis and skin models used for insertion tests before application to clinical practice. Factors that affect insertion (e.g., geometry, material composition and cross-linking of MNs), along with recent advancements in developed strategies (e.g., insertion responsive patches and 3D printed biomimetic MNs using two-photon lithography) to improve the skin penetration are highlighted to provide a backdrop for future research.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano Di Tecnologia, Centre for Materials Interface, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy.
| | - Melissa Kirkby
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Aaron R J Hutton
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Majid Shabani
- Istituto Italiano Di Tecnologia, Centre for Materials Interface, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Cynthia K Y Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong SAR, China
| | - Zahra Baghbantaraghdari
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125, Naples, Italy
| | - Rezvan Jamaledin
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125, Naples, Italy
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Italian Institute of Technology, 80125, Naples, Italy
| | - Marco Carlotti
- Istituto Italiano Di Tecnologia, Centre for Materials Interface, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Barbara Mazzolai
- Istituto Italiano Di Tecnologia, Centre for Materials Interface, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Virgilio Mattoli
- Istituto Italiano Di Tecnologia, Centre for Materials Interface, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy.
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
30
|
Elahpour N, Pahlevanzadeh F, Kharaziha M, Bakhsheshi-Rad HR, Ramakrishna S, Berto F. 3D printed microneedles for transdermal drug delivery: A brief review of two decades. Int J Pharm 2021; 597:120301. [PMID: 33540018 DOI: 10.1016/j.ijpharm.2021.120301] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/31/2022]
Abstract
Microneedle (MN) technology shows excellent potential in controlled drug delivery, which has got rising attention from investigators and clinics. MNs can pierce through the stratum corneum layer of the skin into the epidermis, evading interaction with nerve fibers. MN patches have been fabricated using various types of materials and application processes. Recently, three-dimensional (3D) printing gives the prototyping and manufacturing methods the flexibility to produce the MN patches in a one-step manner with high levels of shape complexity and duplicability. This review aims to go through the last successes in 3D printed MN-based patches. In this regard, after the evaluation of various types of MNs and fabrication techniques, we will study different 3D printing approaches applied for MN patch fabrication. We further highlight the state of the art of the long-acting MNs and related progress with a specific look at what should come within the scope of upcoming researches.
Collapse
Affiliation(s)
- Nafiseh Elahpour
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Farnoosh Pahlevanzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore.
| | - Filippo Berto
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
31
|
Yang Q, Zhong W, Xu L, Li H, Yan Q, She Y, Yang G. Recent progress of 3D-printed microneedles for transdermal drug delivery. Int J Pharm 2021; 593:120106. [DOI: 10.1016/j.ijpharm.2020.120106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022]
|
32
|
Tucak A, Sirbubalo M, Hindija L, Rahić O, Hadžiabdić J, Muhamedagić K, Čekić A, Vranić E. Microneedles: Characteristics, Materials, Production Methods and Commercial Development. MICROMACHINES 2020; 11:mi11110961. [PMID: 33121041 PMCID: PMC7694032 DOI: 10.3390/mi11110961] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 01/19/2023]
Abstract
Although transdermal drug delivery systems (DDS) offer numerous benefits for patients, including the avoidance of both gastric irritation and first-pass metabolism effect, as well as improved patient compliance, only a limited number of active pharmaceutical ingredients (APIs) can be delivered accordingly. Microneedles (MNs) represent one of the most promising concepts for effective transdermal drug delivery that penetrate the protective skin barrier in a minimally invasive and painless manner. The first MNs were produced in the 90s, and since then, this field has been continually evolving. Therefore, different manufacturing methods, not only for MNs but also MN molds, are introduced, which allows for the cost-effective production of MNs for drug and vaccine delivery and even diagnostic/monitoring purposes. The focus of this review is to give a brief overview of MN characteristics, material composition, as well as the production and commercial development of MN-based systems.
Collapse
Affiliation(s)
- Amina Tucak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (L.H.); (O.R.); (J.H.)
- Correspondence: (A.T.); (E.V.)
| | - Merima Sirbubalo
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (L.H.); (O.R.); (J.H.)
| | - Lamija Hindija
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (L.H.); (O.R.); (J.H.)
| | - Ognjenka Rahić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (L.H.); (O.R.); (J.H.)
| | - Jasmina Hadžiabdić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (L.H.); (O.R.); (J.H.)
| | - Kenan Muhamedagić
- Department of Machinery Production Engineering, Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo šetalište 9, 71000 Sarajevo, Bosnia and Herzegovina; (K.M.); (A.Č.)
| | - Ahmet Čekić
- Department of Machinery Production Engineering, Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo šetalište 9, 71000 Sarajevo, Bosnia and Herzegovina; (K.M.); (A.Č.)
| | - Edina Vranić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (L.H.); (O.R.); (J.H.)
- Correspondence: (A.T.); (E.V.)
| |
Collapse
|