1
|
Lins A, Keuter L, Mulac D, Humpf HU, Langer K. Are stabilizers, located on the surface of PLGA nanoparticles, able to modify the protein adsorption pattern? Int J Pharm 2025; 674:125488. [PMID: 40107467 DOI: 10.1016/j.ijpharm.2025.125488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/23/2025] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is an FDA-approved, biodegradable, and biocompatible polymer, which makes it a promising starting material for the development of nanoparticles. However, in vivo studies have revealed a short biological half-life due to recognition and consequently internalization of these nanoparticles by cells of the mononuclear phagocyte system, resulting in their accumulation in the liver and spleen. In this study, we analyzed the adsorption pattern of proteins on PLGA nanoparticles after incubation with human plasma and human serum. For this analysis, different nanoparticle stabilizer systems were manufactured, and the adsorbed protein amounts were determined after incubation. Additionally, the adsorbed proteins were identified and enrichment and depletion processes of specific proteins that take place during protein incubation were measured via LC-MS/MS. The results showed a high enrichment of several opsonins on the nanoparticle surface and a depletion of most dysopsonins. Therefore, we hypothesize that an explanation for the unfavorable in vivo behavior of PLGA nanoparticles could be the formation of a biomolecular corona with a preferential adsorption of opsonins. Furthermore, we aimed to analyze whether different stabilizers, located on the surface of PLGA nanoparticles, were able to modify the protein adsorption pattern. Our findings suggest that the use of different stabilizers can influence the amount of total bound proteins on the nanoparticle surface. However, the change of stabilizers has only a minor impact on the composition of the biomolecular corona.
Collapse
Affiliation(s)
- Anika Lins
- Institute of Pharmaceutical Technology and Biopharmaceutics, University of Münster, Corrensstr. 48, Muenster 48149, Germany
| | - Lucas Keuter
- Institute of Food Chemistry, University of Münster, Corrensstr. 45, Muenster 48149, Germany
| | - Dennis Mulac
- Institute of Pharmaceutical Technology and Biopharmaceutics, University of Münster, Corrensstr. 48, Muenster 48149, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, Corrensstr. 45, Muenster 48149, Germany
| | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmaceutics, University of Münster, Corrensstr. 48, Muenster 48149, Germany.
| |
Collapse
|
2
|
Aroonthongsawat P, Manocheewa S, Srisawat C, Punnakitikashem P, Suwanwong Y. Enhancement of the in vitro anti-leukemic effect of the histone deacetylase inhibitor romidepsin using Poly-(D, L-lactide-co-glycolide) nanoparticles as a drug carrier. Eur J Pharm Sci 2025; 207:107043. [PMID: 39952370 DOI: 10.1016/j.ejps.2025.107043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
The goal of this work is to develop a delivery system for histone deacetylase inhibitor (HDACi) romidepsin (ROM) using Poly(D, L-lactide-co-glycolide) as a carrier and evaluate its anti-leukemic effects. Romidepsin-loaded nanoparticles (ROM NPs) required for this purpose were fabricated using a single emulsion-solvent evaporation technique. Their physical characteristics and in vitro drug release profiles were studied, alongside biocompatibility and hemocompatibility assessments. Cell viability assays and Annexin V/Propidium Iodide (PI) staining were conducted to evaluate the anti-leukemic and apoptosis induction efficiency of ROM NPs in vitro. ROM NPs displayed a spherical shape with an average hydrodynamic size of about 149.7 ± 8.4 nm, a PDI of 0.11 ± 0.03, and a zeta potential of -25.27 ± 2.12 mV. The nanoparticles demonstrated a high encapsulation efficiency of ROM (∼93 %) and these nanoparticles effectively entered acute leukemia cells, including U937 and Jurkat. ROM NPs also exhibited a prolonged biphasic release pattern, specifically, the initial burst release phase occurred within the first 24 h, followed by a slower, sustained release. Additionally, they showed no hematological or biological toxicity, indicating their potential use for the delivery of anti-cancer drugs through the circulatory system. In tests on acute leukemia cell lines, ROM NPs showed significantly stronger anti-leukemic effects and induced apoptosis to a greater extent compared to free ROM. In summary, ROM NPs represent a promising therapy option for leukemia according to their enhanced anti-leukemic effects. Further modification of this strategy could be performed to enable target specificity, hence minimizing damage to normal cells.
Collapse
Affiliation(s)
- Pinyadapat Aroonthongsawat
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Siriphan Manocheewa
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chatchawan Srisawat
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Bangkok 10700, Thailand; Siriraj Center of Research Excellence in Theranostic Nanomedicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Primana Punnakitikashem
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Bangkok 10700, Thailand; Siriraj Center of Research Excellence in Theranostic Nanomedicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Yaneenart Suwanwong
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence for Biosensors and Bioengineering (CEBB), Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Banstola A, Vautrelle N, Bergin D, Mohammad Y, Gandhi K, Rizwan S, Reynolds JNJ. Characterising a New Sheep Model of Parkinson's Disease Using Unilateral Intracerebral Injection of 6-Hydroxydopamine Into the Substantia Nigra. Eur J Neurosci 2025; 61:e16668. [PMID: 39844472 DOI: 10.1111/ejn.16668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/14/2024] [Accepted: 12/22/2024] [Indexed: 01/24/2025]
Abstract
New therapeutic agents developed for treating neurological disorders are often tested successfully on rodents. Testing in an appropriate large animal model where there is longer lifespan and comparable brain size to humans should improve translational success and is frequently expected by regulatory bodies. In this project, we aimed to establish a novel sheep model of Parkinson's disease as a large-brained experimental model for translational research. Our objective was to create a sheep model of Parkinson's disease by unilaterally infusing the neurotoxin 6-hydroxydopamine into the substantia nigra pars compacta. This approach, previously used to induce parkinsonism in rat and non-human primate models, causes dopaminergic imbalance and induces rotational behaviour in quadrupeds challenged with dopaminergic receptor agonists. In the present sheep study, the mixed dopamine receptor agonist apomorphine, 0.25 mg/kg, and dopamine D2 agonist ropinirole, 0.16 mg/kg, were used to induce rotational behaviour and confirm dopamine depletion. Behavioural signs were then measured and characterised in the field using automated movement tracking with simultaneous video recordings. Post-mortem, the extent of the 6-hydroxydopamine lesions was evaluated through tyrosine hydroxylase immunohistochemistry and quantifying levels of catecholamines (dopamine, 3,4-dihydroxyphenylacetic acid and homovanilic acid) quantified using high-performance liquid chromatography. Our new sheep model of Parkinson's disease using 6-hydroxydopamine is safe and offers a number of regulatory, ethical and financial advantages over non-human primate 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine models. It provides a platform to evaluate novel antiparkinsonian agents and medical devices in a large brain with the promise of greater success for translation into clinical application.
Collapse
Affiliation(s)
- Ashik Banstola
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Nicolas Vautrelle
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - David Bergin
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Younus Mohammad
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Kushan Gandhi
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Shakila Rizwan
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - John N J Reynolds
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
Imam F, Mukhopadhyay S, Kothiyal P, Alshehri S, Saad Alharbi K, Afzal M, Iqbal M, Rashid Khan M, Khalid Anwer M, Ahmed Hattab Alanazi A, Ghanem Alqahtani A, Abdullah Alhamamah M. Formulation and characterization of polymeric nanoparticle of Rivastigmine for effective management of Alzheimer's disease. Saudi Pharm J 2024; 32:102048. [PMID: 38585197 PMCID: PMC10997905 DOI: 10.1016/j.jsps.2024.102048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Memory loss or dementia is a progressive disorder, and one of its common forms is Alzheimer's disease (AD), effecting mostly middle aged and older adults. In the present study, we developed Rivastigmine (RIV) nanoparticles using poly(lactic-co-glycolic acid) (RIV-loaded PLGA NPs) and polyvinyl alcohol (PVA). The prepared RIV-PLGA nanoparticles was evaluated for the management of Alzheimer's disease (AD). The nanoparticles were prepared by the slightly modified nano-precipitation technique. The developed formulations were evaluated for particle size, zeta potential (ZP), polydispersibility index (PDI) and surface morphology and drug content. The experimental result revealed that prepared RIV-loaded PLGA NPs (F1) was optimized having particle size (61.2 ± 4.6 nm), PDI (0.292), ZP (-11.2 ± 1.2). SEM study confirms the prepared nanoparticles depicted non-aggregated as well smooth surface particles without any fracture. This formulation (F1) was further assessed for in vivo studies on animal model. A pharmacological screening on an animal model of Alzheimer's disease revealed that RIV-loaded PLGA NPs formulations treat CNS disorders like Alzheimer's effectively. In addition to that, an in-vivo brain cholinesterase estimation study found that, animals treated with optimized formulation significantly (p < 0.01) reduced brain cholinesterase activity when compared to scopolamine-treated animals. According to the above results, it can be concluded that RIV-loaded PLGA NPs are ideal carriers for delivering the drug at a specific target site in the brain, thus may treat Alzheimer's disease efficiently and improve patient compliance.
Collapse
Affiliation(s)
- Faisal Imam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | | | - Preeti Kothiyal
- School of Pharmacy and Research, Dev Bhoomi Uttarakhand University, Navagaon, Maduwala, Dehradun 248007, Uttarakhand, India
| | - Samiyah Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Khalid Saad Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Al-Qassim, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad Rashid Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulrazaq Ahmed Hattab Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Security Forces Specialized Polyclinics in East Riyadh, General Department of Medical Services, MOI, P. O. Box 7838, Riyadh 11134, Saudi Arabia
| | - Ali Ghanem Alqahtani
- Department of Pharmaceutical Care, Assir Health, Ministry of Health, Abha 11176, Saudi Arabia
| | - Mohammed Abdullah Alhamamah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Grosso C, Silva A, Delerue-Matos C, Barroso MF. Single and Multitarget Systems for Drug Delivery and Detection: Up-to-Date Strategies for Brain Disorders. Pharmaceuticals (Basel) 2023; 16:1721. [PMID: 38139848 PMCID: PMC10747932 DOI: 10.3390/ph16121721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
This review summarizes the recent findings on the development of different types of single and multitarget nanoparticles for disease detection and drug delivery to the brain, focusing on promising active principles encapsulated and nanoparticle surface modification and functionalization. Functionalized nanoparticles have emerged as promising tools for the diagnosis and treatment of brain disorders, offering a novel approach to addressing complex neurological challenges. They can act as drug delivery vehicles, transporting one or multiple therapeutic agents across the blood-brain barrier and precisely releasing them at the site of action. In diagnostics, functionalized nanoparticles can serve as highly sensitive contrast agents for imaging techniques such as magnetic resonance imaging and computed tomography scans. By attaching targeting ligands to the nanoparticles, they can selectively accumulate in the affected areas of the brain, enhancing the accuracy of disease detection. This enables early diagnosis and monitoring of conditions like Alzheimer's or Parkinson's diseases. While the field is still evolving, functionalized nanoparticles represent a promising path for advancing our ability to diagnose and treat brain disorders with greater precision, reduced invasiveness, and improved therapeutic outcomes.
Collapse
Affiliation(s)
- Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.S.); (C.D.-M.); (M.F.B.)
| | - Aurora Silva
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.S.); (C.D.-M.); (M.F.B.)
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, Universidad de Vigo, E-32004 Ourense, Spain
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.S.); (C.D.-M.); (M.F.B.)
| | - Maria Fátima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.S.); (C.D.-M.); (M.F.B.)
| |
Collapse
|
6
|
Sharma S, Dang S. Polysorbate 80 surface modified PLGA nanoparticles: an in-vitro evaluation of cellular uptake and cytotoxicity on neuro-2a cells. J Microencapsul 2023; 40:534-548. [PMID: 37530105 DOI: 10.1080/02652048.2023.2244095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023]
Abstract
AIM Present study focuses on the development of P80 coated PLGA Nanoparticles loaded with drugs, paroxetine (P80-Par-PLGA-NPs) and clonidine (P80-CLD-PLGA-NPs) for in-vitro evaluation of Cellular Uptake & Cytotoxicity on Neuro-2a cells. METHOD P80-Par-PLGA-NPs and P80-CLD-PLGA-NPs were developed and characterised for zeta size, potential, PDI, EE%, DL%, TEM, SEM, FTIR, DSC, in-vitro release, cytotoxicity, histopathological and cell uptake studies using rhodamine loaded P80-NPs. RESULT Mean particle diameter of P80-Par-PLGA-NPs and P80-CLD-PLGA-NPs was 204; 182.7 nm, ZP of -21.8; -18.72 mV and 0.275; 0.341 PDI, respectively. TEM and SEM images revealed homogenous surface morphology. In-vitro drug release showed sustained and complete release in 72 h. Cell viability (>90%) at Cmax and no cytotoxicity in histopathology was observed. Significant higher uptake (96.9%) of P80-modified-NPS was observed as compared to unmodified-NPs (81%) (p < 0.05). CONCLUSION The finding clearly indicated a higher cell uptake of drugs via surface modified P80-coated PLGA-NPs as compared to unmodified particles.
Collapse
Affiliation(s)
- Surbhi Sharma
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Shweta Dang
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| |
Collapse
|
7
|
Poonkuzhali K, Seenivasagan R, Prabhakaran J, Karthika A. Synthesis and characterization of chemical engineered PLGA nanosphere: Triggering mechanism of Catechol-O-methyltransferase inhibition on in vivo neurodegeneration. Bioorg Chem 2023; 139:106673. [PMID: 37354660 DOI: 10.1016/j.bioorg.2023.106673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/26/2023]
Abstract
Chemically engineered PLGA nanospheres are one of the emerging technologies for treating neurodegenerative disorders by inhibiting Catechol-O-methyltransferase (COMT). PLGA-MATPM nanospheres were chemically synthesized using PLGA and MATPM (N-allyl-N-(3-(m-tolyloxy)propyl) methioninate). The tailored PLGA nanospheres induce dose-dependent COMT inhibition in competitive kinetic mode. The interactions between COMT and PLGA nanosphere are explained by spectroscopic and molecular dynamics analysis. PLGA-MATPM NPs suppressed the growth of neuroblastoma cells due to the neurodegenerative toxicity of MPTP induction, demonstrating its potency as a cure for neurological disorders. PLGA-MATPM NPs cross the blood-brain barrier more effectively than those in the blood. Furthermore, PLGA nanospheres showed the most neurodegenerative recovery against MPTP-induced C57BL/6 mice. Using magnetic resonance imaging (MRI), it was validated for quality images of cerebral blood flow (CBF).
Collapse
Affiliation(s)
- K Poonkuzhali
- Bioprocess and Microbial Laboratory, Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry - 605 014, India.
| | - R Seenivasagan
- Department of Biotechnology, Arulmigu Kalasalingam College of Arts and Science, Krishnankoil - 626126, Tamil Nadu, India
| | - J Prabhakaran
- Organic Synthesis Laboratory, Department of Chemistry, School of Physical, Chemical and Applied Sciences, Pondicherry University, Pondicherry - 605 014, India
| | - A Karthika
- Department of Microbiology, The Standard Fireworks Rajaratnam College for Women, Sivakasi - 626123, Tamil Nadu, India
| |
Collapse
|
8
|
Haider M, Jagal J, Bajbouj K, Sharaf BM, Sahnoon L, Okendo J, Semreen MH, Hamda M, Soares NC. Integrated multi-omics analysis reveals unique signatures of paclitaxel-loaded poly(lactide-co-glycolide) nanoparticles treatment of head and neck cancer cells. Proteomics 2023; 23:e2200380. [PMID: 37148169 DOI: 10.1002/pmic.202200380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/22/2023] [Accepted: 04/05/2023] [Indexed: 05/08/2023]
Abstract
The use of poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) as carriers for chemotherapeutic drugs is regarded as an actively targeted nano-therapy for the specific delivery of anti-cancer drugs to target cells. However, the exact mechanism by which PLGA NPs boost anticancer cytotoxicity at the molecular level remains largely unclear. This study employed different molecular approaches to define the response of carcinoma FaDu cells to different types of treatment, specifically: paclitaxel (PTX) alone, drug free PLGA NPs, and PTX-loaded PTX-PLGA NPs. Functional cell assays revealed that PTX-PLGA NPs treated cells had a higher level of apoptosis than PTX alone, whereas the complementary, UHPLC-MS/MS (TIMS-TOF) based multi-omics analyses revealed that PTX-PLGA NPs treatment resulted in increased abundance of proteins associated with tubulin, as well as metabolites such as 5-thymidylic acid, PC(18:1(9Z)/18:1(9Z0), vitamin D, and sphinganine among others. The multi-omics analyses revealed new insights about the molecular mechanisms underlying the action of novel anticancer NP therapies. In particular, PTX-loaded NPs appeared to exacerbate specific changes induced by both PLGA-NPs and PTX as a free drug. Hence, the PTX-PLGA NPs' molecular mode of action, seen in greater detail, depends on this synergy that ultimately accelerates the apoptotic process, resulting in cancer cell death.
Collapse
Affiliation(s)
- Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, UAE
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, UAE
| | - Jayalakshmi Jagal
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, UAE
| | - Khuloud Bajbouj
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, UAE
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, UAE
| | - Basma M Sharaf
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, UAE
| | - Lina Sahnoon
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, UAE
| | - Javan Okendo
- Systems and Chemical Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mohammad H Semreen
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, UAE
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, UAE
| | - Mawieh Hamda
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, UAE
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, UAE
| | - Nelson C Soares
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, UAE
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, UAE
- Laboratory of Proteomics, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA School/Faculdade de Lisboa, Lisbon, Portugal
| |
Collapse
|
9
|
Garcia L, Palma-Florez S, Espinosa V, Soleimani Rokni F, Lagunas A, Mir M, García-Celma MJ, Samitier J, Rodríguez-Abreu C, Grijalvo S. Ferulic acid-loaded polymeric nanoparticles prepared from nano-emulsion templates facilitate internalisation across the blood-brain barrier in model membranes. NANOSCALE 2023; 15:7929-7944. [PMID: 37067009 DOI: 10.1039/d2nr07256d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A hydroxycinnamic acid derivative, namely ferulic acid (FA) has been successfully encapsulated in polymeric nanoparticles (NPs) based on poly(lactic-co-glycolic acid) (PLGA). FA-loaded polymeric NPs were prepared from O/W nano-emulsion templates using the phase inversion composition (PIC) low-energy emulsification method. The obtained PLGA NPs exhibited high colloidal stability, good drug-loading capacity, and particle hydrodynamic diameters in the range of 74 to 117 nm, depending on the FA concentration used. In vitro drug release studies confirmed a diffusion-controlled mechanism through which the amount of released FA reached a plateau at 60% after 6 hours-incubation. Five kinetic models were used to fit the FA release data as a function of time. The Weibull distribution and Korsmeyer-Peppas equation models provided the best fit to our experimental data and suggested quasi-Fickian diffusion behaviour. Moderate dose-response antioxidant and radical scavenging activities of FA-loaded PLGA NPs were demonstrated using the DPPH˙ assay achieving inhibition activities close to 60 and 40%, respectively. Cell culture studies confirmed that FA-loaded NPs were not toxic according to the MTT colorimetric assay, were able to internalise efficiently SH-SY5Y neuronal cells and supressed the intracellular ROS-level induced by H2O2 leading to 52% and 24.7% of cellular viability at 0.082 and 0.041 mg mL-1, respectively. The permeability of the NPs through the blood brain barrier was tested with an in vitro organ-on-a-chip model to evaluate the ability of the FA-loaded PLGA and non-loaded PLGA NPs to penetrate to the brain. NPs were able to penetrate the barrier, but permeability decreased when FA was loaded. These results are promising for the use of loaded PLGA NPs for the management of neurological diseases.
Collapse
Affiliation(s)
- Luna Garcia
- IQAC, CSIC, Jordi Girona 18-26, E-08034-Barcelona, Spain.
| | - Sujey Palma-Florez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), E-08028-Barcelona, Spain
- CIBER-BBN, ISCIII, Spain.
| | | | | | - Anna Lagunas
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), E-08028-Barcelona, Spain
- CIBER-BBN, ISCIII, Spain.
| | - Mònica Mir
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), E-08028-Barcelona, Spain
- Department of Electronics and Biomedical engineering, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- CIBER-BBN, ISCIII, Spain.
| | - María José García-Celma
- Department of Pharmacy, Pharmaceutical Technology, and Physical-chemistry, IN2UB, R+D Associated Unit to CSIC, Pharmaceutical Nanotechnology, University of Barcelona, Joan XXIII 27-31, E-08028-Barcelona, Spain
| | - Josep Samitier
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), E-08028-Barcelona, Spain
- CIBER-BBN, ISCIII, Spain.
| | | | | |
Collapse
|
10
|
Kaya S, Callan B, Hawthorne S. Non-Invasive, Targeted Nanoparticle-Mediated Drug Delivery across a Novel Human BBB Model. Pharmaceutics 2023; 15:pharmaceutics15051382. [PMID: 37242623 DOI: 10.3390/pharmaceutics15051382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The blood-brain barrier (BBB) is a highly sophisticated system with the ability to regulate compounds transporting through the barrier and reaching the central nervous system (CNS). The BBB protects the CNS from toxins and pathogens but can cause major issues when developing novel therapeutics to treat neurological disorders. PLGA nanoparticles have been developed to successfully encapsulate large hydrophilic compounds for drug delivery. Within this paper, we discuss the encapsulation of a model compound Fitc-dextran, a large molecular weight (70 kDa), hydrophilic compound, with over 60% encapsulation efficiency (EE) within a PLGA nanoparticle (NP). The NP surface was chemically modified with DAS peptide, a ligand that we designed which has an affinity for nicotinic receptors, specifically alpha 7 nicotinic receptors, found on the surface of brain endothelial cells. The attachment of DAS transports the NP across the BBB by receptor-mediated transcytosis (RMT). Assessment of the delivery efficacy of the DAS-conjugated Fitc-dextran-loaded PLGA NP was studied in vitro using our optimal triculture in vitro BBB model, which successfully replicates the in vivo BBB environment, producing high TEER (≥230 ) and high expression of ZO1 protein. Utilising our optimal BBB model, we successfully transported fourteen times the concentration of DAS-Fitc-dextran-PLGA NP compared to non-conjugated Fitc-dextran-PLGA NP. Our novel in vitro model is a viable method of high-throughput screening of potential therapeutic delivery systems to the CNS, such as our receptor-targeted DAS ligand-conjugated NP, whereby only lead therapeutic compounds will progress to in vivo studies.
Collapse
Affiliation(s)
- Shona Kaya
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, N. Ireland BT52 1SA, UK
| | - Bridgeen Callan
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, N. Ireland BT52 1SA, UK
| | - Susan Hawthorne
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, N. Ireland BT52 1SA, UK
| |
Collapse
|
11
|
Qiao R, Fu C, Forgham H, Javed I, Huang X, Zhu J, Whittaker AK, Davis TP. Magnetic Iron Oxide Nanoparticles for Brain Imaging and Drug Delivery. Adv Drug Deliv Rev 2023; 197:114822. [PMID: 37086918 DOI: 10.1016/j.addr.2023.114822] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/14/2023] [Accepted: 04/09/2023] [Indexed: 04/24/2023]
Abstract
Central nervous system (CNS) disorders affect as many as 1.5 billion people globally. The limited delivery of most imaging and therapeutic agents into the brain is a major challenge for treatment of CNS disorders. With the advent of nanotechnologies, controlled delivery of drugs with nanoparticles holds great promise in CNS disorders for overcoming the blood-brain barrier (BBB) and improving delivery efficacy. In recent years, magnetic iron oxide nanoparticles (MIONPs) have stood out as a promising theranostic nanoplatform for brain imaging and drug delivery as they possess unique physical properties and biodegradable characteristics. In this review, we summarize the recent advances in MIONP-based platforms as imaging and drug delivery agents for brain diseases. We firstly introduce the methods of synthesis and surface functionalization of MIONPs with emphasis on the inclusion of biocompatible polymers that allow for the addition of tailored physicochemical properties. We then discuss the recent advances in in vivo imaging and drug delivery applications using MIONPs. Finally, we present a perspective on the remaining challenges and possible future directions for MIONP-based brain delivery systems.
Collapse
Affiliation(s)
- Ruirui Qiao
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Changkui Fu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Helen Forgham
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ibrahim Javed
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xumin Huang
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiayuan Zhu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew K Whittaker
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Thomas P Davis
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
12
|
Grijalvo S, Rodriguez-Abreu C. Polymer nanoparticles from low-energy nanoemulsions for biomedical applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:339-350. [PMID: 36959976 PMCID: PMC10028572 DOI: 10.3762/bjnano.14.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The formulation of nanoemulsions by low-energy strategies, particularly by the phase inversion composition method, and the use of these nanoemulsions as templates for the preparation of polymer nanoparticles for biomedical applications are reviewed. The methods of preparation, nature of the components in the formulation, and their impact on the physicochemical properties, drug loading, and drug release are discussed. We highlight the utilization of ethyl cellulose, poly(lactic-co-glycolic acid), and polyurethane/polyurea in the field of nanomedicine as potential drug delivery systems. Advances are still needed to achieve better control over size distribution, nanoparticle concentration, surface functionalization, and the type of polymers that can be processed.
Collapse
Affiliation(s)
| | - Carlos Rodriguez-Abreu
- CIBER-BBN, ISCIII, Jordi Girona 18–26, 08034 Barcelona, Spain
- Instituto de Quimica Avanzada de Cataluña (IQAC), CSIC, Jordi Girona 18–26, 08034 Barcelona, Spain
| |
Collapse
|
13
|
Dols-Perez A, Fornaguera C, Feiner-Gracia N, Grijalvo S, Solans C, Gomila G. Effect of surface functionalization and loading on the mechanical properties of soft polymeric nanoparticles prepared by nano-emulsion templating. Colloids Surf B Biointerfaces 2023; 222:113019. [PMID: 36435028 DOI: 10.1016/j.colsurfb.2022.113019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022]
Abstract
Drug and gene delivery systems based on polymeric nanoparticles offer a greater efficacy and a reduced toxicity compared to traditional formulations. Recent studies have evidenced that their internalization, biodistribution and efficacy can be affected, among other factors, by their mechanical properties. Here, we analyze by means of Atomic Force Microscopy force spectroscopy how composition, surface functionalization and loading affect the mechanics of nanoparticles. For this purpose, nanoparticles made of Poly(lactic-co-glycolic) (PLGA) and Ethyl cellulose (EC) with different functionalizations and loading were prepared by nano-emulsion templating using the Phase Inversion Composition method (PIC) to form the nano-emulsions. A multiparametric nanomechanical study involving the determination of the Young's modulus, maximum deformation and breakthrough force was carried out. The obtained results showed that composition, surface functionalization and loading affect the nanomechanical properties in a different way, thus requiring, in general, to consider the overall mechanical properties after the addition of a functionalization or loading. A graphical representation method has been proposed enabling to easily identify mechanically equivalent formulations, which is expected to be useful in the development of soft polymeric nanoparticles for pre-clinical and clinical use.
Collapse
Affiliation(s)
- Aurora Dols-Perez
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; Institut de Bioenginyeria de Catalunya (IBEC), C/ Balidiri i Reixac 15-21, 08028 Barcelona, Spain; Departament of Electronics and Biomedical Engineering, Universitat de Barcelona, C/ Martí i Franquès 1, 08028 Barcelona, Spain.
| | - Cristina Fornaguera
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; Grup d'Enginyeria de Materials (Gemat) - Institut Químic de Sarrià (IQS) - Universitat Ramon Llull (URL), Barcelona, Spain
| | - Natalia Feiner-Gracia
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Santiago Grijalvo
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Conxita Solans
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Gabriel Gomila
- Institut de Bioenginyeria de Catalunya (IBEC), C/ Balidiri i Reixac 15-21, 08028 Barcelona, Spain; Departament of Electronics and Biomedical Engineering, Universitat de Barcelona, C/ Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
14
|
Sharma S, Dang S. Nanocarrier-Based Drug Delivery to Brain: Interventions of Surface Modification. Curr Neuropharmacol 2023; 21:517-535. [PMID: 35794771 PMCID: PMC10207924 DOI: 10.2174/1570159x20666220706121412] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 04/29/2022] [Accepted: 05/14/2022] [Indexed: 11/22/2022] Open
Abstract
Brain disorders are a prevalent and rapidly growing problem in the medical field as they adversely affect the quality of life of a human. With an increase in life expectancy, it has been reported that diseases like Alzheimer's, Parkinson's, stroke and brain tumors, along with neuropsychological disorders, are also being reported at an alarmingly high rate. Despite various therapeutic methods for treating brain disorders, drug delivery to the brain has been challenging because of a very complex Blood Brain Barrier, which precludes most drugs from entering the brain in effective concentrations. Nano-carrier-based drug delivery systems have been reported widely by researchers to overcome this barrier layer. These systems due to their small size, offer numerous advantages; however, their short residence time in the body owing to opsonization hinders their success in vivo. This review article focuses on the various aspects of modifying the surfaces of these nano-carriers with polymers, surfactants, protein, antibodies, cell-penetrating peptides, integrin binding peptides and glycoproteins such as transferrin & lactoferrin leading to enhanced residence time, desirable characteristics such as the ability to cross the blood-brain barrier (BBB), increased bioavailability in regions of the brain and targeted drug delivery.
Collapse
Affiliation(s)
- Surbhi Sharma
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Shweta Dang
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| |
Collapse
|
15
|
García-Melero J, López-Mitjavila JJ, García-Celma MJ, Rodriguez-Abreu C, Grijalvo S. Rosmarinic Acid-Loaded Polymeric Nanoparticles Prepared by Low-Energy Nano-Emulsion Templating: Formulation, Biophysical Characterization, and In Vitro Studies. MATERIALS 2022; 15:ma15134572. [PMID: 35806696 PMCID: PMC9267406 DOI: 10.3390/ma15134572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 11/16/2022]
Abstract
Rosmarinic acid (RA), a caffeic acid derivative, has been loaded in polymeric nanoparticles made up of poly(lactic-co-glycolic acid) (PLGA) through a nano-emulsion templating process using the phase-inversion composition (PIC) method at room temperature. The obtained RA-loaded nanoparticles (NPs) were colloidally stable exhibiting average diameters in the range of 70–100 nm. RA was entrapped within the PLGA polymeric network with high encapsulation efficiencies and nanoparticles were able to release RA in a rate-controlled manner. A first-order equation model fitted our experimental data and confirmed the prevalence of diffusion mechanisms. Protein corona formation on the surface of NPs was assessed upon incubation with serum proteins. Protein adsorption induced an increase in the hydrodynamic diameter and a slight shift towards more negative surface charges of the NPs. The radical scavenging activity of RA-loaded NPs was also studied using the DPPH·assay and showed a dose–response relationship between the NPs concentration and DPPH inhibition. Finally, RA-loaded NPs did not affect the cellular proliferation of the human neuroblastoma SH-SY5Y cell line and promoted efficient cellular uptake. These results are promising for expanding the use of O/W nano-emulsions in biomedical applications.
Collapse
Affiliation(s)
- Jessica García-Melero
- Institute for Advanced Chemistry of Catalonia (CSIC-IQAC), Jordi Girona 18-26, E-08034 Barcelona, Spain; (J.G.-M.); (J.-J.L.-M.)
| | - Joan-Josep López-Mitjavila
- Institute for Advanced Chemistry of Catalonia (CSIC-IQAC), Jordi Girona 18-26, E-08034 Barcelona, Spain; (J.G.-M.); (J.-J.L.-M.)
| | - María José García-Celma
- Department of Pharmacy, Pharmaceutical Technology, and Physical-Chemistry, R+D Associated Unit to CSIC Pharmaceutical Nanotechnology, IN2UB, University of Barcelona, Joan XXIII 27-31, E-08028 Barcelona, Spain;
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Carlos Rodriguez-Abreu
- Institute for Advanced Chemistry of Catalonia (CSIC-IQAC), Jordi Girona 18-26, E-08034 Barcelona, Spain; (J.G.-M.); (J.-J.L.-M.)
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Correspondence: (C.R.-A.); (S.G.)
| | - Santiago Grijalvo
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Correspondence: (C.R.-A.); (S.G.)
| |
Collapse
|
16
|
Farhoudi M, Sadigh-Eteghad S, Mahmoudi J, Farjami A, Farjami A, Mahmoudian M, Salatin S. The therapeutic benefits of intravenously administrated nanoparticles in stroke and age-related neurodegenerative diseases. Curr Pharm Des 2022; 28:1985-2000. [PMID: 35676838 DOI: 10.2174/1381612828666220608093639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
Abstract
The mean global lifetime risk of neurological disorders such as stroke, Alzheimer's disease (AD), and Parkinson's disease (PD) has shown a large effect on economy and society.Researchersare stillstruggling to find effective drugs to treatneurological disordersand drug delivery through the blood-brain barrier (BBB) is a major challenge to be overcome. The BBB is a specialized multicellular barrier between the peripheral blood circulation and the neural tissue. Unique and selective features of the BBB allow it to tightly control brain homeostasis as well as the movement of ions and molecules. Failure in maintaining any of these substances causes BBB breakdown and subsequently enhances neuroinflammation and neurodegeneration.BBB disruption is evident in many neurologicalconditions.Nevertheless, the majority of currently available therapies have tremendous problems for drug delivery into the impaired brain. Nanoparticle (NP)-mediated drug delivery has been considered as a profound substitute to solve this problem. NPs are colloidal systems with a size range of 1-1000 nm whichcan encapsulate therapeutic payloads, improve drug passage across the BBB, and target specific brain areas in neurodegenerative/ischemic diseases. A wide variety of NPs has been displayed for the efficient brain delivery of therapeutics via intravenous administration, especially when their surfaces are coated with targeting moieties. Here, we discuss recent advances in the development of NP-based therapeutics for the treatment of stroke, PD, and AD as well as the factors affecting their efficacy after systemic administration.
Collapse
Affiliation(s)
- Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Afsaneh Farjami
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sara Salatin
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Tang L, He S, Yin Y, Liu H, Hu J, Cheng J, Wang W. Combination of Nanomaterials in Cell-Based Drug Delivery Systems for Cancer Treatment. Pharmaceutics 2021; 13:pharmaceutics13111888. [PMID: 34834304 PMCID: PMC8621332 DOI: 10.3390/pharmaceutics13111888] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023] Open
Abstract
Cell-based drug delivery systems have shown tremendous advantages in cancer treatment due to their distinctive properties. For instance, delivery of therapeutics using tumor-tropic cells like neutrophils, lymphocytes and mesenchymal stem cells can achieve specific tumor targeting due to the "Trojan Horse" effect. Other circulatory cells like erythrocytes and platelets can greatly improve the circulation time of nanoparticles due to their innate long circulation property. Adipocytes, especially cancer-associated adipocytes, play key roles in tumor development and metabolism, therefore, adipocytes are regarded as promising bio-derived nanoplatforms for anticancer targeted drug delivery. Nanomaterials are important participants in cell-based drug delivery because of their unique physicochemical characteristics. Therefore, the integration of various nanomaterials with different cell types will endow the constructed delivery systems with many attractive properties due to the merits of both. In this review, a number of strategies based on nanomaterial-involved cell-mediated drug delivery systems for cancer treatment will be summarized. This review discusses how nanomaterials can be a benefit to cell-based therapies and how cell-derived carriers overcome the limitations of nanomaterials, which highlights recent advancements and specific biomedical applications based on nanomaterial-mediated, cell-based drug delivery systems.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.T.); (S.H.); (Y.Y.); (H.L.); (J.H.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 211198, China
| | - Shun He
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.T.); (S.H.); (Y.Y.); (H.L.); (J.H.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.T.); (S.H.); (Y.Y.); (H.L.); (J.H.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 211198, China
| | - Hening Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.T.); (S.H.); (Y.Y.); (H.L.); (J.H.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 211198, China
| | - Jingyi Hu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.T.); (S.H.); (Y.Y.); (H.L.); (J.H.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 211198, China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 211166, China
- Correspondence: (J.C.); (W.W.)
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.T.); (S.H.); (Y.Y.); (H.L.); (J.H.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 211198, China
- Correspondence: (J.C.); (W.W.)
| |
Collapse
|
18
|
Li H, Wang Y, Tang Q, Yin D, Tang C, He E, Zou L, Peng Q. The protein corona and its effects on nanoparticle-based drug delivery systems. Acta Biomater 2021; 129:57-72. [PMID: 34048973 DOI: 10.1016/j.actbio.2021.05.019] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/25/2021] [Accepted: 05/18/2021] [Indexed: 02/04/2023]
Abstract
In most cases, once nanoparticles (NPs) enter the blood, their surface is covered by biological molecules, especially proteins, forming a so-called protein corona (PC). As a result, what the cells of the body "see" is not the NPs as formulated by the chemists, but the PC. In this way, the PC can influence the effects of the NPs and even mask the desired effects of the NP components. While this can argue for trying to inhibit protein-nanomaterial interactions, encapsulating NPs in an endogenous PC may increase their clinical usefulness. In this review, we briefly introduce the concept of the PC, its formation and its effects on the behavior of NPs. We also discuss how to reduce the formation of PCs or exploit them to enhance NP functions. Studying the interactions between proteins and NPs will provide insights into their clinical activity in health and disease. STATEMENT OF SIGNIFICANCE: The formation of protein corona (PC) will affect the operation of nanoparticles (NPs) in vivo. Since there are many proteins in the blood, it is impossible to completely overcome the formation of PC. Therefore, the use of PCs to deliver drug is the best choice. De-opsonins adsorbed on NPs can reduce macrophage phagocytosis and cytotoxicity of NPs, and prolong their circulation in blood. Albumin, apolipoprotein and transferrin are typical de-opsonins. In present review, we mainly discuss how to optimize the delivery of nanoparticles through the formation of albumin corona, transferrin corona and apolipoprotein corona in vivo or in vitro.
Collapse
Affiliation(s)
- Hanmei Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu university, Chengdu 610106, China
| | - Yao Wang
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Qi Tang
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Dan Yin
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Chuane Tang
- School of Mechanical Engineering, Chengdu university, Chengdu 610106, China
| | - En He
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu university, Chengdu 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu university, Chengdu 610106, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
19
|
Szabat-Iriaka B, Le Borgne M. Brain safety concerns of nanomedicines: The need for a specific regulatory framework. Drug Discov Today 2021; 26:2502-2507. [PMID: 34224902 DOI: 10.1016/j.drudis.2021.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/08/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022]
Abstract
There is growing interest in using nanomaterials as carriers for the delivery of drugs in diseases such as cancers and central nervous system (CNS) disorders. Although several nanomaterial-based products have been approved, the regulatory framework for their use in humans remains limited. Nanomedicines (NMs) are usually not designed to cross the blood-brain barrier (BBB). Given the lack of a comprehensive set of standardized methods to assess their in vivo fate, there is an urgent need to characterize NM biodistribution as well as the toxicity that could result from their interaction with the CNS. Here, we discuss the risks of potential unwanted BBB crossing and brain toxicity of nanocarriers (NCs), along with the safety assessment and current regulatory challenges related to NMs.
Collapse
Affiliation(s)
- Bartlomiej Szabat-Iriaka
- EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université Claude Bernard Lyon 1, Univ Lyon, Lyon 69373, France
| | - Marc Le Borgne
- EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université Claude Bernard Lyon 1, Univ Lyon, Lyon 69373, France; Small Molecules for Biological Targets Team, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, Lyon 69373, France.
| |
Collapse
|
20
|
Zhi K, Raji B, Nookala AR, Khan MM, Nguyen XH, Sakshi S, Pourmotabbed T, Yallapu MM, Kochat H, Tadrous E, Pernell S, Kumar S. PLGA Nanoparticle-Based Formulations to Cross the Blood-Brain Barrier for Drug Delivery: From R&D to cGMP. Pharmaceutics 2021; 13:pharmaceutics13040500. [PMID: 33917577 PMCID: PMC8067506 DOI: 10.3390/pharmaceutics13040500] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 12/24/2022] Open
Abstract
The blood–brain barrier (BBB) is a natural obstacle for drug delivery into the human brain, hindering treatment of central nervous system (CNS) disorders such as acute ischemic stroke, brain tumors, and human immunodeficiency virus (HIV)-1-associated neurocognitive disorders. Poly(lactic-co-glycolic acid) (PLGA) is a biocompatible polymer that is used in Food and Drug Administration (FDA)-approved pharmaceutical products and medical devices. PLGA nanoparticles (NPs) have been reported to improve drug penetration across the BBB both in vitro and in vivo. Poly(ethylene glycol) (PEG), poly(vinyl alcohol) (PVA), and poloxamer (Pluronic) are widely used as excipients to further improve the stability and effectiveness of PLGA formulations. Peptides and other linkers can be attached on the surface of PLGA to provide targeting delivery. With the newly published guidance from the FDA and the progress of current Good Manufacturing Practice (cGMP) technologies, manufacturing PLGA NP-based drug products can be achieved with higher efficiency, larger quantity, and better quality. The translation from bench to bed is feasible with proper research, concurrent development, quality control, and regulatory assurance.
Collapse
Affiliation(s)
- Kaining Zhi
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, 208 South Dudley Street, Memphis, TN 38163, USA; (B.R.); (H.K.)
- Correspondence: (K.Z.); (S.K.)
| | - Babatunde Raji
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, 208 South Dudley Street, Memphis, TN 38163, USA; (B.R.); (H.K.)
| | | | - Mohammad Moshahid Khan
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, Memphis, TN 38163, USA;
| | - Xuyen H. Nguyen
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (X.H.N.); (S.S.); (E.T.); (S.P.)
| | - Swarna Sakshi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (X.H.N.); (S.S.); (E.T.); (S.P.)
| | - Tayebeh Pourmotabbed
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN 38163, USA;
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, University of Texas Rio Grande Valley, McAllen, TX 78504, USA;
| | - Harry Kochat
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, 208 South Dudley Street, Memphis, TN 38163, USA; (B.R.); (H.K.)
| | - Erene Tadrous
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (X.H.N.); (S.S.); (E.T.); (S.P.)
| | - Shelby Pernell
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (X.H.N.); (S.S.); (E.T.); (S.P.)
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (X.H.N.); (S.S.); (E.T.); (S.P.)
- Correspondence: (K.Z.); (S.K.)
| |
Collapse
|
21
|
Central nervous system delivery of molecules across the blood-brain barrier. Neurochem Int 2021; 144:104952. [PMID: 33400964 DOI: 10.1016/j.neuint.2020.104952] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022]
Abstract
Therapies targeting neurological conditions such as Alzheimer's or Parkinson's diseases are hampered by the presence of the blood-brain barrier (BBB). During the last decades, several approaches have been developed to overcome the BBB, such as the use of nanoparticles (NPs) based on biomaterials, or alternative methods to open the BBB. In this review, we briefly highlight these strategies and the most recent advances in this field. Limitations and advantages of each approach are discussed. Combination of several methods such as functionalized NPs targeting the receptor-mediated transcytosis system with the use of magnetic resonance imaging-guided focused ultrasound (FUS) might be a promising strategy to develop theranostic tools as well as to safely deliver therapeutic molecules, such as drugs, neurotrophic factors or antibodies within the brain parenchyma.
Collapse
|