1
|
Rodriguez A, Banazadeh A, Ali A, Singh R, Zhou C. Limitation of anion exchange chromatography and potential application of hydrophobic interaction chromatography for monitoring AAV9 capsid degradation upon thermal stress. J Pharm Sci 2025; 114:983-989. [PMID: 39551236 DOI: 10.1016/j.xphs.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
Adeno-Associated Virus (AAV) is often selected as the vector of choice for gene therapy due to its superior clinical performance compared to other gene delivery systems. Currently the characterization of AAV degradation, especially the chemical degradation of capsid, has been limited due to lack of suitable methods. Our study using AAV9 as a model molecule shows that anion exchange chromatography (AEX) as a charge-based separation method has limitations in monitoring the chemical degradation of AAV9 capsid due to a confounding effect from DNA cargo ejection. We developed a hydrophobic interaction chromatography (HIC) method, free from DNA interference, that could serve as a quick and reliable alternative to resource-demanding peptide mapping method for monitoring AAV capsid chemical degradation. Compared with brief thermal stress at 75 °C, AAV9 capsid exhibited much higher levels of chemical degradation but slower capsid titer loss upon extended exposure for 4 weeks at 40 °C.
Collapse
Affiliation(s)
- Antonela Rodriguez
- Biologics Drug Product Development, AbbVie Bioresearch Center, Worcester, MA 01605, United States
| | - Ali Banazadeh
- Analytical Development, Product Development Science & Technology, AbbVie Bioresearch Center, Worcester, MA 01605, United States
| | - Amr Ali
- Analytical Development, Product Development Science & Technology, AbbVie Bioresearch Center, Worcester, MA 01605, United States
| | - Rajeeva Singh
- Biologics Drug Product Development, AbbVie Bioresearch Center, Worcester, MA 01605, United States
| | - Chen Zhou
- Biologics Drug Product Development, AbbVie Bioresearch Center, Worcester, MA 01605, United States.
| |
Collapse
|
2
|
Eisinger M, Rahn H, Chen Y, Fernandes M, Lin Z, Hentze N, Tavella D, Moussa EM. Elucidation of the Reversible Self-Association Interface of a Diabody-Interleukin Fusion Protein Using Hydrogen-Exchange Mass Spectrometry and In Silico Modeling. Mol Pharm 2024; 21:4285-4296. [PMID: 38922328 DOI: 10.1021/acs.molpharmaceut.4c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Reversible self-association (RSA) of therapeutic proteins presents major challenges in the development of high-concentration formulations, especially those intended for subcutaneous administration. Understanding self-association mechanisms is therefore critical to the design and selection of candidates with acceptable developability to advance to clinical trials. The combination of experiments and in silico modeling presents a powerful tool to elucidate the interface of self-association. RSA of monoclonal antibodies has been studied extensively under different solution conditions and have been shown to involve interactions for both the antigen-binding fragment and the crystallizable fragment. Novel modalities such as bispecific antibodies, antigen-binding fragments, single-chain-variable fragments, and diabodies constitute a fast-growing class of antibody-based therapeutics that have unique physiochemical properties compared to monoclonal antibodies. In this study, the RSA interface of a diabody-interleukin 22 fusion protein (FP-1) was studied using hydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS) in combination with in silico modeling. Taken together, the results show that a complex solution behavior underlies the self-association of FP-1 and that the interface thereof can be attributed to a specific segment in the variable light chain of the diabody. These findings also demonstrate that the combination of HDX-MS with in silico modeling is a powerful tool to guide the design and candidate selection of novel biotherapeutic modalities.
Collapse
Affiliation(s)
- Martin Eisinger
- Biologics Analytical Research and Development, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen 67061, Germany
| | - Harri Rahn
- Biologics Analytical Research and Development, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen 67061, Germany
| | - Yong Chen
- Biologics Analytical Research and Development, AbbVie Inc., North Chicago, Illinois 60061, United States
| | - Melissa Fernandes
- Biologics Drug Product Development, AbbVie Inc., North Chicago, Illinois 60061, United States
| | - Zhiyi Lin
- Biologics Drug Product Development, AbbVie Inc., North Chicago, Illinois 60061, United States
| | - Nikolai Hentze
- Biologics Analytical Research and Development, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen 67061, Germany
| | - Davide Tavella
- Biotherapeutics and Genetic Medicine, AbbVie Inc., Worcester, Massachusetts 01604, United States
| | - Ehab M Moussa
- Biologics Drug Product Development, AbbVie Inc., North Chicago, Illinois 60061, United States
| |
Collapse
|
3
|
Malani H, Shrivastava A, Nupur N, Rathore AS. LC-MS Characterization and Stability Assessment Elucidate Correlation Between Charge Variant Composition and Degradation of Monoclonal Antibody Therapeutics. AAPS J 2024; 26:42. [PMID: 38570351 DOI: 10.1208/s12248-024-00915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
Aggregation stability of monoclonal antibody (mAb) therapeutics is influenced by many critical quality attributes (CQA) such as charge and hydrophobic variants in addition to environmental factors. In this study, correlation between charge heterogeneity and stability of mAbs for bevacizumab and trastuzumab has been investigated under a variety of stresses including thermal stress at 40 °C, thermal stress at 55 °C, shaking (mechanical), and low pH. Size- and charge-based heterogeneities were monitored using analytical size exclusion chromatography (SEC) and cation exchange chromatography (CEX), respectively, while dynamic light scattering was used to assess changes in hydrodynamic size. CEX analysis revealed an increase in cumulative acidic content for all variants of both mAbs post-stress treatment attributed to increased deamidation. Higher charge heterogeneity was observed in variants eluting close to the main peak than the ones eluting further away (25-fold and 42-fold increase in acidic content for main and B1 of bevacizumab and 19-fold for main of trastuzumab, respectively, under thermal stress; 50-fold increase in acidic for main and B1 of bevacizumab and 10% rise in basic content of main of trastuzumab under pH stress). Conversely, variants eluting far away from main exhibit greater aggregation as compared to close-eluting ones. Aggregation kinetics of variants followed different order for the different stresses for both mAbs (2nd order for thermal and pH stresses and 0th order for shaking stress). Half-life of terminal charge variants of both mAbs was 2- to 8-fold less than main indicating increased degradation propensity.
Collapse
Affiliation(s)
- Himanshu Malani
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Anuj Shrivastava
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Neh Nupur
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
4
|
Brudar S, Breydo L, Chung E, Dill KA, Ehterami N, Phadnis K, Senapati S, Shameem M, Tang X, Tayyab M, Hribar-Lee B. Antibody association in solution: cluster distributions and mechanisms. MAbs 2024; 16:2339582. [PMID: 38666507 PMCID: PMC11057677 DOI: 10.1080/19420862.2024.2339582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
Understanding factors that affect the clustering and association of antibodies molecules in solution is critical to their development as therapeutics. For 19 different monoclonal antibody (mAb) solutions, we measured the viscosities, the second virial coefficients, the Kirkwood-Buff integrals, and the cluster distributions of the antibody molecules as functions of protein concentration. Solutions were modeled using the statistical-physics Wertheim liquid-solution theory, representing antibodies as Y-shaped molecular structures of seven beads each. We found that high-viscosity solutions result from more antibody molecules per cluster. Multi-body properties such as viscosity are well predicted experimentally by the 2-body Kirkwood-Buff quantity, G22, but not by the second virial coefficient, B22, and well-predicted theoretically from the Wertheim protein-protein sticking energy. Weakly interacting antibodies are rate-limited by nucleation; strongly interacting ones by propagation. This approach gives a way to relate micro to macro properties of solutions of associating proteins.
Collapse
Affiliation(s)
- Sandi Brudar
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Leonid Breydo
- Formulation Development Group, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Elisha Chung
- Formulation Development Group, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Ken A. Dill
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
- Department of Chemistry and Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
| | - Nasim Ehterami
- Formulation Development Group, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Ketan Phadnis
- Formulation Development Group, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Samir Senapati
- Formulation Development Group, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Mohammed Shameem
- Formulation Development Group, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Xiaolin Tang
- Formulation Development Group, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Muhammmad Tayyab
- Formulation Development Group, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Barbara Hribar-Lee
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|