1
|
Chaudhari P, Ghate VM, Kodoth AK, Birangal S, Lewis SA. Drug-silica-cellulose ternary matrix for the oral delivery of Cyclosporine A: in vitro and in vivo evaluation. Pharm Dev Technol 2025; 30:114-125. [PMID: 39754482 DOI: 10.1080/10837450.2024.2448625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
PURPOSE Supersaturated formulations have been widely explored for improving the oral bioavailability of drugs by using mesoporous silica (MS) to generate supersaturation via molecular adsorption; however, this is followed by precipitation. Several precipitation inhibitors (PI) have been explored to prevent precipitation and maintain the drug in solution for a longer period. However, the combined approach of MS and PIs, the impact of MS and Silica, and the loading of high-molecular-weight neutral molecules such as Cyclosporine A (CsA) have not yet been explored. The present study aimed to explore the impact of MS and a hydroxypropyl methylcellulose (HPMC) matrix on the supersaturation and bioavailability of the neutral drug CsA. METHODS A CsA-loaded mesoporous silica/HPMC ternary matrix and CsA-HPMC and CsA-MS controls were prepared, and physicochemical characterization was carried out. The ternary matrix and controls were investigated for the Non-sink Mini FaSSIF dissolution and biorelevant transfer studies. Furthermore, drug release modeling was performed using DDSolver, and pharmacokinetic studies were performed to assess the impact on oral bioavailability compared with the marketed formulation. RESULTS The study suggested that the co-loaded CsA, HPMC, and MS demonstrated higher supersaturation than CsA-loaded silica and CsA-HPMC controls. A significant improvement in FaSSIF single medium (2-fold) and biorelevant transfer (3.37-fold) increase in the dissolution profile was observed for the co-loaded CsA-MS-HPMC samples. The in vitro dissolution profile was corroborated by pharmacokinetic studies, which showed a 1.19-fold higher oral bioavailability of CsA-MS-HPMC compared to that of CsA-MS and CsA-HPMC. CONCLUSION The pharmacokinetics indicated that CsA-MS-HPMC co-loaded samples demonstrated supersaturation and improved bioavailability compared with the physical mixture.
Collapse
Affiliation(s)
- Pinal Chaudhari
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, India
| | - Vivek M Ghate
- Yenepoya Technology Incubator, Yenepoya (Deemed to be University), Deralakatte, Mangalore, India
| | | | - Sumit Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
2
|
B S, Ghosh A. Mechanistic Insights into Amorphous Solid Dispersions: Bridging Theory and Practice in Drug Delivery. Pharm Res 2025; 42:1-23. [PMID: 39849216 DOI: 10.1007/s11095-024-03808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/12/2024] [Indexed: 01/25/2025]
Abstract
Improving the bioavailability of poorly water-soluble drugs presents a significant challenge in pharmaceutical development. Amorphous solid dispersions (ASDs) have garnered substantial attention for their capability to augment the solubility and dissolution rate of poorly water-soluble drugs, thereby markedly enhancing their bioavailability. ASDs, characterized by a metastable equilibrium where the active pharmaceutical ingredient (API) is molecularly dispersed, offer enhanced absorption compared to crystalline forms. This review explores recent research advancements in ASD, emphasizing dissolution mechanisms, phase separation phenomena, and the importance of drug loading and congruency limits on ASD performance. Principal occurrences such as liquid-liquid phase separation (LLPS) and supersaturation are discussed, highlighting their impact on drug solubility, absorption and subsequent bioavailability. Additionally, it addresses the role of polymers in controlling supersaturation, stabilizing drug-rich nanodroplets, and inhibiting recrystallization. Recent advancements and emerging technologies offer new avenues for ASD characterization and production and demonstrate the potential of ASDs to enhance bioavailability and reduce variability, making possible for more effective and patient-friendly pharmaceutical formulations. Future research directions are proposed, focusing on advanced computational models for predicting ASD stability, use of novel polymeric carriers, and methods for successful preparations.
Collapse
Affiliation(s)
- Srividya B
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Animesh Ghosh
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
| |
Collapse
|
3
|
Zhao MY, Shi XB, Chang JH, Wang RX, Zhou JY, Liu P. Amorphous Solid Dispersions of Glycyrrhetinic Acid: Using Soluplus, PVP, and PVPVA as the Polymer Matrix to Enhance Solubility, Bioavailability, and Stability. AAPS PharmSciTech 2024; 26:18. [PMID: 39707118 DOI: 10.1208/s12249-024-03007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/21/2024] [Indexed: 12/23/2024] Open
Abstract
Glycyrrhetinic acid (GA) possesses various pharmacological effects, including anti-inflammatory, anti-tumor, and anti-viral properties. However, its clinical application is limited by poor solubility and low oral bioavailability. Polymers play a crucial role in pharmaceutical formulations, particularly as matrices in excipients to enhance the solubility, bioavailability, and stability of active pharmaceutical ingredients. The amorphous solid dispersions (ASDs) of GA were prepared with three different polymers (i.e., GA-S-ASD, GA-VA64-ASD, and GA-K30-ASD). The ASDs were characterized by differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR spectroscopy), molecular docking, and contact angle measurement. Pharmacokinetics were evaluated in Beagle dogs, and long-term stability was examined. The solubility of GA increased with the rising weight of the polymer, and the optimal drug-to-carrier ratio was 1:5. In all ASDs, GA was amorphous, thus suggesting that a hydrogen bonding must have formed between GA and the polymers. The molecular docking showed that the binding energy was the highest and the hydrogen bonding was the strongest between GA and Soluplus. The dissolution of the ASDs was primarily driven by carrier-controlled dissolution, and there was minor influence from diffusion-limited release in the case of GA-S-ASD. The three ASDs significantly improved the bioavailability of GA. However, only GA-S-ASD passed the accelerated stability test. In the case of GA-VA64-ASD and GA-K30-ASD, due to serious moisture absorption, the originally fluffy ASDs became gels, and recrystallization occurred. Overall, GA-S-ASD presents promising potential for pharmaceutical applications due to its superior solubility, bioavailability, and stability.
Collapse
Affiliation(s)
- Meng-Yu Zhao
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, 067000, Hebei, China
| | - Xian-Bao Shi
- Department of Pharmacy, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China. No. 5 Renmin Street, Jinzhou, 121001, China
| | - Jin-Hua Chang
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, 067000, Hebei, China
| | - Ru-Xing Wang
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, 067000, Hebei, China
| | - Jian-Yu Zhou
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, 067000, Hebei, China.
| | - Pei Liu
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, 067000, Hebei, China.
| |
Collapse
|
4
|
Zhang YF, Yao Q, Lin XY, Ma YH, Zhang HF, Yu H, Mu SQ, Zhang C, Geng H, Hao CY, Zuo LL, Wu D, Li Y, Jin LL, Shi NQ. Co-Amorphization, Dissolution, and Stability of Quench-Cooled Drug-Drug Coamorphous Supersaturating Delivery Systems with RT-Unstable Amorphous Components. Pharmaceutics 2024; 16:1488. [PMID: 39771470 PMCID: PMC11677066 DOI: 10.3390/pharmaceutics16121488] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Supersaturating drug delivery systems (SDDSs) have gained significant attention as a promising strategy to enhance the solubility and bioabsorption of Biopharmaceutics Classification System (BCS) II drugs. To overcome challenges associated with polymer-based amorphous SDDS (aSDDS), coamorphous (CAM) systems have emerged as a viable alternative. Among them, "drug-drug" CAM (ddCAM) systems show considerable potential for combination drug therapy. However, many drugs in their pure amorphous forms are unstable at room temperature (RT), complicating their formation and long-term stability profiles. Consequently, limited knowledge exists regarding the behavior of ddCAMs containing RT-unstable components formed via quench cooling. Methods: In this study, we used naproxen (NAP), a RT-unstable amorphous drug, in combination with felodipine (FEL) or nitrendipine (NTP), two RT-stable amorphous drugs, to create "FEL-NAP" and "NTP-NAP" ddCAM pairs via quench cooling. Our work used a series of methods to perform a detailed analysis on the co-amorphization, dissolution, solubility, and stability profiles of ddCAMs containing RT-unstable drugs, contributing to advancements in co-amorphization techniques for generating SDDS. Results: This study revealed that the co-amorphization and stability profiles of ddCAMs containing RT-unstable components produced via a quench-cooling method were closely related to drug-drug pairing types and ratios. Both quench-cooling and incorporation into coamorphous systems improved the dissolution, solubility, and physical stability of individual APIs. Conclusions: Our findings provide deeper insight into the co-amorphization, dissolution, and stability characteristics of specific drug-drug coamorphous systems FEL-NAP and NTP-NAP, offering valuable guidance for developing new ddCAM coamorphous formulations containing some RT-unstable drugs.
Collapse
Affiliation(s)
- Yan-Fei Zhang
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (Y.-F.Z.)
| | - Qian Yao
- College of Pharmaceutical Sciences, Yanbian University, Yanji 133002, China; (Q.Y.)
| | - Xiao-Ying Lin
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (Y.-F.Z.)
| | - Ying-Hui Ma
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (Y.-F.Z.)
| | - Hui-Feng Zhang
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (Y.-F.Z.)
| | - Huan Yu
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (Y.-F.Z.)
| | - Shang-Qiang Mu
- Affilittend Hospital of Jilin Medical University, Jilin 132011, China
| | - Chuang Zhang
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (Y.-F.Z.)
| | - Hao Geng
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (Y.-F.Z.)
| | - Cheng-Yi Hao
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (Y.-F.Z.)
| | - Li-Li Zuo
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (Y.-F.Z.)
| | - Di Wu
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (Y.-F.Z.)
| | - Yue Li
- College of Pharmaceutical Sciences, Yanbian University, Yanji 133002, China; (Q.Y.)
| | - Li-Li Jin
- College of Pharmaceutical Sciences, Yanbian University, Yanji 133002, China; (Q.Y.)
| | - Nian-Qiu Shi
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (Y.-F.Z.)
- College of Pharmaceutical Sciences, Yanbian University, Yanji 133002, China; (Q.Y.)
| |
Collapse
|
5
|
Deng X, Shi W, Qian K, Yang J, Yuan S, Li H. Torsemide Crystalline Salts with a Significant Spring-Parachute Effect. AAPS PharmSciTech 2024; 25:210. [PMID: 39242368 DOI: 10.1208/s12249-024-02926-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024] Open
Abstract
Torsemide is a long acting pyridine sulfonylurea diuretic. Torsemide hydrochloride is widely used now, there are only a few organic acid salts reported. Cocrystallization with organic acids is an effective way to improve its solubility. Here, we reported maleate and phthalate of torsemide, in which the organic acid lost a proton transferring to the pyridine of torsemide, and torsemide interacted with organic acid through N+ - H⋯O- hydrogen bond to form salts crystal. Surprisingly, maleate showed a clear "spring" pattern in apparent solubility, whereas phthalate had a "spring-parachute" effect. Both crystalline salts kept a higher solubility than torsemide without falling. The "spring-parachute" effect of crystalline salts promoted rapid dissolution of torsemide and kept a high concentration, thereby increasing its bioavailability.
Collapse
Affiliation(s)
- Xuezhen Deng
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Weimin Shi
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Kun Qian
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China.
| | - Jie Yang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China.
| | - Siyu Yuan
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hong Li
- Jiangxi Province Integrative Hospital of Chinese Medicine and Western Medicine, Nanchang, China
| |
Collapse
|
6
|
Huang Z, Zhang S, Qin Z, Ai G, Li M, Gong S, Liu Y, Zeng H, Chen J, Su Z, Lai Z. Supersaturated Drug Delivery System of Oxyberberine Based on Cyclodextrin Nanoaggregates: Preparation, Characterization, and in vivo Application. Int J Nanomedicine 2024; 19:5297-5316. [PMID: 38859955 PMCID: PMC11164094 DOI: 10.2147/ijn.s464994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/22/2024] [Indexed: 06/12/2024] Open
Abstract
Propose Oxyberberine (OBB), one of the main metabolites of berberine derived from intestinal and erythrocyte metabolism, exhibits appreciable anti-hyperuricemic activity. However, the low water solubility and poor plasma concentration-effect relationship of OBB hamper its development and utilization. Therefore, an OBB-hydroxypropyl-β-cyclodextrin (HP-β-CD) supersaturated drug delivery system (SDDS) was prepared and characterized in this work. Methods OBB-HP-β-CD SDDS was prepared using the ultrasonic-solvent evaporation method and characterized. Additionally, the in vitro and in vivo release experiments were conducted to assess the release kinetics of OBB-HP-β-CD SDDS. Subsequently, the therapeutic efficacy of OBB-HP-β-CD SDDS on hyperuricemia (HUA) was investigated by means of histopathological examination and evaluation of relevant biomarkers. Results The results of FT-IR, DSC, PXRD, NMR and molecular modeling showed that the crystallized form of OBB was transformed into an amorphous OBB-HP-β-CD complex. Dynamic light scattering indicated that this system was relatively stable and maintained by formation of nanoaggregates with an average diameter of 23 nm. The dissolution rate of OBB-HP-β-CD SDDS was about 5 times higher than that of OBB raw material. Furthermore, the AUC0-t of OBB-HP-β-CD SDDS (10.882 μg/mL*h) was significantly higher than that of the raw OBB counterpart (0.701 μg/mL*h). The oral relative bioavailability of OBB-HP-β-CD SDDS was also enhanced by 16 times compared to that of the raw material. Finally, in vivo pharmacodynamic assay showed the anti-hyperuricemic potency of OBB-HP-β-CD SDDS was approximately 5-10 times higher than that of OBB raw material. Conclusion Based on our findings above, OBB-HP-β-CD SDDS proved to be an excellent drug delivery system for increasing the solubility, dissolution, bioavailability, and anti-hyperuricemic potency of OBB.
Collapse
Affiliation(s)
- Ziwei Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Shanli Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Zehui Qin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Gaoxiang Ai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Minhua Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Shiting Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Huifang Zeng
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Zhengquan Lai
- Department of Pharmacy, Shenzhen University General Hospital/Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
7
|
Luo S, Zhang Y, Song J, Li Y, Wu C, Zhang C. Solubility-permeability interplay of a supersaturated lutein delivery system constructed by glycosylated stevioside and hydroxypropyl-methylcellulose. Int J Biol Macromol 2024; 258:128791. [PMID: 38123041 DOI: 10.1016/j.ijbiomac.2023.128791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/20/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
This study investigated the solubilizing capacity of glycosylated stevioside/hydroxypropyl-methylcellulose (stevia-G-HPMC) complexes with varying mass ratios on lutein. The impact on the steady-state flux and permeability coefficient of intracellular lutein was also explored through the construction of a Caco-2 cellular transport model. The results indicated that the equilibrium solubility of lutein linearly increased with an increase in stevia-G amount. The stability constants of the ternary system surpassed those of the binary system. Molecular dynamics simulation revealed a tight and stable structure in lutein supersaturated complexes. Meanwhile, lutein-stevia-G-HPMC complexes demonstrated superior cumulative penetrations, with the peak Papp (AP → BL) value being (3.24 ± 0.89) × 10-5 cm·s-1. There was a slight decrease in Papp (BL → AP), which improved the forward transport of lutein. Highly soluble lutein in aqueous environments saturated the extracellular transport proteins on the AP side of cell membranes, thereby maintaining the high permeability transport. Notably, the permeability trend of lutein in Caco-2 cells negatively correlated with the equilibrium solubility and matched the single exponential growth model. When the mass ratio of lutein, stevia-G and HPMC was 1:21:5, the solubility-permeability trade-off of lutein was effectively maintained.
Collapse
Affiliation(s)
- Shuwei Luo
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yan Zhang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiangfeng Song
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Ying Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chenchen Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
8
|
Shelke R, Velagacherla V, Nayak UY. Recent advances in dual-drug co-amorphous systems. Drug Discov Today 2024; 29:103863. [PMID: 38141778 DOI: 10.1016/j.drudis.2023.103863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/03/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Poor solubility of drugs and therapeutic candidates poses a significant challenge in drug research and development. Biopharmaceutical class II drugs exhibit limited absorption because of their weak solubility and high permeability. Co-amorphous systems (CAMs) have been studied widely as a way to improve the solubility of drugs. This review summarizes recent advancements in dual-drug CAMs, including improvements in formulation, manufacturing, and solid-state characterization, and highlights the importance of enhancing solubility and stability. It emphasizes the potential synergistic effects of two drugs in CAMs and explores formulation strategies and challenges related to maintaining the amorphous state. Case studies demonstrate the successful application of CAMs in combination therapies that offer improved therapeutic efficacy.
Collapse
Affiliation(s)
- Rutuja Shelke
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Varalakshmi Velagacherla
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Usha Yogendra Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
9
|
Wang H, Zhao P, Ma R, Jia J, Fu Q. Drug-drug co-amorphous systems: An emerging formulation strategy for poorly water-soluble drugs. Drug Discov Today 2024; 29:103883. [PMID: 38219970 DOI: 10.1016/j.drudis.2024.103883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Overcoming the poor water solubility of small-molecule drugs is a major challenge in the development of clinical pharmaceuticals. Amorphization of crystalline drugs is a highly effective strategy to improve their aqueous solubility. However, amorphous drugs are thermodynamically unstable and likely to crystallize during manufacturing and storage. Recently, drug-drug co-amorphous systems have emerged as a novel strategy to not only enable enhanced dissolution and physical stability of the individual drugs within the system but also to provide a strategy for combination therapy of the same or different clinical indications. This review serves to highlight advances in the methods used to manufacture and characterize drug-drug co-amorphous systems, summarize drug-drug co-amorphous applications reported in recent decades, and provide an outlook on future possibilities and perspectives.
Collapse
Affiliation(s)
- Hongge Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Peixu Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Ruilong Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jirun Jia
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
10
|
Yang Y, Yu M, Ren L, An Q, Li W, Yang H, Zhang Y, Zhang S, Hao Y, Du G, Yang D, Lu Y, Wang J. Design, synthesis and characterization of a novel multicomponent salt of bexarotene with metformin and application in ameliorating psoriasis with T2DM. Int J Pharm 2023; 646:123501. [PMID: 37820943 DOI: 10.1016/j.ijpharm.2023.123501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/21/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
Psoriasis is a common systemic inflammatory skin disorder affecting over 60 million people globally. Some patients with psoriasis are associated with a higher risk of type 2 diabetes mellitus (T2DM). Psoriasis and T2DM occur concurrently in some patients; however, there is no effective drug for the treatment of psoriasis with T2DM. Bexarotene (BEX) is a specific RXR agonist and an antineoplastic agent indicated by the FDA for cutaneous T-cell lymphoma (CTLA). Metformin (MET) is the first-line treatment for T2DM. To develop novel effective drugs for the treatment of psoriasis with T2DM, multicomponent salts containing MET and BEX were designed and synthesized based on the drug-drug combination strategy. MET-BEX (1:1) and MET-BEX-H2O (1:1:1) were obtained and structurally characterized. The in vitro evaluation results showed that the hygroscopicity of MET was significantly optimized by the salt formation strategy, while the solubility of BEX was improved, which laid the foundation for improving the bioavailability of BEX in vivo. In a mouse model of imiquimod-induced psoriasis with T2DM, MET-BEX ameliorated imiquimod-induced psoriasis morphological features and systematic inflammation and improved glucolipid metabolism. These results showed that the multicomponent drug combination strategy in this study optimized the physicochemical properties of MET and BEX simultaneously, providing a promising candidate therapy for psoriasis with T2DM.
Collapse
Affiliation(s)
- Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Mingchao Yu
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Qi An
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Hong Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yizhi Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Sen Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yue Hao
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Dezhi Yang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yang Lu
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
11
|
Hatanaka Y, Uchiyama H, Kaneko S, Ueda K, Higashi K, Moribe K, Furukawa S, Takase M, Yamanaka S, Kadota K, Tozuka Y. Designing a Novel Coamorphous Salt Formulation of Telmisartan with Amlodipine to Enhance Permeability and Oral Absorption. Mol Pharm 2023; 20:4071-4085. [PMID: 37498232 DOI: 10.1021/acs.molpharmaceut.3c00226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Coamorphous formulation is a useful approach for enhancing the solubility of poorly water-soluble drugs via intermolecular interactions. In this study, a hydrogen-bonding-based coamorphous system was developed to improve drug solubility, but it barely changed the apparent permeability (Papp) of the drug. This study aimed to design a novel coamorphous salt using ionic interactions to improve drug permeability and absorption. Telmisartan (TMS), with an acidic group, was used to form a coamorphous salt with basic amlodipine (AML). Evaluation of the physicochemical properties confirmed the formation of a coamorphous salt via ionic interactions between the amine group of AML and the carboxyl group of TMS at a molar ratio of 1:1. The coamorphous salt of TMS/AML enhanced the partitioning of both drugs into octanol, indicating increased lipophilicity owing to the interaction between TMS and AML. The coamorphous salt dramatically enhanced TMS solubility (99.8 times that of untreated TMS) and decreased AML solubility owing to the interaction between TMS and AML. Although the coamorphous salt showed a decreased Papp in the permeation study in the presence of a thicker unstirred water layer (UWL) without stirring, Papp increased in the presence of a thinner UWL with stirring. The oral absorption of TMS from the coamorphous salt increased by up to 4.1 times compared to that of untreated TMS, whereas that of AML remained unchanged. Although the coamorphous salt with increased lipophilicity has a disadvantage in terms of diffusion through the UWL, the UWL is thin in human/animal bodies owing to the peristaltic action of the digestive tract. Dissociation of the coamorphous salt on the membrane surface could contribute to the partitioning of the neutral form of drugs to the membrane cells compared with untreated drugs. As a result, coamorphous salt formation has the advantage of improving the membrane permeation and oral absorption of TMS, owing to the enhanced solubility and supply of membrane-permeable free TMS on the surface of the membrane.
Collapse
Affiliation(s)
- Yuta Hatanaka
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka 569-1094, Japan
| | - Hiromasa Uchiyama
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka 569-1094, Japan
| | - Shun Kaneko
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Shingo Furukawa
- Division of Applied Sciences, Muroran Institute of Technology, Muroran 050-8585, Japan
| | - Mai Takase
- Division of Applied Sciences, Muroran Institute of Technology, Muroran 050-8585, Japan
| | - Shinya Yamanaka
- Division of Applied Sciences, Muroran Institute of Technology, Muroran 050-8585, Japan
| | - Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka 569-1094, Japan
| | - Yuichi Tozuka
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka 569-1094, Japan
| |
Collapse
|
12
|
Patel D, Wairkar S. In silico and in vitro investigation of bile salts as coformers for edaravone coamorphous dispersion- Part I. Chem Phys Lipids 2023; 253:105302. [PMID: 37031754 DOI: 10.1016/j.chemphyslip.2023.105302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/11/2023]
Abstract
In the present study, we aimed to design the spray-dried coamorphous dispersion (COAM) of a neuroprotective agent-edaravone (EDR) with bile salts to improve oral bioavailability. After the initial screening of different bile salts, EDR-sodium taurocholate (NaTC) COAM showed 4-fold solubility than a pure drug in 1-7pH range. In silico studies to select coformer for COAM revealed a narrow energy gap, easy charge transfer and high chemical reactivity between EDR and NaTC. The optimized EDR-NaTC COAM in a 1:1 molar ratio was characterized for solid state characterizations and in vitro release study. Hydrogen bond formation between the pyrazolone ring of EDR and the -OH group of the phenanthrene ring of NaTC was observed in the ATR-FTIR spectra of COAM. The DSC and XRPD data indicated the formation of an amorphous halo, whereas SEM photographs demonstrated porous, spherical particles of COAM. The pH-independent in vitro drug release of COAM was observed in 0.1N HCl, pH 4.5 and 6.8 buffers which was 3-fold higher than EDR. The COAM was stable for 6 months at accelerated condition without showing a change in drug content or devitrification (Initial: 98.002±0.942%; Accelerated condition: 97.016±1.110%). Although coamorphous form and hydrogen bonding between EDR-NaTC dispersion were primarily responsible for improved dissolution, NaTC, an exceptional surfactant, has also contributed to it. Moreover, its exclusive structural characteristics could prevent the recrystallization of the drug in supersaturated conditions of the GIT and also minimize the effect of food on oral absorption of EDR which will be studied in animals in the second part of this work.
Collapse
Affiliation(s)
- Dhrumi Patel
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai. Maharashtra - 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai. Maharashtra - 400056, India.
| |
Collapse
|
13
|
Prediction of Co-amorphous Formation Using Non-bonded Interaction Energy: Molecular Dynamic Simulation and Experimental Validation. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
14
|
Supersaturation and Precipitation Applicated in Drug Delivery Systems: Development Strategies and Evaluation Approaches. Molecules 2023; 28:molecules28052212. [PMID: 36903470 PMCID: PMC10005129 DOI: 10.3390/molecules28052212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Supersaturation is a promising strategy to improve gastrointestinal absorption of poorly water-soluble drugs. Supersaturation is a metastable state and therefore dissolved drugs often quickly precipitate again. Precipitation inhibitors can prolong the metastable state. Supersaturating drug delivery systems (SDDS) are commonly formulated with precipitation inhibitors, hence the supersaturation is effectively prolonged for absorption, leading to improved bioavailability. This review summarizes the theory of and systemic insight into supersaturation, with the emphasis on biopharmaceutical aspects. Supersaturation research has developed from the generation of supersaturation (pH-shift, prodrug and SDDS) and the inhibition of precipitation (the mechanism of precipitation, the character of precipitation inhibitors and screening precipitation inhibitors). Then, the evaluation approaches to SDDS are discussed, including in vitro, in vivo and in silico studies and in vitro-in vivo correlations. In vitro aspects involve biorelevant medium, biomimetic apparatus and characterization instruments; in vivo aspects involve oral absorption, intestinal perfusion and intestinal content aspiration and in silico aspects involve molecular dynamics simulation and pharmacokinetic simulation. More physiological data of in vitro studies should be taken into account to simulate the in vivo environment. The supersaturation theory should be further completed, especially with regard to physiological conditions.
Collapse
|
15
|
Fang X, Hu Y, Yang G, Shi W, Lu S, Cao Y. Improving physicochemical properties and pharmacological activities of ternary co-amorphous systems. Eur J Pharm Biopharm 2022; 181:22-35. [PMID: 36283631 DOI: 10.1016/j.ejpb.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 12/13/2022]
Abstract
The formation of co-amorphous by combining low molecular weight compounds with drugs is a relatively new technology in the pharmaceutical field, which can significantly improve the solubility, dissolution, and stability of poorly water-soluble drugs. However, in our previous studies, the binary co-amorphous system of andrographolide-oxymatrine (AP-OMT) was found to have obvious recrystallization and poor dissolution behavior. Therefore, in this study, we designed three stable ternary co-amorphous systems to improve the physicochemical properties of the binary co-amorphous system of AP-OMT. The ternary co-amorphous systems were prepared with AP, OMT, and trans-cinnamic acid (CA), p-hydroxycinnamic acid (pHCA), or ferulic acid (FA). Intermolecular hydrogen bonds were confirmed by spectroscopy and molecular dynamics simulation. Solubility studies showed that the solubility of the ternary co-amorphous systems of AP-OMT-CA/pHCA/FA was significantly increased compared with that of crystalline AP. Dissolution experiments suggested that the ternary co-amorphous systems of AP-OMT-CA/pHCA/FA exhibited better dissolution behavior without significant recrystallization compared to the binary co-amorphous AP-OMT. The stability study confirmed that the ternary co-amorphous system of AP-OMT-CA/pHCA/FA maintained good physical stability in the long term for 18 months. In addition, pharmacological experiments revealed that the ternary co-amorphous systems of AP-OMT-CA/pHCA/FA have an excellent safety profile and its anti-Alzheimer's disease effects are significantly improved compared to that of the binary co-amorphous systems of AP-OMT. Moreover, this study also found that reducing the pKa value of low molecular weight co-formers would affect the intermolecular interactions and improve the solubility of drugs in the ternary co-amorphous systems. In conclusion, we have successfully prepared ternary co-amorphous systems of AP-OMT-CA/pHCA/FA by amorphization technique, which improves the physicochemical properties of the binary co-amorphous systems of AP-OMT and anti-Alzheimer's disease activity in the Caenorhabditis elegans model. The mechanism for the influence of the pKa value of the co-formers on the physicochemical properties of the ternary co-amorphous system was preliminarily explored, providing theoretical guidance for the development of the ternary co-amorphous system.
Collapse
Affiliation(s)
- Xiaoping Fang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yi Hu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Guangyi Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Shenzhen Bao'an Traditional Chinese Medical Hospital, Shenzhen 518000, China
| | - Wenfeng Shi
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Shan Lu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Yan Cao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
16
|
A comparative study on in vitro and in vivo characteristics of enzalutamide nanocrystals versus amorphous solid dispersions and a better prediction for bioavailability based on “spring-parachute” model. Int J Pharm 2022; 628:122333. [DOI: 10.1016/j.ijpharm.2022.122333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/29/2022] [Accepted: 10/18/2022] [Indexed: 11/22/2022]
|
17
|
Chen X, Li D, Zhang H, Duan Y, Huang Y. Co-amorphous Systems of Sinomenine with Platensimycin or Sulfasalazine: Physical Stability and Excipient-Adjusted Release Behavior. Mol Pharm 2022; 19:4370-4381. [PMID: 36251509 DOI: 10.1021/acs.molpharmaceut.2c00785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is strong interest to develop affordable treatments for the infection-associated rheumatoid arthritis (RA). Here, we present a drug-drug co-amorphous strategy against RA and the associated bacterial infection by the preparation and characterization of two co-amorphous systems of sinomenine (SIN) with platensimycin (PTM) or sulfasalazine (SULF), two potent antibiotics. Both of them were comprehensively characterized using powder X-ray diffraction, temperature-modulated differential scanning calorimetry, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The co-amorphous forms of SIN-PTM and SIN-SULF exhibited high Tgs at 139.10 ± 1.0 and 153.3 ± 0.2 °C, respectively. After 6 months of accelerated tests and 1 month of drug-excipient compatibility experiments, two co-amorphous systems displayed satisfactory physical stability. The formation of salt and strong intermolecular interactions between SIN and PTM or SULF, as well as the decreased molecular mobility in co-amorphous systems, may be the intrinsic mechanisms underlying the excellent physical stability of both co-amorphous systems. In dissolution tests, two co-amorphous systems displayed distinct reduced SIN-accumulative releases (below 20% after 6 h of release experiments), which may lead to its poor therapeutic effect. Hence, we demonstrated a controlled release strategy for SIN by the addition of a small percentage of polymers and a small-molecule surfactant to these two co-amorphous samples as convenient drug excipients, which may also be used to improve the unsatisfactory dissolution behaviors of the previously reported SIN co-amorphous systems. Several hydrogen bonding interactions between SIN and PTM or SULF could be identified in NMR experiments in DMSO-d6, which may be underlying reasons of decreased dissolution behaviors of both co-amorphous forms. These drug-drug co-amorphous systems could be a potential strategy for the treatment of infection-associated RA.
Collapse
Affiliation(s)
- Xin Chen
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan410013, PR China
| | - Duanxiu Li
- Laboratory of Magnetic Resonance Spectroscopy and Imaging, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, PR China.,Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Foshan528200, PR China
| | - Hailu Zhang
- Laboratory of Magnetic Resonance Spectroscopy and Imaging, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, PR China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan410013, PR China.,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha410011, PR China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan410011, PR China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan410013, PR China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan410011, PR China
| |
Collapse
|
18
|
Shi Q, Wang Y, Moinuddin SM, Feng X, Ahsan F. Co-amorphous Drug Delivery Systems: a Review of Physical Stability, In Vitro and In Vivo Performance. AAPS PharmSciTech 2022; 23:259. [PMID: 36123515 DOI: 10.1208/s12249-022-02421-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022] Open
Abstract
Over the past few decades, co-amorphous solids have been used as a promising approach for delivering poorly water-soluble drugs. Co-amorphous solids, comprising pharmacologically relevant drug substances or excipients, improve physical stability, solubility, dissolution, and bioavailability compared with single amorphous ingredients. In this review, we have summarized recent advances in physical stability and in vitro and in vivo performances of co-amorphous solids. We have highlighted the role of molar ratio, molecular interaction, and mobility that affects the physical stability of co-amorphous solids. This review delves deep as to how co-amorphous solids affect the physicochemical properties in vitro and in vivo. We also described the challenges to the formulation of co-amorphous solids. A better understanding of the mechanisms of the physical stability, in vitro and in vivo performance of co-amorphous solids, and proper selection of the co-former is likely to expedite the development of robust co-amorphous-based pharmaceutical formulations and can address the challenges associated with the delivery of poorly soluble drugs.
Collapse
Affiliation(s)
- Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China.
| | - Yanan Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China
| | - Sakib M Moinuddin
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California, 95757, USA.,East Bay Institute For Research & Education (EBIRE), 10535 Hospital Way, Mather, California, 95655, USA
| | - Xiaodong Feng
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California, 95757, USA
| | - Fakhrul Ahsan
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California, 95757, USA. .,East Bay Institute For Research & Education (EBIRE), 10535 Hospital Way, Mather, California, 95655, USA.
| |
Collapse
|
19
|
Wang Z, Chen X, Li D, Bai E, Zhang H, Duan Y, Huang Y. Platensimycin-berberine chloride co-amorphous drug system: Sustained release and prolonged half-life. Eur J Pharm Biopharm 2022; 179:126-136. [PMID: 36087879 DOI: 10.1016/j.ejpb.2022.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
Co-amorphous technology is an emerging approach for pharmaceutical engineering of drugs and drug leads with improved physicochemical properties and bioavailability. Platensimycin (PTM) is a promising natural antibiotic lead that acts on bacterial fatty acid synthase and exhibits excellent antibacterial activity. Despite great strides to improve its poor pharmacokinetics by medicinal chemistry and nanotechnology, there are no convenient oral delivery systems developed. Here, a co-amorphous system of PTM and berberine chloride (BCL) was developed for oral delivery of PTM. Co-amorphous PTM-BCL was prepared by rotary vacuum evaporation method, and systematically characterized by powder X-ray diffraction, temperature modulated differential scanning calorimetry, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Compared with PTM or BCL alone, the equilibrium solubility and dissolution rate of both of them in the co-amorphous systems decreased significantly, showing the characteristics of sustained release. The molecular interactions between PTM and BCL were mediated by strong charged-mediated hydrogen bonds, based on FTIR, XPS, and NMR-based techniques. The co-amorphous PTM-BCL system showed excellent physiochemical stability at room and elevated (40 °C) temperature under dry conditions. The combination of PTM and BCL showed increased killing of a clinical isolated methicillin-resistant Staphylococcus aureus strain in killing checkerboard assays. Finally, co-amorphous PTM-BCL exhibited 2- or 3-fold longer half-life in rats than that of crystalline and amorphous PTM upon oral administration, respectively. Our study suggests a rational approach to realize the full potential of potent antibiotic PTM, which may be conveniently adapted for engineering of other important pharmaceutics.
Collapse
Affiliation(s)
- Zhe Wang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Xin Chen
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Duanxiu Li
- Laboratory of Magnetic Resonance Spectroscopy and Imaging, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, PR China; Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Foshan 528200, PR China
| | - Enhe Bai
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Hailu Zhang
- Laboratory of Magnetic Resonance Spectroscopy and Imaging, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, PR China; Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, PR China; National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, PR China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, PR China; National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, PR China.
| |
Collapse
|
20
|
Norfloxacin co-amorphous salt systems: Effects of molecular descriptors on the formation and physical stability of co-amorphous systems. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Zhao P, Hu G, Chen H, Li M, Wang Y, Sun N, Wang L, Xu Y, Xia J, Tian B, Liu Y, He Z, Fu Q. Revealing the roles of polymers in supersaturation stabilization from the perspective of crystallization behaviors: A case of nimodipine. Int J Pharm 2022; 616:121538. [PMID: 35124119 DOI: 10.1016/j.ijpharm.2022.121538] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/20/2022] [Accepted: 01/29/2022] [Indexed: 10/19/2022]
Abstract
Formulating drugs into amorphous solid dispersions (ASDs) represents an attractive means to enhance the aqueous solubility of drugs. Furthermore, water-soluble polymers have proven highly advantageous for stabilizing supersaturated solutions of ASDs. However, the performance and mechanism of various polymers in stabilizing supersaturated drug solutions have not been well-studied. The aim of this study was to investigate the effects of different commercial polymers on the dissolution behaviors and supersaturation stabilization of the ASDs and to further explore the mechanism of polymer mediated supersaturation maintenance by studying the crystallization behaviors of the ASDs. In this study, nimodipine (NMD) was used as a model drug because of its poor water-solubility and fast crystallization rate in aqueous solution, and three polymers polyvinylpyrrolidone (PVP), vinylpyrrolidone-vinyl acetate copolymer (PVP VA), and polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft co-polymer (Soluplus) was selected as the drug carriers to form the ASDs with NMD. Solid-state characterizations of the ASDs confirmed the amorphous state of the ASD systems. ASDPVP VA demonstrated superior supersaturation maintenance in dissolution experiments compared to the other two ASD systems. Among the polymers tested, PVP VA most efficiently maintained dissolution of NMD and prevented its crystallization from the supersaturated solution. The ability of PVP VA to most-effectively maintain supersaturation of the drug was manifested by inhibition of crystal nucleation rather than inhibition of crystal growth following nucleation. These results suggest that nucleation inhibition was instrumental in enabling the polymer-mediated supersaturation maintenance, at least with NMD.
Collapse
Affiliation(s)
- Peixu Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guowei Hu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Haonan Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mo Li
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110016, China
| | - Yiting Wang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Nan Sun
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Lulu Wang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yuan Xu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jialong Xia
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, No. 346, Guanhai Road, Yantai 264003, China
| | - Yanhua Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
22
|
Li B, Wang Y, Feng Y, Yuan D, Xu R, Jiang C, Xiao X, Lu S. Design and molecular insights of drug-active metabolite based co-amorphous formulation: A case study of toltrazuril-ponazuril co-amorphous. Int J Pharm 2022; 615:121475. [PMID: 35041914 DOI: 10.1016/j.ijpharm.2022.121475] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 12/15/2022]
Abstract
Co-amorphous supersaturated drug delivery systems are emerging as an alternative strategy to improve the water solubility of BCS II drugs. Typically, the supersaturation and stability of co-amorphous systems largely depend on the type of employed co-former. This study aims to assess the potential for active metabolites of drugs as co-former in drug-drug co-amorphous formulations. Toltrazuril (Tol) was chosen as the model drug, to which ponazuril (Pon) was added as co-former. Considering the importance of intermolecular interactions in co-amorphous systems, we performed highlighted investigations including molecular dynamics simulation and quantum mechanics calculations. The results indicated that Tol and Pon molecules were connected by N-H···O = C hydrogen bonds in the form of a complementary pairing of amide groups. Further, the solubility/dissolution and solid-state stability of the co-amorphous system were investigated. We found that co-amorphous Tol-Pon was stable for at least one month at 40 °C/75% RH, while amorphous materials underwent recrystallization within 10 days. Moreover, both drugs in the co-amorphous system exhibited enhanced "spring parachute effect" during the dissolution process. This could be attributed to the noticeably increased solid-state stabilization as well as inhibition of Pon on the crystallization of Tol from a supersaturated state. In general, our study provides some useful information and molecular insights to guide the development of drug-active metabolite-based co-amorphous formulations.
Collapse
Affiliation(s)
- Bin Li
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yingyun Wang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Ying Feng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Dan Yuan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Renjie Xu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Cuiping Jiang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Xuecheng Xiao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Shan Lu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
23
|
Tian Z, Zhao Y, Mai Y, Qiao F, Guo J, Dong L, Niu Y, Gou G, Yang J. Nanocrystals with different stabilizers overcome the mucus and epithelial barriers for oral delivery of multicomponent Bufadienolides. Int J Pharm 2022; 616:121522. [DOI: 10.1016/j.ijpharm.2022.121522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022]
|