1
|
Ramachandran G, Chacko IA, Mishara MG, Khopade AJ, Sabitha M, Sudheesh MS. A review on design rules for formulating amorphous solid dispersions based on drug-polymer interactions in aqueous environment. Int J Pharm 2025; 675:125541. [PMID: 40164414 DOI: 10.1016/j.ijpharm.2025.125541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/09/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Amorphous solid dispersions (ASDs) are multi-component formulations in which a drug is molecularly dispersed in a carrier. ASDs undergo complex dissolution mechanisms to generate and sustain a supersaturated state of poorly soluble drugs. The link between enhanced solubility, supersaturation stability and drug-polymer interaction (DPI) is critical for the rational design of ASDs. The key mechanism responsible for a high bioavailability is the evolution of supersaturation during the dissolution of ASDs which is also the driving force for drug precipitation. A critical determinant of robust supersaturation generation and stability during dissolution is the molecular interaction between the drug and polymer. Characterization of DPI in a solution state is, however, challenging because of the poor hydrodynamic resolution of the techniques, traditionally used in solid-state analysis. Further, the dissolution conditions, such as the choice of buffer, pH and ionic strength may complicate the analyses and predictions. The role of DPI is a poorly understood aspect of ASD dissolution and therefore is an active area of research. DPI is critical for understanding the design rules for formulating an optimal ASD formulation. The review focuses on different aspects of DPI to stabilize the supersaturated state of a drug during the dissolution of ASDs.
Collapse
Affiliation(s)
- Gayathri Ramachandran
- Molecular Pharmaceutics and Biopharmaceutics Research Lab (MPBRL), Dept. of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, India
| | - Indhu Annie Chacko
- Molecular Pharmaceutics and Biopharmaceutics Research Lab (MPBRL), Dept. of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, India
| | - M G Mishara
- Molecular Pharmaceutics and Biopharmaceutics Research Lab (MPBRL), Dept. of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, India
| | - Ajay Jaysingh Khopade
- Department of Formulation R&D Non-Orals, Sun Pharmaceutical Industries Ltd., Vadodara, India
| | - M Sabitha
- Molecular Pharmaceutics and Biopharmaceutics Research Lab (MPBRL), Dept. of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, India
| | - M S Sudheesh
- Molecular Pharmaceutics and Biopharmaceutics Research Lab (MPBRL), Dept. of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, India.
| |
Collapse
|
2
|
B S, Ghosh A. Mechanistic Insights into Amorphous Solid Dispersions: Bridging Theory and Practice in Drug Delivery. Pharm Res 2025; 42:1-23. [PMID: 39849216 DOI: 10.1007/s11095-024-03808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/12/2024] [Indexed: 01/25/2025]
Abstract
Improving the bioavailability of poorly water-soluble drugs presents a significant challenge in pharmaceutical development. Amorphous solid dispersions (ASDs) have garnered substantial attention for their capability to augment the solubility and dissolution rate of poorly water-soluble drugs, thereby markedly enhancing their bioavailability. ASDs, characterized by a metastable equilibrium where the active pharmaceutical ingredient (API) is molecularly dispersed, offer enhanced absorption compared to crystalline forms. This review explores recent research advancements in ASD, emphasizing dissolution mechanisms, phase separation phenomena, and the importance of drug loading and congruency limits on ASD performance. Principal occurrences such as liquid-liquid phase separation (LLPS) and supersaturation are discussed, highlighting their impact on drug solubility, absorption and subsequent bioavailability. Additionally, it addresses the role of polymers in controlling supersaturation, stabilizing drug-rich nanodroplets, and inhibiting recrystallization. Recent advancements and emerging technologies offer new avenues for ASD characterization and production and demonstrate the potential of ASDs to enhance bioavailability and reduce variability, making possible for more effective and patient-friendly pharmaceutical formulations. Future research directions are proposed, focusing on advanced computational models for predicting ASD stability, use of novel polymeric carriers, and methods for successful preparations.
Collapse
Affiliation(s)
- Srividya B
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Animesh Ghosh
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
| |
Collapse
|
3
|
Chaudhary S, Pan Q, Wu Y, Bibi Z, Li X, Jia Q, Sun Y. The Efficient and Environmentally Friendly Chlorination of Arene, Alcohol, Halobenzene, and Peroxide Catalyzed by Fe-Ba Binary Oxides Using Hydrochloric Acid as Chlorine Source and Aqueous H 2O 2 as Oxidant. Molecules 2024; 29:5451. [PMID: 39598840 PMCID: PMC11597577 DOI: 10.3390/molecules29225451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/10/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
A series of Fe-Ba mixed oxides, including a pure Fe-containing sample as a reference, have been synthesized via a sol-gel process using Fe3+ or Fe2+ salts and BaSO4 as raw materials, with Pluronic P123 serving as a template. These oxides have been thoroughly characterized and subsequently utilized as catalysts for the chlorination of various organic molecules. Commercial hydrochloric acid, known for its relative safety, and environmentally friendly aqueous hydrogen peroxide were employed as the chlorine source and oxidant, respectively. The pure Fe-containing catalyst displays excellent thermal stability between 600 and 800 °C and exhibited moderate to high conversions in the chlorination of toluene, benzene, and tert-butyl hydroperoxide, with remarkable ortho-selectivity in chlorination of toluene. The combination of Fe3+ salt with BaSO4 in the sol-gel process results in a Fe-Ba mixed oxide catalyst composed of BaO2, BaFe4O7, and Fe2O3, significantly enhancing the chlorination activity compared to that displayed by the pure Fe catalyst. Notably, the chlorination of tert-butyl hydroperoxide (TBHP) does not require additional oxidants such as H2O2, and involves both electrophilic substitution and nucleophilic addition. Notably, the chlorination of bromobenzene yields chlorobenzene as the sole product, a transformation that has not been previously reported. Overall, this catalytic chlorination system holds promise for advancing the chlorination industry and enhancing pharmaceutical production.
Collapse
Affiliation(s)
- Sidra Chaudhary
- Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049, China; (S.C.); (Q.P.); (Y.W.); (Z.B.); (X.L.); (Q.J.)
| | - Qin Pan
- Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049, China; (S.C.); (Q.P.); (Y.W.); (Z.B.); (X.L.); (Q.J.)
| | - Yong Wu
- Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049, China; (S.C.); (Q.P.); (Y.W.); (Z.B.); (X.L.); (Q.J.)
- Xi’an Biomass Green Catalysis and Advanced Valorization International Science and Technology Cooperation Base, No. 28, Xianning West Road, Xi’an 710049, China
| | - Zainab Bibi
- Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049, China; (S.C.); (Q.P.); (Y.W.); (Z.B.); (X.L.); (Q.J.)
| | - Xiaoyong Li
- Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049, China; (S.C.); (Q.P.); (Y.W.); (Z.B.); (X.L.); (Q.J.)
- Xi’an Biomass Green Catalysis and Advanced Valorization International Science and Technology Cooperation Base, No. 28, Xianning West Road, Xi’an 710049, China
| | - Qinxiang Jia
- Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049, China; (S.C.); (Q.P.); (Y.W.); (Z.B.); (X.L.); (Q.J.)
- Xi’an Biomass Green Catalysis and Advanced Valorization International Science and Technology Cooperation Base, No. 28, Xianning West Road, Xi’an 710049, China
| | - Yang Sun
- Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049, China; (S.C.); (Q.P.); (Y.W.); (Z.B.); (X.L.); (Q.J.)
- Xi’an Biomass Green Catalysis and Advanced Valorization International Science and Technology Cooperation Base, No. 28, Xianning West Road, Xi’an 710049, China
| |
Collapse
|
4
|
Lennernäs H, Brisander M, Liljebris C, Jesson G, Andersson P. Enhanced Bioavailability and Reduced Variability of Dasatinib and Sorafenib with a Novel Amorphous Solid Dispersion Technology Platform. Clin Pharmacol Drug Dev 2024; 13:985-999. [PMID: 38808617 DOI: 10.1002/cpdd.1416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/16/2024] [Indexed: 05/30/2024]
Abstract
Despite clinical advances with protein kinase inhibitors (PKIs), oral administration of many PKIs is associated with highly variable plasma exposure and a narrow therapeutic window. We developed a novel hybrid nanoparticle-amorphous solid dispersion (ASD) technology platform consisting of an amorphous PKI embedded in a polymer matrix. The technology was used to manufacture immediate-release formulations of 2 tyrosine kinase inhibitors (TKIs), dasatinib and sorafenib. Our primary objective was to improve the absorption properties and reduce the pharmacokinetic (PK) variability of each TKI. The PKs of XS004 (dasatinib-ASD, 100 mg tablet) and XS005 (sorafenib-ASD, 2 × 50 mg capsules) were compared with their crystalline formulated reference drugs (140 mg of dasatinib-reference and 200 mg of sorafenib-reference). The in vitro biopharmaceutics of dasatinib-ASD and XS005-granulate showed sustained increased solubility in the pH range 1.2-8.0 compared to their crystalline references. In vivo, XS004 was bioequivalent at a 30% lower dose and showed increased absorption and bioavailability, with 2.1-4.8 times lower intra- and intersubject variability compared to the reference. XS005 had an increased absorption and bioavailability of 45% and 2.2-2.8 times lower variability, respectively, but it was not bioequivalent at the investigated dose level. Taken together, the formulation platform is suited to generate improved PKI formulations with consistent bioavailability and a reduced pH-dependent absorption process.
Collapse
Affiliation(s)
- Hans Lennernäs
- Department of Pharmaceutical Biosciences, Translational Drug Discovery and Development, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
5
|
Gupta A, Dahima R, Panda SK, Gupta A, Singh GD, Wani TA, Hussain A, Rathore D. QbD-Based Development and Evaluation of Pazopanib Hydrochloride Extrudates Prepared by Hot-Melt Extrusion Technique: In Vitro and In Vivo Evaluation. Pharmaceutics 2024; 16:764. [PMID: 38931886 PMCID: PMC11206766 DOI: 10.3390/pharmaceutics16060764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Pazopanib hydrochloride (PZB) is a protein kinase inhibitor approved by the United States Food and Drug Administration and European agencies for the treatment of renal cell carcinoma and other renal malignancies. However, it exhibits poor aqueous solubility and inconsistent oral drug absorption. In this regard, the current research work entails the development and evaluation of the extrudates of pazopanib hydrochloride by the hot-melt extrusion (HME) technique for solubility enhancement and augmenting oral bioavailability. RESULTS Solid dispersion of the drug was prepared using polymers such as Kollidon VA64, hydroxypropylmethylcellulose (HPMC), Eudragit EPO, and Affinisol 15LV in a 1:2 ratio by the HME process through a lab-scale 18 mm extruder. Systematic optimization of the formulation variables was carried out with the help of custom screening design (JMP Software by SAS, Version 14.0) to study the impact of polymer type and plasticizer level on the quality of extrudate processability by measuring the torque value, appearance, and disintegration time as the responses. The polymer blends containing Kollidon VA64 and Affinisol 15LV resulted in respective clear transparent extrudates, while Eudragit EPO and HPMC extrudates were found to be opaque white and brownish, respectively. Furthermore, evaluation of the impact of process parameters such as screw rpm and barrel temperature was measured using a definitive screening design on the extrude appearance, torque, disintegration time, and dissolution profile. Based on the statistical outcomes, it can be concluded that barrel temperature has a significant impact on torque, disintegration time, and dissolution at 30 min, while screw speed has an insignificant impact on the response variables. Affinisol extrudates showed less moisture uptake and faster dissolution in comparison to Kollidon VA64 extrudates. Affinisol extrudates were evaluated for polymorphic stability up to a 3-month accelerated condition and found no recrystallization. PZB-Extrudates using the Affinisol polymer (Test formulation A) revealed significantly higher bioavailability (AUC) in comparison to the free Pazopanib drug and marketed formulation.
Collapse
Affiliation(s)
- Amit Gupta
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Takshashila Campus, Ring Road, Indore 452001, India; (R.D.); (D.R.)
| | - Rashmi Dahima
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Takshashila Campus, Ring Road, Indore 452001, India; (R.D.); (D.R.)
| | - Sunil K. Panda
- Research & Development, GM Pharmaceutical Inc., 0114 Tbilisi, Georgia;
| | - Annie Gupta
- Amity Institute of Pharmacy, Amity University, Sector 125, Noida 201303, India
| | - Gaurav Deep Singh
- Department of Chemistry, Radha Govind University, Ramgarh 829122, India
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Devashish Rathore
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Takshashila Campus, Ring Road, Indore 452001, India; (R.D.); (D.R.)
| |
Collapse
|
6
|
Kokott M, Breitkreutz J, Wiedey R. The interplay of poorly soluble drugs in dissolution from amorphous solid dispersions. Int J Pharm X 2024; 7:100243. [PMID: 38585343 PMCID: PMC10997824 DOI: 10.1016/j.ijpx.2024.100243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024] Open
Abstract
In recent years, the application of fixed dose combinations of antiretroviral drugs in HIV therapy has been established. Despite numerous therapeutic benefits, this approach poses several challenges for the formulation development especially when poorly soluble drugs are considered. Amorphous solid dispersions (ASD) thereby have gained considerable interest in the pharmaceutical field, however, mainly including binary systems containing only one drug and a polymer. The co-formulation of two amorphous drugs can be accompanied by an immense increase in the complexity of the system as exemplarily reported for ritonavir and lopinavir embedded in a composite polymer matrix of PVPVA. The present study aims to present a new formulation approach to overcome the well-documented interaction during dissolution. Two different polymers, PVPVA and HPMCAS were used to produce ASDs for both drugs individually via hot-melt extrusion. The embedding of lopinavir in the slower dissolving polymer HPMCAS, while using PVPVA for ritonavir was found to significantly improve the overall dissolution performance compared to the individual use of PVPVA as well as to the commercial product Kaletra®. In addition, the use of different grades of HPMCAS demonstrated the possibility to further modify the dissolution profile. For a preliminary biorelevant assessment, the selected formulations were tested in a biphasic dissolution setup.
Collapse
Affiliation(s)
- Marcel Kokott
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Duesseldorf Universitaetsstr. 1, Duesseldorf 40225, Germany
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Duesseldorf Universitaetsstr. 1, Duesseldorf 40225, Germany
| | - Raphael Wiedey
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Duesseldorf Universitaetsstr. 1, Duesseldorf 40225, Germany
| |
Collapse
|
7
|
Hasan U, Chauhan M, Basu SM, R J, Giri J. Overcoming multidrug resistance by reversan and exterminating glioblastoma and glioblastoma stem cells by delivering drug-loaded nanostructure hybrid lipid capsules (nHLCs). Drug Deliv Transl Res 2024; 14:342-359. [PMID: 37587289 DOI: 10.1007/s13346-023-01401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 08/18/2023]
Abstract
Glioblastoma multiforme (GBM) is regarded as a highly aggressive brain cancer with a poor prognosis. There is an increase in the expression of P-glycoprotein (P-gp), responsible for multidrug resistance (MDR), making it a potential target for improving drug responses. Additionally, glioblastoma stem cells (GSCs) increase resistance to chemo- and radiotherapy and play a major role in cancer relapse. In this study, we targeted P-gp using a small molecule inhibitor, reversan (RV), to inhibit MDR that prolonged the retention of drugs in the cytosolic milieu. To eliminate GBM and GSCs, we have used two well-established anti-cancer drugs, regorafenib (RF) and curcumin (CMN). To improve the pharmacokinetics and decrease systemic delivery of drugs, we developed nanostructure hybrid lipid capsules (nHLCs), where hydrophobic drugs can be loaded in the core, and their physicochemical properties were determined by dynamic light scattering (DLS) and cryo-scanning electron microscopy (SEM). Inhibition of MDR by RV has also shown enhanced retention of nHLC in GBM cells. Co-delivery of drug-loaded nHLCs, pre-treated with RV, exhibited superior cytotoxicity in both GBM and GSCs than their individual doses and effectively reduced the size and stemness of tumor spheres and accelerated the rate of apoptosis, suggesting a promising treatment for glioblastoma.
Collapse
Affiliation(s)
- Uzma Hasan
- Department of Biotechnology, Indian Institute of Technology, Hyderabad, India
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Meenakshi Chauhan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Suparna Mercy Basu
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Jayakumar R
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India.
| |
Collapse
|
8
|
Liquid antisolvent crystallization of pharmaceutical compounds: current status and future perspectives. Drug Deliv Transl Res 2023; 13:400-418. [PMID: 35953765 DOI: 10.1007/s13346-022-01219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2022] [Indexed: 12/30/2022]
Abstract
The present work reviews the liquid antisolvent crystallization (LASC) to prepare the nanoparticle of pharmaceutical compounds to enhance their solubility, dissolution rate, and bioavailability. The application of ultrasound and additives is discussed to prepare the particles with narrow size distribution. The use of ionic liquid as an alternative to conventional organic solvent is presented. Herbal compounds, also known for low aqueous solubility and limited clinical application, have been crystalized by LASC and discussed here. The particle characteristics such as particle size and particle size distribution are interpreted in terms of supersaturation, nucleation, and growth phenomena. To overcome the disadvantage of batch crystallization, the scientific literature on continuous flow reactors is also reviewed. LASC in a microfluidic device is emerging as a promising technique. The different design of the microfluidic device and their application in LASC are discussed. The combination of the LASC technique with traditional techniques such as high-pressure homogenization and spray drying is presented. A comparison of product characteristics prepared by LASC and the supercritical CO2 antisolvent method is discussed to show that LASC is an attractive and inexpensive alternative for nanoparticle preparation. One of the major strengths of this paper is a discussion on less-explored applications of LASC in pharmaceutical research to attract the attention of future researchers.
Collapse
|
9
|
Kokott M, Klinken S, Breitkreutz J, Wiedey R. Downstream processing of amorphous solid dispersions into orodispersible tablets. Int J Pharm 2023; 631:122493. [PMID: 36528189 DOI: 10.1016/j.ijpharm.2022.122493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
The formulation development of amorphous solid dispersions (ASDs) towards a patient-friendly oral solid dosage form is proving to be still challenging. To increase patient's compliance orodispersible tablets (ODTs) can be seen as promising alternative. Two different ASDs were prepared via hot melt extrusion (HME), using PVPVA as polymer for ritonavir (RTV) and HPMCAS for lopinavir (LPV). The extrudates were milled, sieved, and blended with Hisorad® (HRD) or Ludiflash® (LF), two established co-processed excipients (CPE) prior to tableting. Interestingly, the selected ASD particle size was pointed out to be a key parameter for a fast disintegration and high mechanical strength. In terms of PVPVA based ASDs, larger particle sizes > 500 µm enabled a rapid disintegration even under 30 s for 50 % ASD loaded ODTs, whereas the use of smaller particles went along with significant higher disintegration times. However, the influence of the CPE was immense for PVPVA based ASDs, since it was only possible to prepare well performing ODTs, when Hisorad® was chosen. In contrast for HPMCAS based ASDs the selection of smaller particle sizes 180-500 µm was beneficial for overcoming the poor compressibility of the ASD matrix polymer. ODTs with LPV could be produced using both CPEs even with higher ASD loads up to 75 %, while still showing remarkably fast disintegration.
Collapse
Affiliation(s)
- Marcel Kokott
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitaetsstr, 1, 40225 Duesseldorf, Germany
| | - Stefan Klinken
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitaetsstr, 1, 40225 Duesseldorf, Germany
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitaetsstr, 1, 40225 Duesseldorf, Germany.
| | - Raphael Wiedey
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitaetsstr, 1, 40225 Duesseldorf, Germany
| |
Collapse
|
10
|
Pöstges F, Kayser K, Stoyanov E, Wagner KG. Boost of solubility and supersaturation of celecoxib via synergistic interactions of methacrylic acid-ethyl acrylate copolymer (1:1) and hydroxypropyl cellulose in ternary amorphous solid dispersions. Int J Pharm X 2022; 4:100115. [PMID: 35368508 PMCID: PMC8968008 DOI: 10.1016/j.ijpx.2022.100115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/19/2022] Open
Abstract
A current trend in the development of amorphous solid dispersions (ASDs) is the combination of two polymers for synergistic enhancement in supersaturation of poorly soluble drugs. We investigated the supersaturation potential of celecoxib (CXB) using combinations of methacrylic acid-ethyl acrylate copolymer (1:1) (EL 100–55) and hydroxypropyl cellulose (HPC) SSL. Initially, the supersaturation potential of single polymers and combinations in various ratios was assessed. While EL 100–55 and HPC SSL alone showed limited potential in solubility enhancement of CXB the combination of both polymers led to a boost of CXB solubility, whereby most promising results were obtained using a 50:50 polymer ratio. Binary and ternary CXB ASDs (10% drug load) were prepared via vacuum compressing molding (VCM) and hot melt extrusion (HME). ASDs were studied by exploring the miscibility and intermolecular interactions and tested for their dissolution performance. HPC SSL was identified to be a suitable precipitation inhibitor when added to a fast dissolving CXB: EL 100–55 ASD. Ternary ASDs showed even further dissolution improvement, when processed by HME. The combination of heat and shear stress led to a homogeneous and intimate mixture of EL 100–55 and HPC SSL, resulting in formation of synergistic interactions with pronounced impact on CXB supersaturation. Ternary ASDs showed superior supersaturation compared to binary ASDs. Shear forces of HME required for synergistic polymer-polymer interactions. Interactions of polymers responsible for maximum solubility enhancement of celecoxib.
Collapse
Affiliation(s)
- Florian Pöstges
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Kevin Kayser
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Edmont Stoyanov
- Nisso Chemical Europe GmbH, Berliner Allee 42, 40212 Düsseldorf, Germany
| | - Karl G. Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
- Corresponding author.
| |
Collapse
|
11
|
Nambiar AG, Singh M, Mali AR, Serrano DR, Kumar R, Healy AM, Agrawal AK, Kumar D. Continuous Manufacturing and Molecular Modeling of Pharmaceutical Amorphous Solid Dispersions. AAPS PharmSciTech 2022; 23:249. [PMID: 36056225 DOI: 10.1208/s12249-022-02408-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Amorphous solid dispersions enhance solubility and oral bioavailability of poorly water-soluble drugs. The escalating number of drugs with poor aqueous solubility, poor dissolution, and poor oral bioavailability is an unresolved problem that requires adequate interventions. This review article highlights recent solubility and bioavailability enhancement advances using amorphous solid dispersions (ASDs). The review also highlights the mechanism of enhanced dissolution and the challenges faced by ASD-based products, such as stability and scale-up. The role of process analytical technology (PAT) supporting continuous manufacturing is highlighted. Accurately predicting interactions between the drug and polymeric carrier requires long experimental screening methods, and this is a space where computational tools hold significant potential. Recent advancements in data science, computational tools, and easy access to high-end computation power are set to accelerate ASD-based research. Hence, particular emphasis has been given to molecular modeling techniques that can address some of the unsolved questions related to ASDs. With the advancement in PAT tools and artificial intelligence, there is an increasing interest in the continuous manufacturing of pharmaceuticals. ASDs are a suitable option for continuous manufacturing, as production of a drug product from an ASD by direct compression is a reality, where the addition of multiple excipients is easy to avoid. Significant attention is necessary for ongoing clinical studies based on ASDs, which is paving the way for the approval of many new ASDs and their introduction into the market.
Collapse
Affiliation(s)
- Amritha G Nambiar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Maan Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Abhishek R Mali
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | | | - Rajnish Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|