1
|
Miolo G, De Diana E, de Laureto PP, Realdon N, Rossi S, Rossi D. Relationships between surface tensiometry properties and fluorescence intensity of dark and light exposed monoclonal antibody Nivolumab/Opdivoࣨ by using the contact angle method: A pilot study. J Pharm Sci 2025:103823. [PMID: 40349925 DOI: 10.1016/j.xphs.2025.103823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/29/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025]
Abstract
Monoclonal antibodies (mAbs) are a class of therapeutic proteins widely used for the treatment of different kinds of cancers and immune-mediated disorders. During their real-life they encounter various stressors, such as light exposure, able to modify their physico-chemical properties both in their formulation and when diluted for patient administration. Several biochemical and biophysical analytical approaches are currently used to characterize the physico-chemical properties of mAbs, such as spectroscopic methods (i.e., UV absorption, fluorescence, near and far UV circular dichroism) for conformational studies, size exclusion chromatography, electrophoresis and dynamic light scattering for detecting aggregate formation, LC-MS for their chemical modifications. On these bases, our work is focused on the novel surface tension characterization of one of these therapeutic mAbs, Nivolumab, in its formulation Opdivo® and after dilution and the relationship with classical fluorescence data. In particular, the mAb has been exposed to two different doses of simulated sunlight and the effect of the light stressor has been compared to the mAb kept in the dark. The application of Solid-like methodology, using the Rossi number as main surface tensiometry parameter, allowed us to demonstrate the close relationship between the physical, i.e., surface tension properties, and physico-chemical fluorescence emission of these big molecules.
Collapse
Affiliation(s)
- Giorgia Miolo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Elisabetta De Diana
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | | | - Nicola Realdon
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Sergio Rossi
- Laboratoire sur écosystèmes terrestres borèaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi, Canada
| | - Davide Rossi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy.
| |
Collapse
|
2
|
Fukuda M, Nagae S, Takarada T, Noda S, Morita SY, Tanaka M. Potential risk factors of protein aggregation in syringe handling during antibody drug dilution for intravenous administration. J Pharm Sci 2025; 114:1625-1638. [PMID: 39862973 DOI: 10.1016/j.xphs.2024.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025]
Abstract
Protein aggregation, a major concern in biopharmaceutical quality control, can be accelerated by various stresses during clinical handling. This study investigated potential aggregation risk factors during dilution process with syringe handling for intravenous administration. Using γ-globulin and IgG solutions as surrogate models of antibody therapeutics, we examined the effects of high sliding speeds and piston operations of the syringe on protein aggregation during saline dilution. Our results revealed that elevated sliding speeds promoted proteinaceous subvisible and/or visible particle formation, which was further enhanced by piston operations. The proteinaceous particle formation was presumed to be caused by fine air bubbles generated due to rapid pressure changes arising from shear stress during needle passage. While polysorbate 20 effectively suppressed the particle formation induced by the syringe handling at sufficient concentrations, its protective effect became inadequate under high dilution conditions, as exemplified by those encountered in low-body-weight patient protocols. Different proteins exhibited varying susceptibility to the syringe-induced aggregation. These findings demonstrate that the combination of syringe handling and dilution conditions could significantly impact protein stability during clinical handling, particularly for less stable biopharmaceuticals. A deeper understanding of these factors is crucial for developing more robust formulations and establishing safer handling practices for biopharmaceuticals.
Collapse
Affiliation(s)
- Masakazu Fukuda
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, 4-19-1, Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan.
| | - Shino Nagae
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, 4-19-1, Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Toru Takarada
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, 4-19-1, Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Satoshi Noda
- Department of Pharmacotherapeutics, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan; College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Shin-Ya Morita
- Department of Pharmacotherapeutics, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Masafumi Tanaka
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, 4-19-1, Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| |
Collapse
|
3
|
Rizzotto E, Inciardi I, Fongaro B, Trolese P, Miolo G, Polverino de Laureto P. Light exacerbates local and global effects induced by pH unfolding of Ipilimumab. Eur J Pharm Biopharm 2024; 201:114387. [PMID: 38944210 DOI: 10.1016/j.ejpb.2024.114387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/30/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Monoclonal antibodies (mAbs) are an essential class of therapeutic proteins for the treatment of cancer, autoimmune and rare diseases. During their production, storage, and administration processes, these proteins encounter various stressors such as temperature fluctuations, vibrations, and light exposure, able to induce chemico-physical modifications to their structure. Viral inactivation is a key step in downstream processes, and it is achieved by titration of the mAb at low pH, followed by neutralization. The changes of the pH pose a significant risk of unfolding and subsequent aggregation to proteins, thereby affecting their manufacturing. This study aims to investigate whether a combined exposure to light during the viral inactivation process can further affect the structural integrity of Ipilimumab, a mAb primarily used in the treatment of metastatic melanoma. The biophysical and biochemical characterization of Ipilimumab revealed that pH variation is a considerable risk for its stability with irreversible unfolding at pH 2. The threshold for Ipilimumab denaturation lies between pH 2 and 3 and is correlated with the loss of the protein structural cooperativity, which is the most critical factor determining the protein refolding. Light has demonstrated to exacerbate some local and global effects making pH-induced exposed regions more vulnerable to structural and chemical changes. Therefore, specific precautions to real-life exposure to ambient light during the sterilization process of mAbs should be considered to avoid loss of the therapeutic activity and to increase the yield of production. Our findings underscore the critical role of pH optimization in preserving the structural integrity and therapeutic efficacy of mAbs. Moreover, a detailed conformational study on the structural modifications of Ipilimumab may improve the chemico-physical knowledge of this effective drug and suggest new production strategies for more stable products under some kind of stress conditions.
Collapse
Affiliation(s)
- Elena Rizzotto
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 30131 Padova, Italy
| | - Ilenia Inciardi
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 30131 Padova, Italy
| | - Benedetta Fongaro
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 30131 Padova, Italy
| | - Philipp Trolese
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 30131 Padova, Italy
| | - Giorgia Miolo
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 30131 Padova, Italy
| | | |
Collapse
|
4
|
Cappelletto E, Kwok SC, Sorret L, Fuentes N, Medina AM, Burleigh S, Fast J, Mackenzie IS, Fureby AM, Paulsson M, Wahlgren M, Elofsson U, Flynn A, Miolo G, Nyström L, De Laureto PP, De Paoli G. Impact of Post Manufacturing Handling of Protein-Based Biologic Drugs on Product Quality and User Centricity. J Pharm Sci 2024; 113:2055-2064. [PMID: 38810881 DOI: 10.1016/j.xphs.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
This article evaluates the current gaps around the impact of post-manufacturing processes on the product qualities of protein-based biologics, with a focus on user centricity. It includes the evaluation of the regulatory guidance available, describes a collection of scientific literature and case studies to showcase the impact of post-manufacturing stresses on product and dosing solution quality. It also outlines the complexity of clinical handling and the need for communication, and alignment between drug providers, healthcare professionals, users, and patients. Regulatory agencies provide clear expectations for drug manufacturing processes, however, guidance supporting post-product manufacturing handling is less defined and often misaligned. This is problematic as the pharmaceutical products experience numerous stresses and processes which can potentially impact drug quality, safety and efficacy. This article aims to stimulate discussion amongst pharmaceutical developers, health care providers, device manufacturers, and public researchers to improve these processes. Patients and caregivers' awareness can be achieved by providing relevant educational material on pharmaceutical product handling.
Collapse
Affiliation(s)
| | - Stanley C Kwok
- Dosage Form Design and Development, BioPharmaceutical Development, R&D, AstraZeneca, 1 Medimmune Way, Gaithersburg, MD 20878, USA
| | - Léa Sorret
- Drug Product Services, Lonza AG, Hochbergerstrasse 60G, 4057 Basel, Switzerland
| | - Nathalie Fuentes
- Dosage Form Design and Development, BioPharmaceutical Development, R&D, AstraZeneca, 1 Medimmune Way, Gaithersburg, MD 20878, USA
| | - Annette M Medina
- Dosage Form Design and Development, BioPharmaceutical Development, R&D, AstraZeneca, 1 Medimmune Way, Gaithersburg, MD 20878, USA
| | - Stephen Burleigh
- Drug Product Services, Lonza AG, Hochbergerstrasse 60G, 4057 Basel, Switzerland; Department of Food Technology, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Jonas Fast
- Pharmaceutical Development & Supplies, PTD, Biologics Europe, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Isla S Mackenzie
- MEMO Research, Division of Molecular and Clinical Medicine, University of Dundee, Dundee, United Kingdom
| | | | - Mattias Paulsson
- Department of Women's and Children's Health, Uppsala University, Akademiska sjukhuset, SE-751 85 Uppsala, Sweden
| | - Marie Wahlgren
- RISE Research Institutes of Sweden, Stockholm, Sweden; Department of Food Technology, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Ulla Elofsson
- RISE Research Institutes of Sweden, Stockholm, Sweden
| | - Angela Flynn
- MEMO Research, Division of Molecular and Clinical Medicine, University of Dundee, Dundee, United Kingdom
| | - Giorgia Miolo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova (UNIPD)
| | - Lina Nyström
- RISE Research Institutes of Sweden, Stockholm, Sweden
| | | | - Giorgia De Paoli
- School of Health Sciences, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
5
|
Manning MC, Holcomb RE, Payne RW, Stillahn JM, Connolly BD, Katayama DS, Liu H, Matsuura JE, Murphy BM, Henry CS, Crommelin DJA. Stability of Protein Pharmaceuticals: Recent Advances. Pharm Res 2024; 41:1301-1367. [PMID: 38937372 DOI: 10.1007/s11095-024-03726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
There have been significant advances in the formulation and stabilization of proteins in the liquid state over the past years since our previous review. Our mechanistic understanding of protein-excipient interactions has increased, allowing one to develop formulations in a more rational fashion. The field has moved towards more complex and challenging formulations, such as high concentration formulations to allow for subcutaneous administration and co-formulation. While much of the published work has focused on mAbs, the principles appear to apply to any therapeutic protein, although mAbs clearly have some distinctive features. In this review, we first discuss chemical degradation reactions. This is followed by a section on physical instability issues. Then, more specific topics are addressed: instability induced by interactions with interfaces, predictive methods for physical stability and interplay between chemical and physical instability. The final parts are devoted to discussions how all the above impacts (co-)formulation strategies, in particular for high protein concentration solutions.'
Collapse
Affiliation(s)
- Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO, USA.
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Ryan E Holcomb
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Robert W Payne
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
6
|
De Diana E, Rizzotto E, Inciardi I, Menilli L, Coppola M, Polverino de Laureto P, Miolo G. Towards a better understanding of light-glucose induced modifications on the structure and biological activity of formulated Nivolumab. Int J Pharm 2024; 654:123926. [PMID: 38401872 DOI: 10.1016/j.ijpharm.2024.123926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
In the last years, monoclonal antibodies (mAbs) have rapidly escalated as biopharmaceuticals into cancer treatments, mainly for their target specificity accompanied by less side effects than the traditional chemotherapy, and stimulation of reliable long-term anti-tumoral responses. They are potentially unstable macromolecules under shaking, temperature fluctuations, humidity, and indoor and outdoor light exposure, all stressors occurring throughout their production, transport, storage, handling, and administration steps. The chemical and physical modifications of mAbs can lead not only to the loss of their bioactivity, but also to the enhancement of their immunogenicity with increasing risk of severe hypersensitivity reactions in treated patients because of aggregation. The photostability of Nivolumab, the active principle of Opdivo®, has been here studied. The chemical modifications detected by LC-MS/MS after the light stressor showed Trp and Met mono and double oxidations as primary damage induced by light on this mAb. The oxidations were stronger when the mAb was diluted in sterile glucose solution where 5-HMF, a major heat glucose degradation product, acted as singlet oxygen producer under irradiation. However, no significant changes in the mAb conformation were found. On the contrary, formation of a significant extent of aggregates has been detected after shining high simulated sunlight doses. This again took place particularly when Nivolumab was diluted in sterile glucose, thus raising a direct correlation between the aggregation and the oxidative processes. Finally, the biological activity under light stress assessed by a blockade assay test demonstrated the maintenance of the PD-1 target recognition even under high light doses and in glucose solution, in line with the preservation of the secondary and tertiary structures of the mAb. Based on our results, as sterile glucose is mostly used for children's therapies, special warnings, and precautions for healthcare professionals should be included for their use to the pediatric population.
Collapse
Affiliation(s)
- Elisabetta De Diana
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo, 5, 35131 Padova, Italy
| | - Elena Rizzotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo, 5, 35131 Padova, Italy
| | - Ilenia Inciardi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo, 5, 35131 Padova, Italy
| | - Luca Menilli
- IOV, Istituto Oncologico Veneto, IRCCS, Via Gattamelata, 64, 35 128 Padova, Italy
| | - Marina Coppola
- IOV, Istituto Oncologico Veneto, IRCCS, Via Gattamelata, 64, 35 128 Padova, Italy
| | - Patrizia Polverino de Laureto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo, 5, 35131 Padova, Italy.
| | - Giorgia Miolo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo, 5, 35131 Padova, Italy.
| |
Collapse
|
7
|
Martínez CS, Amery L, De Paoli G, Elofsson U, Fureby AM, Kwok S, López-Cabezas C, Rosenberger M, Schoenau C, Wahlgren M, Paulsson M. Examination of the Protein Drug Supply Chain in a Swedish University Hospital: Focus on Handling Risks and Mitigation Measures. J Pharm Sci 2023; 112:2799-2810. [PMID: 37160226 DOI: 10.1016/j.xphs.2023.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Abstract
Protein drugs, such as monoclonal antibodies, have proved successful in treating cancer and immune system diseases. The structural complexity of these molecules requires careful handling to ensure integrity and stability of the drug. In this study, a failure mode and effects analysis was performed based on a Gemba Walk method in a Swedish University Hospital. The Gemba Walk is focused on pharmacists observing the actual supply process steps from distributor, pharmacy cleanroom to patient administration. Relevant protein drugs are chosen based on sales statistics within the hospital and the corresponding wards were observed. Further is the Double Diamond design method used to identify major risks and deliver mitigation strategies. The study identified potential stress factors such as temperature, shock by impact, shaking, vibration and light exposure. There were also risks associated with porters' and healthcare professionals' lack of awareness and access to information. These risk factors may cause loss of efficacy and quality of the protein drug, potentially leading to patient safety concerns. In this study, a simulation is also performed to list measures that theoretically should be in place to ensure the quality of the protein drug, for example validated and protocol-based compounding in cleanroom, training and validated transports.
Collapse
Affiliation(s)
- Clàudia Sabaté Martínez
- Department of Women's and Children's Health, Uppsala University, Akademiska sjukhuset, SE-751 85 Uppsala, Sweden; Faculty of Pharmacy and Food Science, University of Barcelona, Spain
| | - Leanne Amery
- Late Stage Formulation Sciences, BioPharmaceuticals Development, Dosage Form Design & Development, AstraZeneca, Granta Park, Cambridge, UK
| | - Giorgia De Paoli
- MEMO Research, Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, UK
| | - Ulla Elofsson
- RISE Research Institute of Sweden, Stockholm, Sweden
| | | | - Stanley Kwok
- Late Stage Formulation Sciences, BioPharmaceuticals Development, Dosage Form Design & Development, AstraZeneca, One MedImmune Way, Gaithersburg, MD 20878, USA
| | | | - Marika Rosenberger
- Sanofi-Aventis Deutschland GmbH, Biologics Drug Product Development & Manufacturing, Industriepark Hoechst, K703. Brüningstr. 50, 65926 Frankfurt am Main, Germany
| | - Christian Schoenau
- Sanofi-Aventis Deutschland GmbH, Biologics Drug Product Development & Manufacturing, Industriepark Hoechst, K703. Brüningstr. 50, 65926 Frankfurt am Main, Germany
| | - Marie Wahlgren
- Department of Food Technology, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Mattias Paulsson
- Department of Women's and Children's Health, Uppsala University, Akademiska sjukhuset, SE-751 85 Uppsala, Sweden.
| |
Collapse
|
8
|
Nagaev EI, Baimler IV, Baryshev AS, Reut VE, Astashev ME. Interaction of Nd:YAG Laser Radiation with Bovine Serum Albumin Solution. BIO WEB OF CONFERENCES 2023. [DOI: 10.1051/bioconf/20235702006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In this paper, the effect of Nd:YAG laser radiation on the properties of the BSA protein is investigated. A solution with a protein concentration of 5 mg/ml was irradiated for 30 minutes. After a 5-minute and 30-minute exposure, absorption spectra were taken, the particle size in the solution was determined by dynamic light scattering (DLS), the refractive index was determined, and fluorescent maps were taken. Raman spectroscopy of proteins was also performed. The results showed that after irradiation, the absorption of the protein solution decreases in the spectral range corresponding to amino acid residues. In DLS experiments, it was shown that the peak corresponding to protein molecules decreases, and the peaks corresponding to large aggregates (>100 nm) grow. Raman spectroscopy has shown that there is a decrease in intensity at a wavelength of 1570 cm-1. There were no significant changes in the refractive indices and the shape of the fluorescent maps. The data suggest that partial denaturation of proteins took place.
Collapse
|