1
|
Manning MC, Holcomb RE, Payne RW, Stillahn JM, Connolly BD, Katayama DS, Liu H, Matsuura JE, Murphy BM, Henry CS, Crommelin DJA. Stability of Protein Pharmaceuticals: Recent Advances. Pharm Res 2024; 41:1301-1367. [PMID: 38937372 DOI: 10.1007/s11095-024-03726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
There have been significant advances in the formulation and stabilization of proteins in the liquid state over the past years since our previous review. Our mechanistic understanding of protein-excipient interactions has increased, allowing one to develop formulations in a more rational fashion. The field has moved towards more complex and challenging formulations, such as high concentration formulations to allow for subcutaneous administration and co-formulation. While much of the published work has focused on mAbs, the principles appear to apply to any therapeutic protein, although mAbs clearly have some distinctive features. In this review, we first discuss chemical degradation reactions. This is followed by a section on physical instability issues. Then, more specific topics are addressed: instability induced by interactions with interfaces, predictive methods for physical stability and interplay between chemical and physical instability. The final parts are devoted to discussions how all the above impacts (co-)formulation strategies, in particular for high protein concentration solutions.'
Collapse
Affiliation(s)
- Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO, USA.
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Ryan E Holcomb
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Robert W Payne
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
2
|
Malani H, Shrivastava A, Nupur N, Rathore AS. LC-MS Characterization and Stability Assessment Elucidate Correlation Between Charge Variant Composition and Degradation of Monoclonal Antibody Therapeutics. AAPS J 2024; 26:42. [PMID: 38570351 DOI: 10.1208/s12248-024-00915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
Aggregation stability of monoclonal antibody (mAb) therapeutics is influenced by many critical quality attributes (CQA) such as charge and hydrophobic variants in addition to environmental factors. In this study, correlation between charge heterogeneity and stability of mAbs for bevacizumab and trastuzumab has been investigated under a variety of stresses including thermal stress at 40 °C, thermal stress at 55 °C, shaking (mechanical), and low pH. Size- and charge-based heterogeneities were monitored using analytical size exclusion chromatography (SEC) and cation exchange chromatography (CEX), respectively, while dynamic light scattering was used to assess changes in hydrodynamic size. CEX analysis revealed an increase in cumulative acidic content for all variants of both mAbs post-stress treatment attributed to increased deamidation. Higher charge heterogeneity was observed in variants eluting close to the main peak than the ones eluting further away (25-fold and 42-fold increase in acidic content for main and B1 of bevacizumab and 19-fold for main of trastuzumab, respectively, under thermal stress; 50-fold increase in acidic for main and B1 of bevacizumab and 10% rise in basic content of main of trastuzumab under pH stress). Conversely, variants eluting far away from main exhibit greater aggregation as compared to close-eluting ones. Aggregation kinetics of variants followed different order for the different stresses for both mAbs (2nd order for thermal and pH stresses and 0th order for shaking stress). Half-life of terminal charge variants of both mAbs was 2- to 8-fold less than main indicating increased degradation propensity.
Collapse
Affiliation(s)
- Himanshu Malani
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Anuj Shrivastava
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Neh Nupur
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
3
|
Cernosek T, Jain N, Dalphin M, Behrens S, Wunderli P. Accelerated development of a SEC-HPLC procedure for purity analysis of monoclonal antibodies using design of experiments. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1235:124037. [PMID: 38335765 DOI: 10.1016/j.jchromb.2024.124037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
The complex structure of biopharmaceutical products poses an inherent need for their thorough characterization to ensure product quality, safety, and efficacy. Analytical size exclusion chromatography (SEC) is a widely used technique throughout the development and manufacturing of monoclonal antibodies (mAbs) which quantifies product size variants such as aggregates and fragments. Aggregate and fragment content are critical quality attributes (CQAs) in mAb products, as higher contents of such size heterogeneities impact product quality. Historically, SEC methods have achieved sufficient separation between the high molecular weight (HMW) species and the main product. In contrast, some low molecular weight (LMW) species are often not sufficiently different in molecular mass from the main product, making it difficult to achieve appropriate resolutions between the two species. This lack of resolution makes it difficult to consistently quantify the LMW species in mAb-based therapeutics. The following work uses a design of experiments (DoE) approach to establish a robust analytical SEC procedure by evaluating SEC column types and mobile phase compositions using two mAb products with different physiochemical properties. The resulting optimized procedure using a Waters™ BioResolve column exhibits an improved ability to resolve and quantify mAb size variants, highlighting improvement in the resolution of the LMW species. Additionally, the addition of L-arginine as a mobile phase additive showed to reduce secondary interactions and was beneficial in increasing the recoveries of the HMW species.
Collapse
Affiliation(s)
- Terezie Cernosek
- Catalent Biologics, Madison, WI, USA; Keck Graduate Institute of Applied Life Sciences, Claremont, CA, USA.
| | | | | | - Sue Behrens
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA, USA
| | | |
Collapse
|
4
|
Lou H, Zhang Y, Kuczera K, Hageman MJ, Schöneich C. Molecular Dynamics Simulation of an Iron(III) Binding Site on the Fc Domain of IgG1 Relevant for Visible Light-Induced Protein Fragmentation. Mol Pharm 2024; 21:501-512. [PMID: 38128475 DOI: 10.1021/acs.molpharmaceut.3c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Molecular dynamics simulations were employed to investigate the interaction between Fe(III) and an iron-binding site composed of THR259, ASP252, and GLU261 on the Fc domain of an IgG1. The goal was to provide microscopic mechanistic information for the photochemical, iron-dependent site-specific oxidative fragmentation of IgG1 at THR259 reported in our previous paper. The distance between Fe(III) and residues of interest as well as the binding pocket size was examined for both protonated and deprotonated THR259. The Fe(III) binding free energy (ΔG) was estimated by using an umbrella sampling approach. The pKa shift of the THR259 hydroxyl group caused by the presence of nearby Fe(III) was estimated based on a thermodynamic cycle. The simulation results show that Fe(III) resides inside the proposed binding pocket and profoundly changes the pocket configuration. The ΔG values indicate that the pocket possesses a strong binding affinity for Fe(III). Furthermore, Fe(III) profoundly lowers the pKa value of the THR259 hydroxyl group by 5.4 pKa units.
Collapse
Affiliation(s)
- Hao Lou
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
- Biopharmaceutical Innovation and Optimization Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Yilue Zhang
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Krzysztof Kuczera
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Michael J Hageman
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
- Biopharmaceutical Innovation and Optimization Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
5
|
Du J, Wu G, Chen Q, Yu C, Xu G, Liu A, Wang L. Fingerprinting trimeric SARS-CoV-2 RBD by capillary isoelectric focusing with whole-column imaging detection. Anal Biochem 2023; 663:115034. [PMID: 36586502 PMCID: PMC9794521 DOI: 10.1016/j.ab.2022.115034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Because the spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) is the immunodominant antigen, the S protein and its receptor-binding domain (RBD) are both targets currently to be genetically engineered for designing the broad-spectrum vaccine. In theory, the expressed protein exists as a set of variants that are roughly the same but slightly different, which depends on the protein expression system. The variants can be phenotypically manifested as charge heterogeneity. Here, we attempted to depict the charge heterogeneity of the trimeric SARS-CoV-2 RBD by using capillary isoelectric focusing with whole-column imaging detection (cIEF-WCID). In its nature form, the electropherogram fingerprints of the trimeric RBD were presented under optimized experimental conditions. The peaks of matrix buffers can be fully distinguishable from peaks of trimeric RBD. The isoelectric point (pI) was determined to be within a range of 6.67-9.54 covering the theoretical pI of 9.02. The fingerprints of three batches of trimeric RBDs are completely the same, with the intra-batch and batch-to-batch relative standard deviations (RSDs) of both pI values and area percentage of each peak no more than 1.0%, indicating that the production process is stable and this method can be used to surveillance the batch-to-batch consistency. The fingerprint remained unchanged after incubating at 37 °C for 7 d and oxidizing by 0.015% H2O2. In addition, the fingerprint was destroyed when adjusting the pH value to higher than 10.0 but still stable when the pH was lower than 4.0. In summary, the cIEF-WCID fingerprint can be used for the identification, batch-to-batch consistency evaluation, and stability study of the trimeric SARS-CoV-2 RBD, as part of a quality control strategy during the potential vaccine production.
Collapse
Affiliation(s)
- Jialiang Du
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Gang Wu
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Quanyao Chen
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control, Beijing, 102629, China,School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Chuanfei Yu
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Gangling Xu
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Anhui Liu
- School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Lan Wang
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control, Beijing, 102629, China.
| |
Collapse
|
6
|
Zhang Y, Schöneich C. Visible Light Induces Site-Specific Oxidative Heavy Chain Fragmentation of a Monoclonal Antibody (IgG1) Mediated by an Iron(III)-Containing Histidine Buffer. Mol Pharm 2023; 20:650-662. [PMID: 36538763 DOI: 10.1021/acs.molpharmaceut.2c00840] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fragmentation of therapeutic monoclonal antibodies represents a critical quality attribute. Here, we report a novel visible light-induced heavy chain fragmentation of IgG1 mediated by an Fe(III)-containing histidine (His) buffer. Based on non-reducing sodium dodecylsulfate-polyacrylamide gel electrophoresis and mass spectrometry analysis, IgG1 fragments with apparent molecular weights of ∼130, ∼110, and ∼22 kDa were detected in photo-irradiated samples and were mechanistically rationalized with an oxidative cleavage at Thr259. Specifically, the reactions are proposed to involve the generation of an intermediary alkoxyl radical, which undergoes β-cleavage to yield a glycyl radical. The latter either converts into Gly or adds oxygen and follows a peroxyl radical chemistry. The cleavage process requires the presence of His, while only negligible yields of cleavage products are formed when His is replaced by acetate, succinate, or phosphate buffer. Importantly, the fragmentation can be prevented by ethylenediaminetetraacetic acid (EDTA) only when the EDTA concentrations are in significant excess over the concentrations of Fe(III) and proteins, suggesting a strong binding between Fe(III) and IgG1.
Collapse
Affiliation(s)
- Yilue Zhang
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, Kansas66047, United States
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, Kansas66047, United States
| |
Collapse
|