1
|
Chaudhari P, Lewis SA, Ghate V. Nanotechnology-based non-invasive strategies in ocular therapeutics: Approaches, limitations to clinical translation, and safety concerns. Cont Lens Anterior Eye 2025; 48:102367. [PMID: 39794261 DOI: 10.1016/j.clae.2025.102367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/13/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025]
Abstract
The eye is a highly sensitive and vital component that significantly affects human quality of life. Diseases that affect the eye are major contributors to visual impairment and blindness and can have a profound effect on an individual's well-being. Ocular drug delivery is challenging because of physiological and anatomical barriers. Invasive Intravitreal administration is primarily used for the treatment and management of posterior segmental disease. However, frequent intravitreal administration is associated with adverse effects. Furthermore, topical administration results in less than 5% ocular bioavailability, leading to a void in the safe and efficacious management of posterior segment diseases. Nanocarrier-based systems have been well explored as ocular therapeutics to overcome the sub-therapeutic management attributed to conventional eye drops and physiological and anatomical barriers. Since the first report of nanoparticles to date, the nanocarrier system has come a long way with the simplicity and versatility offered by the system. Significant progress has been made in the development of noninvasive nanocarrier systems and their interactions with the ocular surface. The nanocarrier system enhances precorneal retention, limits nontherapeutic absorption, and offers controlled drug release. This review aims to provide an overview of the recent advancements in noninvasive nanocarrier-based topical ocular drug delivery systems, including their interaction with the ocular surface, the barriers to their translation to clinical settings, and the associated scale-up challenges.
Collapse
Affiliation(s)
- Pinal Chaudhari
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali 140413, India.
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Vivek Ghate
- Yenepoya Technology Incubator, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore 575018, Karnataka, India
| |
Collapse
|
2
|
Pal P, Sambhakar S, Paliwal S. Revolutionizing Ophthalmic Care: A Review of Ocular Hydrogels from Pathologies to Therapeutic Applications. Curr Eye Res 2025; 50:1-17. [PMID: 39261982 DOI: 10.1080/02713683.2024.2396385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE This comprehensive review is designed to elucidate the transformative role and multifaceted applications of ocular hydrogels in contemporary ophthalmic therapeutic strategies, with a particular emphasis on their capability to revolutionize drug delivery mechanisms and optimize patient outcomes. METHODS A systematic and structured methodology is employed, initiating with a succinct exploration of prevalent ocular pathologies and delineating the corresponding therapeutic agents. This serves as a precursor for an extensive examination of the diverse methodologies and fabrication techniques integral to the design, development, and application of hydrogels specifically tailored for ophthalmic pharmaceutical delivery. The review further scrutinizes the pivotal manufacturing processes that significantly influence hydrogel efficacy and delves into an analysis of the current spectrum of hydrogel-centric ocular formulations. RESULTS The review yields illuminating insights into the escalating prominence of ocular hydrogels within the medical community, substantiated by a plethora of ongoing clinical investigations. It reveals the dynamic and perpetually evolving nature of hydrogel research and underscores the extensive applicability and intricate progression of transposing biologics-loaded hydrogels from theoretical frameworks to practical clinical applications. CONCLUSIONS This review accentuates the immense potential and promising future of ocular hydrogels in the realm of ophthalmic care. It not only serves as a comprehensive guide but also as a catalyst for recognizing the transformative potential of hydrogels in augmenting drug delivery mechanisms and enhancing patient outcomes. Furthermore, it draws attention to the inherent challenges and considerations that necessitate careful navigation by researchers and clinicians in this progressive field.
Collapse
Affiliation(s)
- Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Vanasthali, India
- IIMT College of Pharmacy, IIMT Group of Colleges, Greater Noida, India
| | | | | |
Collapse
|
3
|
Zheng L, Chen Y, Han Y, Lin J, Fan K, Wang M, Teng T, Yang X, Ke L, Li M, Guo S, Li Z, Wu Y, Li C. Thermosensitive Polyhedral Oligomeric Silsesquioxane Hybrid Hydrogel Enhances the Antibacterial Efficiency of Erythromycin in Bacterial Keratitis. Biomater Res 2024; 28:0033. [PMID: 39040621 PMCID: PMC11260774 DOI: 10.34133/bmr.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/26/2024] [Indexed: 07/24/2024] Open
Abstract
Bacterial keratitis is a serious ocular infection that can impair vision or even cause blindness. The clinical use of antibiotics is limited due to their low bioavailability and drug resistance. Hence, there is a need to develop a novel drug delivery system for this infectious disease. In this study, erythromycin (EM) was encapsulated into a bifunctional polyhedral oligomeric silsesquioxane (BPOSS) with the backbone of the poly-PEG/PPG urethane (BPEP) hydrogel with the aim of improving the drug efficiency in treating bacterial keratitis. A comprehensive characterization of the BPEP hydrogel was performed, and its biocompatibility was assessed. Furthermore, we carried out the evaluation of the antimicrobial effect of the BPEP-EM hydrogel in S. aureus keratitis using in vivo mouse model. The BPEP hydrogel exhibited self-assembling and thermogelling properties, which assisted the drug loading of drug EM and improved its water solubility. Furthermore, the BPEP hydrogel could effectively bind with mucin on the ocular surface, thereby markedly prolonging the ocular residence time of EM. In vivo testing confirmed that the BPEP-EM hydrogel exerted a potent therapeutic action in the mouse model of bacterial keratitis. In addition, the hydrogel also exhibited an excellent biocompatibility. Our findings demonstrate that the BPEP-EM hydrogel showed a superior therapeutic effect in bacterial keratitis and demonstrated its potential as an ophthalmic formulation.
Collapse
Affiliation(s)
- Lan Zheng
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center & Affiliated First Hospital, School of Medicine,
Xiamen University, Xiamen 361102, PR China
| | - Ying Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology,
School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Yi Han
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center & Affiliated First Hospital, School of Medicine,
Xiamen University, Xiamen 361102, PR China
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Jingwei Lin
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center & Affiliated First Hospital, School of Medicine,
Xiamen University, Xiamen 361102, PR China
| | - Kai Fan
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology,
School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Mengyuan Wang
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center & Affiliated First Hospital, School of Medicine,
Xiamen University, Xiamen 361102, PR China
| | - Ting Teng
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Xiuqin Yang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology,
School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Lingjie Ke
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology,
School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Muyuan Li
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117,Shandong Province, PR China
| | - Shujia Guo
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center & Affiliated First Hospital, School of Medicine,
Xiamen University, Xiamen 361102, PR China
| | - Zibiao Li
- Huaxia Eye Hospital of Quanzhou, Quanzhou, Fujian 362000, China
| | - Yunlong Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology,
School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Cheng Li
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center & Affiliated First Hospital, School of Medicine,
Xiamen University, Xiamen 361102, PR China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117,Shandong Province, PR China
- Huaxia Eye Hospital of Quanzhou, Quanzhou, Fujian 362000, China
| |
Collapse
|
4
|
Ahmed B, Jaiswal S, Naryal S, Shah RM, Alany RG, Kaur IP. In situ gelling systems for ocular drug delivery. J Control Release 2024; 371:67-84. [PMID: 38768662 DOI: 10.1016/j.jconrel.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/12/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
In situ gelling systems represent a burgeoning paradigm in ocular drug administration, addressing intrinsic challenges posed by extant ocular formulations, such as compromised bioavailability and constraints in traversing the corneal barrier. This systematic review endeavours to comprehensively examine the contemporary landscape of research in this domain, focusing on the nuanced capabilities of in situ gelling systems to optimize drug delivery and enhance therapeutic outcomes, without much technological complexity. Employing a meticulous search strategy across diverse databases for publications and patents spanning the years 2015 to 2023 a total of 26 research papers and 14 patents meeting stringent inclusion criteria were identified. Synthesizing the collective insights derived from these investigations, it becomes evident that in situ gelling systems confer an ability to protract the residence time of formulations or active pharmaceutical ingredients (APIs) within the ocular milieu. This sustained presence engenders extended drug release kinetics, thereby fostering improved patient compliance and mitigating the proclivity for side effects attendant to frequent dosing. These salutary effects extend to diminished systemic drug absorption, augmented ocular bioavailability, and the prospect of reduced dosing frequencies, thereby amplifying patient adherence to therapeutic regimens. Intriguingly, the protective attributes of in situ gelling systems extend to the establishment of an ocular surface barrier, thereby abating the susceptibility to infections and inflammatory responses. In summation, this review underscores the auspicious potential of in situ gelling systems as a transformative approach to advancing ocular drug delivery, warranting sustained research endeavours and developmental initiatives for the betterment of global patient outcomes.
Collapse
Affiliation(s)
- Bakr Ahmed
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Srishty Jaiswal
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Srishti Naryal
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Rohan M Shah
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora West, VIC 3038, Australia
| | - Raid G Alany
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, Department of Pharmacy, Kingston University London, Kingston upon Thames, UK; School of Pharmacy, University of Auckland, Auckland, New Zealand
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| |
Collapse
|
5
|
Garg A, Agrawal R, Singh Chauhan C, Deshmukh R. In-situ gel: A smart carrier for drug delivery. Int J Pharm 2024; 652:123819. [PMID: 38242256 DOI: 10.1016/j.ijpharm.2024.123819] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
In-situ gel technology is a promising drug delivery strategy that undergoes a 'sol to gel' transition upon administration, providing controlled and prolonged drug release. These gels are composed of cross-linked 3D networks of polymers, with hydrogels being a specific type of absorbing water while retaining their shape. Gelation can be triggered by various stimuli, such as temperature, pH, ions, and light. They offer several advantages like improved patient compliance, extended drug residence time, localized drug delivery, etc, but also have some disadvantages like drug degradation and limited mechanical strength. In-situ gel falls into three categories: temperature-sensitive, ion-sensitive, and pH-sensitive, but multi-responsive gels that respond to multiple stimuli have better drug release characteristics. The mechanism of in-situ gel formation involves physical and chemical mechanisms. There are various applications of in-situ gel, like ocular drug delivery, nose-to-brain delivery, etc. In this review, we have discussed the types, and mechanisms of in-situ gel & use of in-situ gel in the treatment of different diseases through various routes like buccal, vaginal, ocular, nasal, etc., along with its use in targeted drug delivery.
Collapse
Affiliation(s)
- Akash Garg
- Bhupal Noble's University, New Shiv Nagar, Central Area, Udaipur, Rajasthan 313001, India.
| | - Rutvi Agrawal
- Bhupal Noble's University, New Shiv Nagar, Central Area, Udaipur, Rajasthan 313001, India
| | - Chetan Singh Chauhan
- Bhupal Noble's University, New Shiv Nagar, Central Area, Udaipur, Rajasthan 313001, India
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
6
|
Sipos B, Benei M, Katona G, Csóka I. Optimization and Characterization of Sodium Alginate Beads Providing Extended Release for Antidiabetic Drugs. Molecules 2023; 28:6980. [PMID: 37836823 PMCID: PMC10574423 DOI: 10.3390/molecules28196980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
The current research is aimed at investigating the relationship between the formulation components and conditions in the case of a binary drug delivery system, where antidiabetic drugs are co-formulated into polymeric micelles embedded in sodium alginate. Compared to chemical modifications of polymers with alginate, our development provides a simpler and scalable formulation process. Our results prove that a multi-level factorial design-based approach can ensure the development of a value-added polymeric micelle formulation with an average micelle size of 123.6 ± 3.1 nm and a monodisperse size distribution, showing a polydispersity index value of 0.215 ± 0.021. The proper nanoparticles were co-formulated with sodium alginate as a biologically decomposing and safe-to-administer biopolymer. The Box-Behnken factorial design ensured proper design space development, where the optimal sodium alginate bead formulation had a uniform, extended-release drug release mechanism similar to commercially available tablet preparations. The main conclusion is that the rapid-burst-like drug release can be hindered via the embedment of nanocarriers into biopolymeric matrices. The thermally stable formulation also holds the benefit of uniform active substance distribution after freeze-drying.
Collapse
Affiliation(s)
- Bence Sipos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary; (M.B.); (G.K.); (I.C.)
| | | | | | | |
Collapse
|
7
|
Pandya AK, Vora LK, Umeyor C, Surve D, Patel A, Biswas S, Patel K, Patravale VB. Polymeric in situ forming depots for long-acting drug delivery systems. Adv Drug Deliv Rev 2023; 200:115003. [PMID: 37422267 DOI: 10.1016/j.addr.2023.115003] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Polymeric in situ forming depots have emerged as highly promising drug delivery systems for long-acting applications. Their effectiveness is attributed to essential characteristics such as biocompatibility, biodegradability, and the ability to form a stable gel or solid upon injection. Moreover, they provide added versatility by complementing existing polymeric drug delivery systems like micro- and nanoparticles. The formulation's low viscosity facilitates manufacturing unit operations and enhances delivery efficiency, as it can be easily administered via hypodermic needles. The release mechanism of drugs from these systems can be predetermined using various functional polymers. To enable unique depot design, numerous strategies involving physiological and chemical stimuli have been explored. Important assessment criteria for in situ forming depots include biocompatibility, gel strength and syringeability, texture, biodegradation, release profile, and sterility. This review focuses on the fabrication approaches, key evaluation parameters, and pharmaceutical applications of in situ forming depots, considering perspectives from academia and industry. Additionally, insights about the future prospects of this technology are discussed.
Collapse
Affiliation(s)
- Anjali K Pandya
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400 019, India; School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Chukwuebuka Umeyor
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400 019, India; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka 422001, Anambra State, Nigeria
| | - Dhanashree Surve
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Akanksha Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, Telangana 500078, India
| | - Ketankumar Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Vandana B Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400 019, India.
| |
Collapse
|
8
|
Cai R, Zhang L, Chi H. Recent development of polymer nanomicelles in the treatment of eye diseases. Front Bioeng Biotechnol 2023; 11:1246974. [PMID: 37600322 PMCID: PMC10436511 DOI: 10.3389/fbioe.2023.1246974] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023] Open
Abstract
The eye, being one of the most intricate organs in the human body, hosts numerous anatomical barriers and clearance mechanisms. This highlights the importance of devising a secure and efficacious ocular medication delivery system. Over the past several decades, advancements have been made in the development of a nano-delivery platform based on polymeric micelles. These advancements encompass diverse innovations such as poloxamer, chitosan, hydrogel-encapsulated micelles, and contact lenses embedded with micelles. Such technological evolutions allow for sustained medication retention and facilitate enhanced permeation within the eye, thereby standing as the avant-garde in ocular medication technology. This review provides a comprehensive consolidation of ocular medications predicated on polymer nanomicelles from 2014 to 2023. Additionally, it explores the challenges they pose in clinical applications, a discussion intended to aid the design of future clinical research concerning ocular medication delivery formulations.
Collapse
Affiliation(s)
- Ruijun Cai
- Department of Pharmacy, The People’s Hospital of Jiuquan, Jiuquan, Gansu, China
| | - Ling Zhang
- Department of Pharmacy, The People’s Hospital of Jiuquan, Jiuquan, Gansu, China
| | - Hao Chi
- Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
9
|
Kaushal N, Kumar M, Tiwari A, Tiwari V, Sharma K, Sharma A, Marisetti AL, Gupta MM, Kazmi I, Alzarea SI, Almalki WH, Gupta G. Polymeric micelles loaded in situ gel with prednisolone acetate for ocular inflammation: development and evaluation. Nanomedicine (Lond) 2023; 18:1383-1398. [PMID: 37702303 DOI: 10.2217/nnm-2023-0123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Aim: Our study developed a prednisolone acetate polymeric micelles (PM) system for ocular inflammation related to allergic uveitis. Methods: For PM development, a thin-film hydration procedure was used. Irritation, in vitro, ex vivo transcorneal permeation, micelle size, entrapment efficiency and histology within the eye were all calculated for PM. Results: The optimized in situ gel (A4) showed superior ex vivo transcorneal permeation with zero-order kinetics. Conclusion: The developed formulation could be a promising candidate for treating anterior uveitis via topical application to the anterior segment of the eye.
Collapse
Affiliation(s)
- Nikita Kaushal
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana
| | - Manish Kumar
- School of Pharmaceutical Sciences, CT University, Ludhiana, Punjab, 142024, India
| | - Abhishek Tiwari
- Department of Pharmacy, Pharmacy Academy, IFTM University, Lodhipur-Rajpur, Moradabad, 244102, India
| | - Varsha Tiwari
- Department of Pharmacy, Pharmacy Academy, IFTM University, Lodhipur-Rajpur, Moradabad, 244102, India
| | - Kamini Sharma
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana
| | - Ajay Sharma
- Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, PushpVihar-3, New Delhi, 110017, India
| | - Arya Lakshmi Marisetti
- Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, PushpVihar-3, New Delhi, 110017, India
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72388, Al-Jouf, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
- Center for Global Health research (CGHR), Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai 602105, India
| |
Collapse
|
10
|
Xu H, Liu Y, Jin L, Chen X, Chen X, Wang Q, Tang Z. Preparation and Characterization of Ion-Sensitive Brimonidine Tartrate In Situ Gel for Ocular Delivery. Pharmaceuticals (Basel) 2023; 16:ph16010090. [PMID: 36678587 PMCID: PMC9866900 DOI: 10.3390/ph16010090] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Brimonidine tartrate (BRT) is a highly selective α2 adrenergic receptor agonist as treatment for patients with open angle glaucoma and high intraocular pressure. The objective of this study was to formulate an ophthalmic ion-sensitive in situ gel (ISG) of BRT to increase the retention time of the drug and its bioavailability. The optimum formulation of 2 mg/mL BRT-ISG was obtained with 0.45% gellan gum as the gel matrix. In vitro release results showed that the water-soluble drug bromonidine tartrate in ocular in situ gels exhibited a high burst effect and fast release in solution. The results of dialysis membrane permeation showed that there was a significant difference between the commercially available and BRT-ISG groups after 45 min. The results of the pre-corneal retention study indicated that gellan gum can effectively prolong ocular surface retention. Preliminary stability results showed that it should be stored in a cool and dark place, and the formulation under long-term preservation can be basically stable. The pharmacokinetic study of the BRT-ISG in the anterior chamber of the rabbit eye was studied by microdialysis technique, and microdialysis samples were analyzed by LC-MS/MS. The pharmacokinetic study showed that the BRT-ISG reached Cmax (8.16 mg/L) at 93 min after administration, which was 2.7 times that of the BRT eye drops, and the AUC(0-t) (1397.08 mg·min/L) was 3.4 times that of the BRT eye drops. The optimal prescription can prolong the retention time of BRT in front of the cornea and significantly improve the bioavailability of BRT in the eye. Combined with the results of in vitro release, permeation and pre-corneal retention studies, the improvement of BRT-ISG bioavailability in rabbit eyes was found to be mainly due to the retention effect after the mixture of ISG and tears.
Collapse
Affiliation(s)
- Haonan Xu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Ye Liu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Lu Jin
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Xu Chen
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Xinghao Chen
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Qiao Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 310013, China
- Correspondence: (Q.W.); (Z.T.)
| | - Zhan Tang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 310013, China
- Correspondence: (Q.W.); (Z.T.)
| |
Collapse
|
11
|
Development of Thermoresponsive-Gel-Matrix-Embedded Amoxicillin Trihydrate-Loaded Bovine Serum Albumin Nanoparticles for Local Intranasal Therapy. Gels 2022; 8:gels8110750. [PMID: 36421572 PMCID: PMC9690333 DOI: 10.3390/gels8110750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
A high dose of amoxicillin is recommended as the first-line therapy for acute bacterial rhinosinusitis (ABR). However, oral administration of amoxicillin is connected to many adverse reactions coupled with moderate bioavailability (~60%). Therefore, this study aimed to develop a topical nasal preparation of amoxicillin, employing a thermoresponsive nanogel system to increase nasal residence time and prolong drug release. Rheological investigations revealed that formulations containing 21−23% w/w Poloxamer 407 (P407) were in accordance with the requirement of nasal administration (gelling temperature ~35 °C). The average hydrodynamic diameter (<200 nm), pH (6.7−6.9), and hypertonic osmolality (611−663 mOsmol/L) of the in situ gelling nasal nanogel appeared as suitable characteristics for local rhinosinusitis treatment. Moreover, taking into account the mucoadhesive strength and drug release studies, the 21% w/w P407 could be considered as an optimized concentration for effective nasal delivery. Antibacterial activity studies showed that the ability of amoxicillin-loaded in situ gelling nasal nanogel to inhibit bacterial growth (five common ABR pathogens) preserved its effectiveness in comparison to 1 mg/mL amoxicillin aqueous solution as a positive control. Altogether, the developed amoxicillin-loaded in situ gelling thermoresponsive nasal nanogel can be a potential candidate for local antibiotic therapy in the nasal cavity.
Collapse
|