1
|
Li S, Liu J, Zhou J, Wang Y, Jin F, Chen X, Yang J, Chen Z. Urinary Metabolomic Profiling Reveals Biological Pathways and Predictive Signatures Associated with Childhood Asthma. J Asthma Allergy 2020; 13:713-724. [PMID: 33376359 PMCID: PMC7755329 DOI: 10.2147/jaa.s281198] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
Background Despite considerable efforts, the pathogenic mechanisms of asthma are still incompletely understood, due to its heterogeneous nature. However, metabolomics can offer a global view of a biological system, making it a valuable tool for further elucidation of mechanisms and biomarker discovery in asthma. Methods GC-MS-based metabolomic analysis was conducted for comparison of urine metabolic profiles between asthmatic children (n=30) and healthy controls (n=30). Results An orthogonal projections to latent structures discriminant-analysis model revealed a clear separation of the asthma and control groups (R 2 x =0.137, R 2 y =0.947, Q 2=0.82). A total of 20 differential metabolites were identified as discriminant factors, of which eleven were significantly increased and nine decreased in the asthma group compared to the control group. Pathway-enrichment analysis based on these differential metabolites indicated that sphingolipid metabolism, protein biosynthesis, and citric acid cycle were strongly associated with asthma. Among the identified metabolites, 2-hydroxybutanoic acid showed excellent discriminatory performance for distinguishing asthma from healthy controls, with an AUC of 0.969. Conclusion Our study revealed significant changes in the urine metabolome of asthma patients. Several perturbed pathways (eg, sphingolipid metabolism and citric acid cycle) may be related to asthma pathogenesis, and 2-hydroxybutanoic acid could serve as a potential biomarker for asthma diagnosis.
Collapse
Affiliation(s)
- Shuxian Li
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Jinling Liu
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Junfen Zhou
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China.,Department of Pediatrics, Wenling Maternal and Child Health Care Hospital, Wenling, Zhejiang 317500, China
| | - Yingshuo Wang
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Fang Jin
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Xiaoyang Chen
- Developmental and Behavioral Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Jun Yang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310013, China.,Department of Toxicology, Hangzhou Normal University School of Public Health, Hangzhou, Zhejiang 310016, China
| | - Zhimin Chen
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| |
Collapse
|
2
|
Nakamura H, Moriyama Y, Makiyama T, Emori S, Yamashita H, Yamazaki R, Murayama T. Lactosylceramide interacts with and activates cytosolic phospholipase A2α. J Biol Chem 2013; 288:23264-72. [PMID: 23801329 DOI: 10.1074/jbc.m113.491431] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lactosylceramide (LacCer) is a member of the glycosphingolipid family and is known to be a bioactive lipid in various cell physiological processes. However, the direct targets of LacCer and cellular events mediated by LacCer are largely unknown. In this study, we examined the effect of LacCer on the release of arachidonic acid (AA) and the activity of cytosolic phospholipase A2α (cPLA2α). In CHO-W11A cells, treatment with 1-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP), an inhibitor of glucosylceramide synthase, reduced the glycosphingolipid level, and the release of AA induced by A23187 or platelet-activating factor was inhibited. The addition of LacCer reversed the PPMP effect on the stimulus-induced AA release. Exogenous LacCer stimulated the release of AA, which was decreased by treatment with an inhibitor of cPLA2α or silencing of the enzyme. Treatment of CHO-W11A cells with LacCer induced the translocation of full-length cPLA2α and its C2 domain from the cytosol to the Golgi apparatus. LacCer also induced the translocation of the D43N mutant of cPLA2α. Treatment of L929 cells with TNF-α induced LacCer generation and mediated the translocation of cPLA2α and AA release, which was attenuated by treatment with PPMP. In vitro studies were then conducted to test whether LacCer interacts directly with cPLA2α. Phosphatidylcholine vesicles containing LacCer increased cPLA2α activity. LacCer bound to cPLA2α and its C2 domain in a Ca(2+)-independent manner. Thus, we propose that LacCer is a direct activator of cPLA2α.
Collapse
Affiliation(s)
- Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan.
| | | | | | | | | | | | | |
Collapse
|
3
|
C2-di-ethyl-ceramide-1-phosphate as an inhibitor of group IVA cytosolic phospholipase A2. Eur J Pharmacol 2012; 697:144-51. [DOI: 10.1016/j.ejphar.2012.09.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/19/2012] [Accepted: 09/22/2012] [Indexed: 11/18/2022]
|
4
|
Nakamura H, Yasufuku K, Makiyama T, Matsumoto I, Fujino H, Murayama T. Arachidonic acid metabolism via cytosolic phospholipase A2 α induces cytotoxicity in niemann-pick disease type C cells. J Cell Physiol 2012; 227:2847-55. [PMID: 21928312 DOI: 10.1002/jcp.23025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Niemann-Pick disease type C (NPC) is a neurodegenerative lipid storage disorder caused by mutations in NPC1 or NPC2 genes. Loss of function of either protein results in the endosomal accumulation of cholesterol and other lipids. Here, we report that NPC1-deficient Chinese hamster ovary cells exhibit increased release of arachidonic acid (AA) and synthesis of prostaglandin E(2) compared with wild-type cells. The enhanced release of AA was inhibited by both treatment with the selective inhibitor of cytosolic phospholipase A(2) α (cPLA(2) α) and cultivation in lipoprotein-deficient medium. There was no difference in the expression of both cyclooxygenase-1 and -2 between NPC cells and wild-type cells. U18666A, a cholesterol transport-inhibiting agent commonly used to mimic NPC, also increased the release of AA in L929 mouse fibrosarcoma cells. Furthermore, U18666A-induced formation of reactive oxygen species (ROS) resulted in the induction of cell death and cell cycle delay/arrest in L929 cells. Interestingly, these responses induced by U18666A were much weaker in cPLA(2) α knockdown L929 cells. These results suggest that cPLA(2) α-AA pathway plays important roles in the cytotoxicity and the ROS formation in NPC cells.
Collapse
Affiliation(s)
- Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba, Japan.
| | | | | | | | | | | |
Collapse
|
5
|
Regulation of phosphatidic Acid metabolism by sphingolipids in the central nervous system. J Lipids 2010; 2011:342576. [PMID: 21490799 PMCID: PMC3068476 DOI: 10.1155/2011/342576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 10/14/2010] [Indexed: 12/12/2022] Open
Abstract
This paper explores the way ceramide, sphingosine, ceramide 1-phosphate, and sphingosine 1-phosphate modulate the generation of second lipid messengers from phosphatidic acid in two experimental models of the central nervous system: in vertebrate rod outer segments prepared from dark-adapted retinas as well as in rod outer segments prepared from light-adapted retinas and in rat cerebral cortex synaptosomes under physiological aging conditions. Particular attention is paid to lipid phosphate phosphatase, diacylglycerol lipase, and monoacylglycerol lipase. Based on the findings reported in this paper, it can be concluded that proteins related to phototransduction phenomena are involved in the effects derived from sphingosine 1-phosphate/sphingosine or ceramide 1-phosphate/ceramide and that age-related changes occur in the metabolism of phosphatidic acid from cerebral cortex synaptosomes in the presence of either sphingosine 1-phosphate/sphingosine or ceramide 1-phosphate/ceramide. The present paper demonstrates, in two different models of central nervous system, how sphingolipids influence phosphatidic acid metabolism under different physiological conditions such as light and aging.
Collapse
|
6
|
Keith DJ, Eshleman AJ, Janowsky A. Melittin stimulates fatty acid release through non-phospholipase-mediated mechanisms and interacts with the dopamine transporter and other membrane-spanning proteins. Eur J Pharmacol 2010; 650:501-10. [PMID: 20969853 DOI: 10.1016/j.ejphar.2010.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 10/12/2010] [Accepted: 10/13/2010] [Indexed: 11/29/2022]
Abstract
Phospholipase A(2) releases the fatty acid arachidonic acid from membrane phospholipids. We used the purported phospholipase A(2) stimulator, melittin, to examine the effects of endogenous arachidonic acid signaling on dopamine transporter function and trafficking. In HEK-293 cells stably transfected with the dopamine transporter, melittin reduced uptake of [((3))H]dopamine. Additionally, measurements of fatty acid content demonstrated a melittin-induced release of membrane-incorporated arachidonic acid, but inhibitors of phospholipase C, phospholipase D, and phospholipase A(2) did not prevent the release. Subsequent experiments measuring [(125)I]RTI-55 binding to the dopamine transporter demonstrated a direct interaction of melittin, or a melittin-activated endogenous compound, with the transporter to inhibit antagonist binding. This effect was not specific to the dopamine transporter, as [(3)H]spiperone binding to the recombinant dopamine D(2) receptor was also inhibited by melittin treatment. Finally, melittin stimulated an increase in internalization of the dopamine transporter, and this effect was blocked by pretreatment with cocaine. Thus, melittin acts through multiple mechanisms to regulate cellular activity, including release of membrane-incorporated fatty acids and interaction with the dopamine transporter.
Collapse
Affiliation(s)
- Dove J Keith
- Research Service, VA Medical Center, and Graduate Program in Neuroscience, Portland, OR 97239, USA
| | | | | |
Collapse
|
7
|
Georgieva R, Koumanov K, Momchilova A, Tessier C, Staneva G. Effect of sphingosine on domain morphology in giant vesicles. J Colloid Interface Sci 2010; 350:502-10. [DOI: 10.1016/j.jcis.2010.07.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 07/09/2010] [Accepted: 07/10/2010] [Indexed: 02/04/2023]
|
8
|
Hoffmann M, Lopez JJ, Pergola C, Feisst C, Pawelczik S, Jakobsson PJ, Sorg BL, Glaubitz C, Steinhilber D, Werz O. Hyperforin induces Ca2+-independent arachidonic acid release in human platelets by facilitating cytosolic phospholipase A2 activation through select phospholipid interactions. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:462-72. [DOI: 10.1016/j.bbalip.2009.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 12/15/2009] [Accepted: 12/17/2009] [Indexed: 10/20/2022]
|
9
|
Spijkers LJA, Alewijnse AE, Peters SLM. Sphingolipids and the orchestration of endothelium-derived vasoactive factors: when endothelial function demands greasing. Mol Cells 2010; 29:105-11. [PMID: 20127284 DOI: 10.1007/s10059-010-0042-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 01/08/2010] [Indexed: 02/02/2023] Open
Abstract
Vasomotor tone is regulated by a complex interplay of a variety of extrinsic neurohumoral and intrinsic factors. It is the endothelium that has a major influence on smooth muscle cell tone via the release of intrinsic vasoactive factors and is therefore an important regulator of vasomotor tone. Sphingolipids are an emerging class of lipid mediators with important physiological properties. In the last two decades it has not only become increasingly clear that sphingolipid signaling plays a pivotal role in immune function, but also its role in the vascular system is now becoming more recognized. In this mini-review we will highlight the possible cross-talk between sphingolipids and intrinsic vasoactive factors released by the endothelium. Via this cross-talk sphingolipids can orchestrate vasomotor tone and may therefore also be involved in the pathophysiology of disease states associated with endothelial dysfunction.
Collapse
Affiliation(s)
- Léon J A Spijkers
- Department Pharmacology and Pharmacotherapy, Academic Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
10
|
Nakamura H, Wakita S, Suganami A, Tamura Y, Hanada K, Murayama T. Modulation of the activity of cytosolic phospholipase A2alpha (cPLA2alpha) by cellular sphingolipids and inhibition of cPLA2alpha by sphingomyelin. J Lipid Res 2009; 51:720-8. [PMID: 19965591 DOI: 10.1194/jlr.m002428] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the effect of the cellular sphingolipid level on the release of arachidonic acid (AA) and activity of cytosolic phospholipase A2alpha (cPLA2alpha) using two Chinese hamster ovary (CHO)-K1-derived mutants deficient in sphingolipid synthesis: LY-B cells defective in the LCB1 subunit of serine palmitoyltransferase for de novo synthesis of sphingolipid species, and LY-A cells defective in the ceramide transfer protein CERT for SM synthesis. When LY-B and LY-A cells were cultured in Nutridoma medium and the sphingolipid level was reduced, the release of AA stimulated by the Ca(2+) ionophore A23187 increased 2-fold and 1.7-fold, respectively, compared with that from control cells. The enhancement in LY-B cells was decreased by adding sphingosine and treatment with the cPLA2alpha inhibitor. When CHO cells were treated with an acid sphingomyelinase inhibitor to increase the cellular SM level, the release of AA induced by A23187 or PAF was decreased. In vitro studies were then conducted to test whether SM interacts directly with cPLA2alpha. Phosphatidylcholine vesicles containing SM reduced cPLA2alpha activity. Furthermore, SM disturbed the binding of cPLA2alpha to glycerophospholipids. These results suggest that SM at the biomembrane plays important roles in regulating the cPLA2alpha-dependent release of AA by inhibiting the binding of cPLA2alpha to glycerophospholipids.
Collapse
Affiliation(s)
- Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan.
| | | | | | | | | | | |
Collapse
|
11
|
Shimizu M, Tada E, Makiyama T, Yasufuku K, Moriyama Y, Fujino H, Nakamura H, Murayama T. Effects of ceramide, ceramidase inhibition and expression of ceramide kinase on cytosolic phospholipase A2α; additional role of ceramide-1-phosphate in phosphorylation and Ca2+ signaling. Cell Signal 2009; 21:440-7. [DOI: 10.1016/j.cellsig.2008.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 11/24/2008] [Indexed: 01/27/2023]
|
12
|
Salvolini E, Orciani M, Vignini A, Di Primio R, Mazzanti L. The effects of disodium pamidronate on human polymorphonuclear leukocytes and platelets: an in vitro study. Cell Mol Biol Lett 2009; 14:457-465. [PMID: 19238333 PMCID: PMC6275572 DOI: 10.2478/s11658-009-0012-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 02/16/2009] [Indexed: 11/21/2022] Open
Abstract
Recent reports have indicated that, as well as having antiresorptive effects, bisphosphonates could have an application as anti-inflammatory drugs. Our aim was to investigate whether this anti-inflammatory action could be mediated by the nitric oxide (NO) released by the leukocytes migrating to the site of inflammation. In particular, we investigated in vitro the intracellular calcium concentration ([Ca2+](i)), the level of NO released by PMN and platelets, and the PMN myeloperoxidase activity after incubation with disodium pamidronate, since there was a postulated modulatory effect of this aminosubstituted bisphosphonate on leukocytes both in vitro and in vivo. Our data shows that the pamidronate treatment provoked a significant increase in the [Ca2+](i) parallel to the enhancement in NO release, suggesting a possible activation of constitutive nitric oxide synthase, while the myeloperoxidase activity was significantly reduced. In conclusion, we hypothesized that treatment with pamidronate could stimulate NO-production by cells present near the bone compartment, thus constituting a protective mechanism against bone resorption occurring during inflammation. In addition, PMN- and platelet-derived NO could act as a negative feed-back signal to restrict the inflammatory processes.
Collapse
Affiliation(s)
- Eleonora Salvolini
- Department of Molecular Pathology and Innovative Therapies - Histology, Polytechnic University of Marche, Via Tronto 10/A, 60020, Ancona, Italy.
| | | | | | | | | |
Collapse
|
13
|
Shimizu M, Muramatsu Y, Tada E, Kurosawa T, Yamaura E, Nakamura H, Fujino H, Houjyo Y, Miyasaka Y, Koide Y, Nishida A, Murayama T. Effects of Synthetic Sphingosine-1-Phosphate Analogs on Cytosolic Phospholipase A2α–Independent Release of Arachidonic Acid and Cell Toxicity in L929 Fibrosarcoma Cells: the Structure–Activity Relationship. J Pharmacol Sci 2009; 109:431-43. [DOI: 10.1254/jphs.08284fp] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
14
|
Prasad VVTS, Nithipatikom K, Harder DR. Ceramide elevates 12-hydroxyeicosatetraenoic acid levels and upregulates 12-lipoxygenase in rat primary hippocampal cell cultures containing predominantly astrocytes. Neurochem Int 2008; 53:220-9. [PMID: 18680775 DOI: 10.1016/j.neuint.2008.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 06/01/2008] [Accepted: 07/01/2008] [Indexed: 10/21/2022]
Abstract
We report, exogenous addition of ceramide significantly increases 12-hydroxyeicosatetraenoic acid [12-(S)-HETE] levels, in a dose-dependent manner. 12-(S)-HETE levels, in 20, 30 and 40microM ceramide exposed rat primary hippocampal cell cultures containing predominantly astrocytes and few neurons and other glial cells (the cultured hippocampal cells were predominantly astrocytes amounting to over 99% of total cells with few neurons and other glial cells) amounted to 207, 260 and 408% of the controls, respectively. However, dihydroceramide, an inactive analog of ceramide did not alter the levels of 12-(S)-HETE. Ceramide also increased the mRNA and protein expression, and activity of 12-lipoxygease (12-LOX) needed for the synthesis of 12(S)-HETE. These results indicate a possible link between ceramide and 12-LOX pathway. However, ceramide did not alter expression of 5-lipoxygenase (5-LOX), another member of the lipoxygenase family. However, ceramide upregulated expression of cytosolic phospholipase-A(2) (cPLA(2)) and cyclooxygenase-2 (COX-2). Further, ceramide caused a significant increase in the levels of reactive oxygen species (ROS). Ceramide-mediated generation of ROS was inhibited by baicalien but not by indomethacin. In addition, ceramide treated cells exhibited increased mRNA expression of DNA damage induced transcript3 (Ddit3). This report which demonstrate induction of pro-carcinogenic 12-LOX pathway by an anticancer ceramide, may be relevant to cancer biologists studying drug resistant tumors and devising potent anticancer therapeutic strategies to treat drug resistant tumors. These results indicate possibility of 12-LOX involvement in ceramide-mediated generation of ROS and cellular oxidative stress. Induction of 12-LOX pathway by ceramide may have implications in understanding pathophysiology of neurodegenerative diseases involving ROS generation and inflammation.
Collapse
|
15
|
Nabemoto M, Mashimo M, Someya A, Nakamura H, Hirabayashi T, Fujino H, Kaneko M, Okuma Y, Saito T, Yamaguchi N, Murayama T. Release of arachidonic acid by 2-arachidonoyl glycerol and HU210 in PC12 cells; roles of Src, phospholipase C and cytosolic phospholipase A(2)alpha. Eur J Pharmacol 2008; 590:1-11. [PMID: 18539271 DOI: 10.1016/j.ejphar.2008.04.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 04/07/2008] [Accepted: 04/22/2008] [Indexed: 10/22/2022]
Abstract
The phospholipase A(2) (PLA(2))-prostanoid cascade is involved in cannabinoid receptor-mediated neuronal functions. We investigated the signaling mechanism for the release of arachidonic acid by cannabinoids, 2-arachidonoyl glycerol (2-AG) and HU210, in rat PC12 cells and in primary cultured cells from the mouse cerebellum. The effect of selective inhibitors for signaling pathways and/or enzymes (alpha type cytosolic PLA(2) (cPLA(2)alpha), G protein, Src kinases, phospholipase C, protein kinase C) was assessed. Methods included translocation of the chimeric protein GFP-cPLA(2)alpha, the activities of Src family kinases, Ca(2+)-dependent fluorescence and cyclic AMP accumulation. Treatment with 2-AG and HU210 at greater concentrations than 3 muM caused the release of arachidonic acid, and the response was inhibited by AM251 (an antagonist of cannabinoid CB(1) receptor) and by pyrrophenone (a selective inhibitor of cPLA(2)alpha) in PC12 cells. The cannabinoid treatment caused the intracellular translocation of cPLA(2)alpha and an increase in the intracellular Ca(2+) level. Treatment with HU210 caused tyrosine phosphorylation of Src and Fyn, and increased their kinase activities. Pretreatment with inhibitors of tyrosine kinases or phospholipase C abolished the cannabinoids-induced release of arachidonic acid and Ca(2+) response, and protein kinase C inhibitor reduced the release of arachidonic acid. 2-AG caused the release of arachidonic acid from cultured cells of the mouse cerebellum via similar mechanisms. These data reveal that cannabinoids activated cPLA(2)alpha in a Src-phospholipase C-protein kinase C-dependent manner probably via cannabinoid CB(1) receptor and/or CB(1)-like receptor in neuronal cells.
Collapse
Affiliation(s)
- Maiko Nabemoto
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Farooqui AA, Horrocks LA, Farooqui T. Interactions between neural membrane glycerophospholipid and sphingolipid mediators: A recipe for neural cell survival or suicide. J Neurosci Res 2007; 85:1834-50. [PMID: 17393491 DOI: 10.1002/jnr.21268] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The neural membranes contain phospholipids, sphingolipids, cholesterol, and proteins. Glycerophospholipids and sphingolipids are precursors for lipid mediators involved in signal transduction processes. Degradation of glycerophospholipids by phospholipase A(2) (PLA(2)) generates arachidonic acid (AA) and docosahexaenoic acids (DHA). Arachidonic acid is metabolized to eicosanoids and DHA is metabolized to docosanoids. The catabolism of glycosphingolipids generates ceramide, ceramide 1-phosphate, sphingosine, and sphingosine 1-phosphate. These metabolites modulate PLA(2) activity. Arachidonic acid, a product derived from glycerophospholipid catabolism by PLA(2), modulates sphingomyelinase (SMase), the enzyme that generates ceramide and phosphocholine. Furthermore, sphingosine 1-phosphate modulates cyclooxygenase, an enzyme responsible for eicosanoid production in brain. This suggests that an interplay and cross talk occurs between lipid mediators of glycerophospholipid and glycosphingolipid metabolism in brain tissue. This interplay between metabolites of glycerophospholipid and sphingolipid metabolism may play an important role in initiation and maintenance of oxidative stress associated with neurologic disorders as well as in neural cell proliferation, differentiation, and apoptosis. Recent studies indicate that PLA(2) and SMase inhibitors can be used as neuroprotective and anti-apoptotic agents. Development of novel inhibitors of PLA(2) and SMase may be useful for the treatment of oxidative stress, and apoptosis associated with neurologic disorders such as stroke, Alzheimer disease, Parkinson disease, and head and spinal cord injuries.
Collapse
Affiliation(s)
- Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
17
|
Nakamura H, Hirabayashi T, Shimizu M, Murayama T. Ceramide-1-phosphate activates cytosolic phospholipase A2α directly and by PKC pathway. Biochem Pharmacol 2006; 71:850-7. [PMID: 16443193 DOI: 10.1016/j.bcp.2005.12.027] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 12/05/2005] [Accepted: 12/08/2005] [Indexed: 11/16/2022]
Abstract
Ceramide-1-phosphate (C1P), a novel bioactive sphingolipid, is implicated in the vital cellular processes such as cell proliferation and inflammation. The role of C1P on activity of cytosolic phospholipase A2alpha (cPLA2alpha), a key enzyme for the release of arachidonic acid (AA) and prostanoids, has not been well elucidated. In this study, we investigated the effect of C1P on the release of AA from L929 cells and a variant, which lacks cPLA2alpha expression, C12 cells. C1P at 30 microM alone induced AA release from L929 cells without an increase in intracellular Ca2+ concentration. C1P-induced AA release was marginal in C12 cells, and treatment with an intracellular Ca2+ chelator (BAPTA-AM) or an inhibitor of cPLA2alpha (2 microM pyrrophenone) decreased C1P-induced AA release in L929 cells. C1P increased the enzymatic activity of cPLA2alpha over two-fold in the presence of Ca2+. C1P triggered the translocation of cPLA2alpha and its C2 domain from the cytosol to the perinuclear region in CHO-K1 cells. Interestingly, C1P at 10 microM synergistically enhanced ionomycin-induced AA release from L929 cells. The AA release induced by C1P with and without ionomycin decreased by treatment with protein kinase C (PKC) inhibitor (10 microM GF109203X) and in the PKC-depleted cells. C1P at 10 microM stimulated the translocation of PKC (alpha and delta) from the soluble to the membrane fractions. We propose that C1P stimulates AA release via two mechanisms; direct activation of cPLA2alpha, and the PKC-dependent pathway.
Collapse
Affiliation(s)
- Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | | | | | | |
Collapse
|
18
|
Meyer SGE, Karow W, de Groot H. 2n-fatty acids from phosphatidylcholine label sphingolipids—A novel role of phospholipase A2? Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1735:68-78. [PMID: 15950537 DOI: 10.1016/j.bbalip.2005.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 04/26/2005] [Accepted: 04/26/2005] [Indexed: 10/25/2022]
Abstract
In order to find out whether there is a phospholipase A2 (PLA2)-mediated link between glycerophospholipids and sphingolipids, L929 cells were labeled with 1n-palmitoyl-2n-[1-14C]palmitoyl phosphatidylcholine for 16-18 h or 90 min. After labeling for 16-18 h, 14C-sphingomyelin (SM), 14C-ceramide and 14C-sphingosine were demonstrated on autoradiograms of thin layer chromatograms of untreated or mildly hydrolyzed lipid extracts in different chromatographic systems. Strong hydrolysis of labeled SM proved that both possible moieties of SM, sphingosine and acyl moiety, had been labeled. The identity of SM and its enzymatic degradation product, ceramide, was verified by mass spectrometry. The label in SM-derived ceramide was demonstrated on an autoradiogram after thin layer chromatography. The inhibitor of (dihydro)ceramide synthase fumonisin B1 suppressed the label in sphingolipids significantly during 16-18 h (ceramide and SM), as well as during 90-min labeling (SM). The presence of inhibitors of PLA2 (bromoenol lactone, aristolochic acid and quinacrine dihydrochloride) diminished the label in SM significantly during the 90-min labeling. These results demonstrate a close metabolic relationship between glycerophospholipids and sphingolipids and give evidence for a novel role of PLA2.
Collapse
Affiliation(s)
- Sybille G E Meyer
- Institut für Physiologische Chemie, Universitätsklinikum Essen, Hufelandstr. 55, D-45147 Essen, Germany.
| | | | | |
Collapse
|
19
|
Nabemoto M, Ohsawa K, Nakamura H, Hirabayashi T, Saito T, Okuma Y, Nomura Y, Murayama T. Reversible activation of secretory phospholipase A2 by sulfhydryl reagents. Arch Biochem Biophys 2005; 436:145-53. [PMID: 15752719 DOI: 10.1016/j.abb.2005.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Revised: 01/31/2005] [Indexed: 10/25/2022]
Abstract
Secretory phospholipase A(2)s (sPLA(2)s) have been implicated in physiological and pathological events, but the regulatory mechanism(s) of their activities in cells remains to be solved. Previously, we reported that phenylarsine oxide (PAO), a sulfhydryl reagent, stimulated arachidonic acid (AA) release in rat pheochromocytoma PC12 cells. In this study, we examined the effects of thimerosal, another sulfhydryl reagent, to clarify the sulfhydryl modification and activation of sPLA(2) molecules in cells. Like PAO, thimerosal-stimulated AA release in an irreversible manner and the responses were not additive. Dithiol compounds such as dithiothreitol inhibited AA release from both the thimerosal- and the PAO-treated cells, and monothiol compounds (l-Cys and glutathione) decreased the thimerosal response. Both sulfhydryl reagents stimulated AA release from the HEK293T cells expressing human sPLA(2)X, and stimulated the sPLA(2) activities of bee venom sPLA(2) and the soluble fraction of sPLA(2)X-expressing cells. Our results suggest that the sPLA(2)s in cells are inactive and modification of disulfide bonds in the molecules can be a trigger of sPLA(2) activation in cells. Sulfhydryl reagents are useful tools for studying the regulatory mechanism(s) of sPLA(2) activity in cells.
Collapse
Affiliation(s)
- Maiko Nabemoto
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Nakamura H, Takashiro Y, Hirabayashi T, Horie S, Koide Y, Nishida A, Murayama T. Effects of synthetic sphingosine-1-phosphate analogs on arachidonic acid metabolism and cell death. Biochem Pharmacol 2004; 68:2187-96. [PMID: 15498509 DOI: 10.1016/j.bcp.2004.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Accepted: 08/05/2004] [Indexed: 01/23/2023]
Abstract
Sphingolipid metabolites such as sphingosine regulate cell functions including cell death and arachidonic acid (AA) metabolism. D-erythro-C18-Sphingosine-1-phosphate (D-e-S1P), a sphingolipid metabolite, acts as an intracellular messenger in addition to being an endogenous ligand of some cell surface receptors. The development of S1P analogs may be useful for studying and/or regulating S1P-mediated cellular responses. In the present study, we found that several synthetic S1P analogs at pharmacological concentrations stimulated AA metabolism and cell death in PC12 cells. D-erythro-N,O,O-Trimethyl-C18-S1P (D-e-TM-S1P), L-threo-O,O-dimethyl-C18-S1P (L-t-DM-S1P) and L-threo-O,O-dimethyl-3O-benzyl-C18-S1P (L-t-DMBn-S1P) at 100 microM stimulated [(3)H]AA release from the prelabeled PC12 cells. L-t-DMBn-S1P at 20 microM increased prostanoid formation in PC12 cells. L-t-DMBn-S1P-induced AA release was inhibited by D-e-sphingosine, but not by the tested PLA(2) inhibitors. L-t-DMBn-S1P did not stimulate the activity of cytosolic phospholipase A(2alpha) (cPLA(2alpha)) in vitro and the translocation of cPLA(2alpha) in the cells, and caused AA release from the cells lacking cPLA(2alpha). These findings suggest that L-t-DMBn-S1P stimulated AA release in a cPLA(2alpha)-independent manner. In contrast, D-e-S1P and D-erythro-N-monomethyl-C18-S1P caused cell death without AA release in PC12 cells, and the effects of D-e-TM-S1P, L-t-DM-S1P and L-t-DMBn-S1P on cell death were limited. Synthetic S1P analogs may be useful tools for studying AA metabolism and cell death in cells.
Collapse
Affiliation(s)
- Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Shimizu M, Azuma C, Taniguchi T, Murayama T. Expression of Cytosolic Phospholipase A2α in Murine C12 Cells, a Variant of L929 Cells, Induces Arachidonic Acid Release in Response to Phorbol Myristate Acetate and Ca2+ Ionophores, but Not to Tumor Necrosis Factor-α. J Pharmacol Sci 2004; 96:324-32. [PMID: 15539760 DOI: 10.1254/jphs.fpj04033x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Tumor necrosis factor-alpha (TNFalpha)-induced cell death is regulated through the release of arachidonic acid (AA) by group IVA cytosolic phospholipase A2 (cPLA2alpha) in the murine fibroblast cell line L929. However, the signaling pathway by which TNFalpha activates cPLA2alpha remained to be solved. We examined AA release in L929 cells, in a variant of L929 (C12 cells) lacking cPLA2alpha, and in C12 cells transfected with cPLA2alpha expression vectors. In transient and stable clones of C12 cells expressing cPLA2alpha, Ca2+ ionophore A23187 and phorbol myristate acetate (PMA) stimulated AA release within 90 min, although no response to TNFalpha was observed within 6 h. These results suggest that C12 cells may lack the components necessary for TNFalpha-induced AA release, in addition to cPLA2alpha. PMA is known to stimulate AA release via phosphorylation of Ser505 in cPLA2alpha by activating extracellular signal-regulated kinases (ERK1/2). However, PMA-induced AA release from C12 cells expressing mutant cPLA2alpha S505A (mutation of Ser505 to Ala), which is not phosphorylated by ERK1/2, was similar to that from L929 cells and C12 cells expressing wild-type cPLA2alpha. The role of Ser505 phosphorylation in AA release induced by PMA is also discussed.
Collapse
Affiliation(s)
- Masaya Shimizu
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| | | | | | | |
Collapse
|