1
|
Ali F, Alom S, Ali SR, Kondoli B, Sadhu P, Borah C, Kakoti BB, Ghosh SK, Shakya A, Ahmed AB, Singh UP, Bhat HR. Ebselen: A Review on its Synthesis, Derivatives, Anticancer Efficacy and Utility in Combating SARS-COV-2. Mini Rev Med Chem 2024; 24:1203-1225. [PMID: 37711004 DOI: 10.2174/1389557523666230914103339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/26/2023] [Accepted: 06/16/2023] [Indexed: 09/16/2023]
Abstract
Ebselen is a selenoorganic chiral compound with antioxidant properties comparable to glutathione peroxidase. It is also known as 2-phenyl-1,2-benzisoselenazol-3(2H)-one. In studies examining its numerous pharmacological activities, including antioxidant, anticancer, antiviral, and anti- Alzheimer's, ebselen has demonstrated promising results. This review's primary objective was to emphasize the numerous synthesis pathways of ebselen and their efficacy in fighting cancer. The data were collected from multiple sources, including Scopus, PubMed, Google Scholar, Web of Science, and Publons. The starting reagents for the synthesis of ebselen are 2-aminobenzoic acid and N-phenyl benzamide. It was discovered that ebselen has the ability to initiate apoptosis in malignant cells and prevent the formation of new cancer cells by scavenging free radicals. In addition, ebselen increases tumor cell susceptibility to apoptosis by inhibiting TNF-α mediated NF-kB activation. Ebselen can inhibit both doxorubicin and daunorubicin-induced cardiotoxicity. Allopurinol and ebselen administered orally can be used to suppress renal ototoxicity and nephrotoxicity. Due to excessive administration, diclofenac can induce malignancy of the gastrointestinal tract, which ebselen can effectively suppress. Recent research has demonstrated ebselen to inhibit viral function by binding to cysteinecontaining catalytic domains of various viral proteases. It was discovered that ebselen could inhibit the catalytic dyad function of Mpro by forming an irreversible covalent bond between Se and Cys145, thereby altering protease function and inhibiting SARS-CoV-2. Ebselen may also inhibit the activation of endosomal NADPH oxidase of vascular endothelial cells, which is believed to be required for thrombotic complications in COVID-19. In this review, we have included various studies conducted on the anticancer effect of ebselen as well as its inhibition of SARS-CoV-2.
Collapse
Affiliation(s)
- Farak Ali
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Girijananda Chowdhury Institute of Pharmaceutical Science, Tezpur Medical College and Hospital, Tezpur, Sonitpur Assam, 784501,India
| | - Shahnaz Alom
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Girijananda Chowdhury Institute of Pharmaceutical Science, Tezpur Medical College and Hospital, Tezpur, Sonitpur Assam, 784501,India
| | - Sheikh Rezzak Ali
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Biswanarayan Kondoli
- Department of Pharmacy, Tripura University, Suryamani Nagar, Agartala, Tripura 799022, India
| | - Prativa Sadhu
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Chinmoyee Borah
- Girijananda Chowdhury Institute of Pharmaceutical Science, Guwahati, Kamrup, Assam, 781017, India
| | - Bibhuti Bushan Kakoti
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Surajit Kumar Ghosh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Anshul Shakya
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Abdul Baquee Ahmed
- Girijananda Chowdhury Institute of Pharmaceutical Science,Tezpur Medical College and Hospital, Tezpur, Sonitpur-784501, Assam, India
| | - Udaya Pratap Singh
- Drug Design & Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, 211007, India
| | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| |
Collapse
|
2
|
Abstract
Abstract
Ebselen is a well-known synthetic compound mimicking glutathione peroxidase (GPx), which catalyses some vital reactions that protect against oxidative damage. Based on a large number of in vivo and in vitro studies, various mechanisms have been proposed to explain its actions on multiple targets. It targets thiol-related compounds, including cysteine, glutathione, and thiol proteins (e.g., thioredoxin and thioredoxin reductase). Owing to this, ebselen is a unique multifunctional agent with important effects on inflammation, apoptosis, oxidative stress, cell differentiation, immune regulation and neurodegenerative disease, with anti-microbial, detoxifying and anti-tumour activity. This review summarises the current understanding of the multiple biological processes and molecules targeted by ebselen, and its pharmacological applications.
Collapse
|
3
|
Abstract
Ebselen is a synthetic organoselenium radical scavenger compound that possesses glutathione peroxidase-like activity and its own unique bioactivity by reacting with thiols, hydroperoxides and peroxynitrites. Owing to its high affinity toward several essential reactions, ebselen protects cellular components from oxidative and free radical damage, and it has been employed as a useful tool for studying redox-related mechanisms. Based on numerous in vitro and in vivo research, mechanisms are proposed to understand the biomedical and molecular actions of ebselen in health and disease, and it is currently under clinical trials for the prevention and treatment of various human disorders. Based on these outstanding discoveries, this review summarizes the current understanding of the biochemical and molecular characteristics, pharmacological applications and future directions of ebselen.
Collapse
|
4
|
Liu S, Fang F, Fan G. Potassium selenocyanoacetate reduces the blood triacylglycerol and atherosclerotic plaques in high-fat-dieted mice. Cardiovasc Diagn Ther 2020; 9:561-567. [PMID: 32038945 DOI: 10.21037/cdt.2019.12.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Controlling blood lipid levels at the early stage of cardiovascular disease is a major focus of global disease prevention studies on atherosclerosis. The aim of our study was to investigate the effects of potassium selencyanoacetate on the blood lipid profiles and the formation of atherosclerotic plaques in mice fed with a high-fat diet. Methods Forty ApoE-/- male mice aged 8-10 weeks were randomly divided into the treatment group (n=20) and control group (n=20). The mice in the treatment group were given the high-fat diet supplemented with potassium selencyanoacetate (4.63 mg/kg/day) through a gavage, whereas the control group were fed with a same high-fat diet with 1.5 mL of normal saline only. After 16 weeks, the mice were euthanized using inhalation anesthetic methods. The aortas were isolated and stained with oil red O to observe the formation of plaques. Blood samples were collected from each animal to examine the levels of total cholesterol (TC), triacylglycerol (TG), HDL cholesterol (HDL-Ch), LDL cholesterol (LDL-Ch), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and plasma urea. Results The percentage of the atherosclerotic plaques area was significantly lower in the treatment group than the control group (P=0.017). The levels of TG, ALT, AST, and plasma urea were significantly lower in the treatment group than the control group (all P<0.05). However, the levels of TC, HDL-Ch, and LDL-Ch were not significantly different between two groups (all P>0.05). Conclusions Potassium selencyanoacetate could safely reduce the TG level and high-fat-diet induced atherosclerotic plaques in mice, which could be used as a potential drug to prevent cardiovascular atherosclerotic diseases.
Collapse
Affiliation(s)
- Shaoqin Liu
- School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Fang Fang
- Department of Cardiology, Central War Zone General Hospital of the Chinese People's Liberation Army, Wuhan 430061, China
| | - Guanghui Fan
- School of Public Health, Southern Medical University, Guangzhou 510515, China.,Department of Cardiology, Central War Zone General Hospital of the Chinese People's Liberation Army, Wuhan 430061, China.,Affiliated Wuhan Medical College of Southern Medical University, Wuhan 430061, China
| |
Collapse
|
5
|
Zhou R, Sun X, Li Y, Huang Q, Qu Y, Mu D, Li X. Low-dose Dexamethasone Increases Autophagy in Cerebral Cortical Neurons of Juvenile Rats with Sepsis Associated Encephalopathy. Neuroscience 2019; 419:83-99. [PMID: 31682824 DOI: 10.1016/j.neuroscience.2019.09.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022]
Abstract
Studies have shown that a certain dose of dexamethasone can improve the survival rate of patients with sepsis, and in sepsis associated encephalopathy (SAE), autophagy plays a regulatory role in brain function. Here, we proved for the first time that small-dose dexamethasone (SdDex) can regulate the autophagy of cerebral cortex neurons in SAE rats and plays a protective role. Cortical neurons were cultured in vitro in a septic microenvironment and a sepsis rat model was established. The small-dose dexamethasone (SdDex) or high-dose dexamethasone (HdDex) was used to intervene in neurons or SAE rats. Through fluorescence microscopy and western blot analysis, the expressions of microtubule-associated protein 1 light chain 3 (LC3), p62/sequestosome1 (p62/SQSTM1), mammalian target of rapamycin (mTOR) signaling pathway related proteins, and apoptosis-related proteins were detected. Theresultsshowthat compared with those in SAE rats, the cortical pathological changes in SAE rats treated with SdDex were improved, and damaged substances were encapsulated and degraded by autophagosomes in neurons. Additionally, similar to neurons in vitro, cortical autophagy was further activated and the mTOR signaling pathway was inhibited. After HdDex treatment, the mTOR signaling pathway in cortex is inhibited, but further activation of autophagy is not obvious, the cortical pathological changes were further worsened and the ultrastructure of neurons was disturbed. Furthermore, the HdDex group exhibited the most obvious apoptosis. SdDex can regulate autophagy of cortical neurons by inhibiting the mTOR signaling pathway and plays a protective role. Brain damage induced by HdDex may be related to the activation of apoptosis.
Collapse
Affiliation(s)
- Ruixi Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Xuemei Sun
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Yuyao Li
- Medical College, Xiamen University, Xiamen 361102, China
| | - Qun Huang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Xihong Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China; Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Jia ZQ, Li SQ, Qiao WQ, Xu WZ, Xing JW, Liu JT, Song H, Gao ZY, Xing BW, He XJ. Ebselen protects mitochondrial function and oxidative stress while inhibiting the mitochondrial apoptosis pathway after acute spinal cord injury. Neurosci Lett 2018; 678:110-117. [PMID: 29733976 DOI: 10.1016/j.neulet.2018.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/20/2018] [Accepted: 05/03/2018] [Indexed: 10/17/2022]
Abstract
Ebselen is a fat-soluble small molecule and organic selenium compound that regulates the activity of glutathione peroxidase to alleviate mitochondrial oxidative stress and improve mitochondrial function. In the present study, we aimed to investigate the effects of ebselen on mitochondrial oxidative stress response, mitochondrial apotosis, and motor behaviors after spinal cord injury (SCI). We found that ebselen significantly increased the BBB score in motor behavior, thus suggesting a rescue effect of ebselen on motor function after SCI in rats. Meanwhile, we revealed that ebselen can increase glutathione (GSH) content as well as superoxide dismutase (SOD) and catalase (CAT) activities after SCI-this suggests ebselen has an antioxidant effect. Furthermore, the ATP content and Na+-K+-ATPase activity in mitochondria were increased by ebselen after SCI, while the mitochondrial membrane potential (MMP) was decreased by ebselen. The Cytochrome C and Smac release from mitochondria were reduced by ebselen after SCI, thus indicating improved membrane permeability by ebselen. Moreover, the alterations in caspase-3, Bax and Bcl-2 protein expression, as well as the proportion of cell apoptosis were improved by ebselen treatment, which together suggested that ebselen has an inhibitory effect on mitochondrial apotosis pathways after SCI. Taken together, our results suggest that ebselen can inhibit secondary damage caused by spinal cord injury. Indeed it plays a neuroprotective role in spinal cord injury perhaps by improving mitochondrial function and inhibiting the mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Zhi-Qiang Jia
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xian 710004, PR China; Department of Spinal Surgery, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang 471000, PR China.
| | - San-Qiang Li
- Medical College, Henan University of Science and Technology, Luoyang 471003, PR China
| | - Wei-Qiang Qiao
- Department of Breast Surgery, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, PR China
| | - Wen-Zhong Xu
- Department of Spinal Surgery, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang 471000, PR China
| | - Jian-Wu Xing
- Department of Spinal Surgery, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang 471000, PR China
| | - Jian-Tao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xian 710004, PR China
| | - Hui Song
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xian 710004, PR China
| | - Zhong-Yang Gao
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xian 710004, PR China
| | - Bing-Wen Xing
- Medical College, Henan University of Science and Technology, Luoyang 471003, PR China
| | - Xi-Jing He
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xian 710004, PR China.
| |
Collapse
|
7
|
Hort MA, Straliotto MR, de Oliveira J, Amoêdo ND, da Rocha JBT, Galina A, Ribeiro-do-Valle RM, de Bem AF. Diphenyl diselenide protects endothelial cells against oxidized low density lipoprotein-induced injury: Involvement of mitochondrial function. Biochimie 2014; 105:172-81. [DOI: 10.1016/j.biochi.2014.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 07/08/2014] [Indexed: 12/31/2022]
|
8
|
Azad GK, Tomar RS. Ebselen, a promising antioxidant drug: mechanisms of action and targets of biological pathways. Mol Biol Rep 2014; 41:4865-79. [DOI: 10.1007/s11033-014-3417-x] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Protective effect of diphenyl diselenide against peroxynitrite-mediated endothelial cell death: A comparison with ebselen. Nitric Oxide 2013; 31:20-30. [DOI: 10.1016/j.niox.2013.03.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/11/2013] [Indexed: 02/07/2023]
|
10
|
Koulis C, de Haan JB, Allen TJ. Novel pathways and therapies in experimental diabetic atherosclerosis. Expert Rev Cardiovasc Ther 2012; 10:323-35. [PMID: 22390805 DOI: 10.1586/erc.12.13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diabetic subjects are at a greater risk of developing major vascular complications due to abnormalities pertinent to the diabetic milieu. Current treatment options achieve significant improvements in glucose levels and blood pressure control, but do not necessarily prevent or retard diabetes-mediated macrovascular disease. In this review, we highlight several pathways that are increasingly being appreciated as playing a significant role in diabetic vascular injury. We focus particularly on the advanced glycation end product/receptor for advanced glycation end product (AGE/RAGE) axis and its interplay with the nuclear protein HMGB1. We discuss evidence implicating a significant role for the renin-angiotensin system, urotensin II and PPAR, as well as the importance of proinflammatory mediators and oxidative stress in cardiovascular complications. The specific targeting of these pathways may lead to novel therapies to reduce the burden of diabetic vascular complications.
Collapse
Affiliation(s)
- Christine Koulis
- Diabetic Complications Group, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | | |
Collapse
|
11
|
Targeting endothelial dysfunction in vascular complications associated with diabetes. Int J Vasc Med 2011; 2012:750126. [PMID: 22013533 PMCID: PMC3195347 DOI: 10.1155/2012/750126] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/04/2011] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular complications associated with diabetes remain a significant health issue in westernized societies. Overwhelming evidence from clinical and laboratory investigations have demonstrated that these cardiovascular complications are initiated by a dysfunctional vascular endothelium. Indeed, endothelial dysfunction is one of the key events that occur during diabetes, leading to the acceleration of cardiovascular mortality and morbidity. In a diabetic milieu, endothelial dysfunction occurs as a result of attenuated production of endothelial derived nitric oxide (EDNO) and augmented levels of reactive oxygen species (ROS). Thus, in this review, we discuss novel therapeutic targets that either upregulate EDNO production or increase antioxidant enzyme capacity in an effort to limit oxidative stress and restore endothelial function. In particular, endogenous signaling molecules that positively modulate EDNO synthesis and mimetics of endogenous antioxidant enzymes will be highlighted. Consequently, manipulation of these unique targets, either alone or in combination, may represent a novel strategy to confer vascular protection, with the ultimate goal of improved outcomes for diabetes-associated vascular complications.
Collapse
|
12
|
Acute hypoxia stimulates intracellular peroxynitrite formation associated with pulmonary artery smooth muscle cell proliferation. J Cardiovasc Pharmacol 2011; 57:584-8. [PMID: 21326106 DOI: 10.1097/fjc.0b013e3182135e1b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
There is separate evidence for peroxynitrite formation and hypoxia-induced cell proliferation in several models of hypoxic pulmonary hypertension. We therefore hypothesized that the stimulation of pulmonary artery smooth muscle cells (PASMCs) proliferation by hypoxia is due to peroxynitrite formation. The effect of hypoxia alone and in combination with ≤ 0.2 μM peroxynitrite on PASMCs was investigated in explants from bovine lungs grown in 1%, 5%, or 10% oxygen for 24 hours with or without peroxynitrite. At 0.1% fetal bovine serum, DNA synthesis of PASMCs (assessed by 3H thymidine incorporation) was increased by transient exposure to 0.2 μM peroxynitrite (by 158% ± 14%, P < 0.01) or to 24 hours of hypoxia (5% oxygen) (by 221% ± 17%, P < 0.01). Results were similar at 2.5% fetal bovine serum. Treatment of PASMCs with 0.2 μM peroxynitrite or 5% O2 hypoxia caused a significant increase in nitrotyrosine formation to a similar extent and intensity. The proliferative response to 0.2 μM peroxynitrite or to the combination of peroxynitrite plus 5% O2 was similar to the effect of 5% O2 alone and was abolished by simultaneous treatment with peroxynitrite scavenger-ebselen (5 μM). Our present data indicate that hypoxia can initiate peroxynitrite-induced proliferative events and suggest a mechanism for the vascular hypertrophy associated with pulmonary hypertension.
Collapse
|
13
|
Diphenyl Diselenide Effectively Reduces Atherosclerotic Lesions in LDLr −/− Mice by Attenuation of Oxidative Stress and Inflammation. J Cardiovasc Pharmacol 2011; 58:91-101. [DOI: 10.1097/fjc.0b013e31821d1149] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds. Arch Toxicol 2011; 85:1313-59. [DOI: 10.1007/s00204-011-0720-3] [Citation(s) in RCA: 371] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 05/18/2011] [Indexed: 02/07/2023]
|
15
|
Chew P, Yuen DY, Stefanovic N, Pete J, Coughlan MT, Jandeleit-Dahm KA, Thomas MC, Rosenfeldt F, Cooper ME, de Haan JB. Antiatherosclerotic and renoprotective effects of ebselen in the diabetic apolipoprotein E/GPx1-double knockout mouse. Diabetes 2010; 59:3198-207. [PMID: 20823099 PMCID: PMC2992783 DOI: 10.2337/db10-0195] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate the effect of the GPx1-mimetic ebselen on diabetes-associated atherosclerosis and renal injury in a model of increased oxidative stress. RESEARCH DESIGN AND METHODS The study was performed using diabetic apolipoprotein E/GPx1 (ApoE(-/-)GPx1(-/-))-double knockout (dKO) mice, a model combining hyperlipidemia and hyperglycemia with increased oxidative stress. Mice were randomized into two groups, one injected with streptozotocin, the other with vehicle, at 8 weeks of age. Groups were further randomized to receive either ebselen or no treatment for 20 weeks. RESULTS Ebselen reduced diabetes-associated atherosclerosis in most aortic regions, with the exception of the aortic sinus, and protected dKO mice from renal structural and functional injury. The protective effects of ebselen were associated with a reduction in oxidative stress (hydroperoxides in plasma, 8-isoprostane in urine, nitrotyrosine in the kidney, and 4-hydroxynonenal in the aorta) as well as a reduction in VEGF, CTGF, VCAM-1, MCP-1, and Nox2 after 10 weeks of diabetes in the dKO aorta. Ebselen also significantly reduced the expression of proteins implicated in fibrosis and inflammation in the kidney as well as reducing related key intracellular signaling pathways. CONCLUSIONS Ebselen has an antiatherosclerotic and renoprotective effect in a model of accelerated diabetic complications in the setting of enhanced oxidative stress. Our data suggest that ebselen effectively repletes the lack of GPx1, and indicate that ebselen may be an effective therapeutic for the treatment of diabetes-related atherosclerosis and nephropathy. Furthermore, this study highlights the feasibility of addressing two diabetic complications with one treatment regimen through the unifying approach of targeted antioxidant therapy.
Collapse
Affiliation(s)
- Phyllis Chew
- Oxidative Stress Laboratory, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Derek Y.C. Yuen
- Oxidative Stress Laboratory, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Nada Stefanovic
- Oxidative Stress Laboratory, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Josefa Pete
- Diabetic Complications Laboratory, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Melinda T. Coughlan
- Diabetic Complications Laboratory, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Karin A. Jandeleit-Dahm
- Diabetic Complications Laboratory, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Merlin C. Thomas
- Diabetic Complications Laboratory, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | | | - Mark E. Cooper
- Diabetic Complications Laboratory, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Judy B. de Haan
- Oxidative Stress Laboratory, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
- Corresponding author: Judy B. de Haan,
| |
Collapse
|
16
|
Song JY, Kim MJ, Jo HH, Hwang SJ, Chae B, Chung JE, Kwon DJ, Lew YO, Lim YT, Kim JH, Kim JH, Kim MR. Antioxidant effect of estrogen on bovine aortic endothelial cells. J Steroid Biochem Mol Biol 2009; 117:74-80. [PMID: 19635556 DOI: 10.1016/j.jsbmb.2009.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 07/15/2009] [Accepted: 07/17/2009] [Indexed: 11/17/2022]
Abstract
OBJECTIVE This study discussed the role of estrogen as an antioxidant in the damage of vascular endothelial cells. DESIGN We treated bovine aortic endothelial cells (bAEC) either with 1mM of H(2)O(2) alone or with 1 microM of 17beta-estradiol (E(2)) for 24h followed by 1mM of H(2)O(2) for 3h. The cell survival was evaluated by MTT assay, cellular apoptosis by fluorescence activated cell sorter (FACS) and Hoechst 33342 staining, oxidative stress by intracellular reactive oxygen species (ROS) and apoptosis after oxidative stress by western blotting for phospho-p38, p38, and Bcl-2. RESULTS MTT assay showed that bAEC viability was reduced to 55.7+/-3.0% and 39.1+/-3.7% after 30 and 60 min of H(2)O(2) treatment, respectively. E(2) and H(2)O(2) treated cells did not show significant decrease in the cell survival. Similarly the FACS analysis and Hoechst 33342 stain showed that the latter decreased cellular apoptosis induced by H(2)O(2). Intracellular ROS increased by 181.6+/-68.9% in the former and by 37.0+/-3.9% in the latter (P<0.05). The expression of phospho-p38 mitogen-activated protein kinase (MAPK) was higher in the latter. CONCLUSIONS E(2) mediates antioxidant effects on the oxidative stress induced by H(2)O(2). This antioxidant effect on bAEC may elucidate the scientific basis of hormone therapy for maintaining cardiovascular integrity in postmenopausal women.
Collapse
Affiliation(s)
- Jae-Yen Song
- Department of Obstetrics and Gynecology, The Catholic University of Korea, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chew P, Yuen DY, Koh P, Stefanovic N, Febbraio MA, Kola I, Cooper ME, de Haan JB. Site-Specific Antiatherogenic Effect of the Antioxidant Ebselen in the Diabetic Apolipoprotein E–Deficient Mouse. Arterioscler Thromb Vasc Biol 2009; 29:823-30. [DOI: 10.1161/atvbaha.109.186619] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Phyllis Chew
- From the Oxidative Stress Group (P.C., N.S., J.B.d.H.), Diabetic Complications Group (P.K., M.E.C.), JDRF Diabetes and Metabolism Division, Cellular & Molecular Metabolism Laboratory (D.Y.C.Y., M.A.F.), Metabolism & Obesity Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia; and the Schering-Plough Research Institute (I.K.), Schering-Plough Corporation, Kenilworth, NJ
| | - Derek Y.C. Yuen
- From the Oxidative Stress Group (P.C., N.S., J.B.d.H.), Diabetic Complications Group (P.K., M.E.C.), JDRF Diabetes and Metabolism Division, Cellular & Molecular Metabolism Laboratory (D.Y.C.Y., M.A.F.), Metabolism & Obesity Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia; and the Schering-Plough Research Institute (I.K.), Schering-Plough Corporation, Kenilworth, NJ
| | - Philip Koh
- From the Oxidative Stress Group (P.C., N.S., J.B.d.H.), Diabetic Complications Group (P.K., M.E.C.), JDRF Diabetes and Metabolism Division, Cellular & Molecular Metabolism Laboratory (D.Y.C.Y., M.A.F.), Metabolism & Obesity Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia; and the Schering-Plough Research Institute (I.K.), Schering-Plough Corporation, Kenilworth, NJ
| | - Nada Stefanovic
- From the Oxidative Stress Group (P.C., N.S., J.B.d.H.), Diabetic Complications Group (P.K., M.E.C.), JDRF Diabetes and Metabolism Division, Cellular & Molecular Metabolism Laboratory (D.Y.C.Y., M.A.F.), Metabolism & Obesity Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia; and the Schering-Plough Research Institute (I.K.), Schering-Plough Corporation, Kenilworth, NJ
| | - Mark A. Febbraio
- From the Oxidative Stress Group (P.C., N.S., J.B.d.H.), Diabetic Complications Group (P.K., M.E.C.), JDRF Diabetes and Metabolism Division, Cellular & Molecular Metabolism Laboratory (D.Y.C.Y., M.A.F.), Metabolism & Obesity Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia; and the Schering-Plough Research Institute (I.K.), Schering-Plough Corporation, Kenilworth, NJ
| | - Ismail Kola
- From the Oxidative Stress Group (P.C., N.S., J.B.d.H.), Diabetic Complications Group (P.K., M.E.C.), JDRF Diabetes and Metabolism Division, Cellular & Molecular Metabolism Laboratory (D.Y.C.Y., M.A.F.), Metabolism & Obesity Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia; and the Schering-Plough Research Institute (I.K.), Schering-Plough Corporation, Kenilworth, NJ
| | - Mark E. Cooper
- From the Oxidative Stress Group (P.C., N.S., J.B.d.H.), Diabetic Complications Group (P.K., M.E.C.), JDRF Diabetes and Metabolism Division, Cellular & Molecular Metabolism Laboratory (D.Y.C.Y., M.A.F.), Metabolism & Obesity Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia; and the Schering-Plough Research Institute (I.K.), Schering-Plough Corporation, Kenilworth, NJ
| | - Judy B. de Haan
- From the Oxidative Stress Group (P.C., N.S., J.B.d.H.), Diabetic Complications Group (P.K., M.E.C.), JDRF Diabetes and Metabolism Division, Cellular & Molecular Metabolism Laboratory (D.Y.C.Y., M.A.F.), Metabolism & Obesity Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia; and the Schering-Plough Research Institute (I.K.), Schering-Plough Corporation, Kenilworth, NJ
| |
Collapse
|
18
|
Li CT, Zhang WP, Lu YB, Fang SH, Yuan YM, Qi LL, Zhang LH, Huang XJ, Zhang L, Chen Z, Wei EQ. Oxygen-glucose deprivation activates 5-lipoxygenase mediated by oxidative stress through the p38 mitogen-activated protein kinase pathway in PC12 cells. J Neurosci Res 2009; 87:991-1001. [DOI: 10.1002/jnr.21913] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Antioxidant effects of equol on bovine aortic endothelial cells. Biochem Biophys Res Commun 2008; 375:420-4. [PMID: 18708029 DOI: 10.1016/j.bbrc.2008.08.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 08/05/2008] [Indexed: 11/22/2022]
Abstract
This study is to examine the effects of equol on the H(2)O(2)-induced death of bovine aortic endothelial cells (bAECs) and the mechanism of its protective effects. MTT[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide] assay showed that in the control group, cell survival rate decreased significantly, each in proportion to the duration of the H(2)O(2) stimulation (P<0.05), but, in the equol-pretreated group, such decrease was not statistically significant. After Hoechst 33342 staining, in the equol-pretreated group the number of cells with apoptotic morphology decreased significantly. Equol pretreatment effectively inhibited the H(2)O(2)-induced cell death by the reduction of intracellular ROS production (P<0.05). Incubation of bAECs with equol increased the expression of phospho-p38 MAPK and Bcl-2 after the H(2)O(2) exposure compared with their expression without the equol pretreatment. Furthermore, SB203580 inhibited phospho-p38 MAPK expression and increased apoptotic cell death. This study proves equol has a significant antioxidant effect on the bAECs that were exposed to H(2)O(2).
Collapse
|
20
|
Posser T, Franco JL, dos Santos DA, Rigon AP, Farina M, Dafré AL, Teixeira Rocha JB, Leal RB. Diphenyl diselenide confers neuroprotection against hydrogen peroxide toxicity in hippocampal slices. Brain Res 2008; 1199:138-47. [DOI: 10.1016/j.brainres.2008.01.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 12/28/2007] [Accepted: 01/03/2008] [Indexed: 01/05/2023]
|
21
|
Moriue T, Igarashi J, Yoneda K, Nakai K, Kosaka H, Kubota Y. Sphingosine 1-phosphate attenuates H2O2-induced apoptosis in endothelial cells. Biochem Biophys Res Commun 2008; 368:852-7. [PMID: 18267109 DOI: 10.1016/j.bbrc.2008.01.155] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 01/27/2008] [Indexed: 10/22/2022]
Abstract
Reactive oxygen species including H(2)O(2) lead vascular endothelial cells (EC) to undergo apoptosis. Sphingosine 1-phosphate (S1P) is a platelet-derived sphingolipid mediator that elicits various EC responses. We aimed to explore whether and how S1P modulates EC apoptosis induced by H(2)O(2). Treatment of cultured bovine aortic EC (BAEC) with H(2)O(2) (750 microM for 6h) led to DNA fragmentation (ELISA), DNA nick formation (TUNEL staining), and cleavage of caspase-3, key features of EC apoptosis. These responses elicited by H(2)O(2) were alike markedly attenuated by pretreatment with S1P (1 microM, 30 min). H(2)O(2) induced robust phosphorylation of both p38 and JNK MAP kinases. However, pretreatment with S1P decreased phosphorylation of only p38 MAP kinase, but not that of JNK; conversely, an inhibitor of p38 MAP kinase, but not that of JNK, attenuated H(2)O(2)-induced caspase-3 activation. Thus S1P attenuates H(2)O(2)-induced apoptosis of cultured BAEC, involving p38 MAP kinase.
Collapse
Affiliation(s)
- Tetsuya Moriue
- Department of Dermatology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa 761-0793, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Nishina A, Sekiguchi A, He Y, Koketsu M, Furukawa S. Ebselen, a redox regulator containing a selenium atom, induces neurofilament M expression in cultured rat pheochromocytoma PC12 cells via activation of mitogen-activated protein kinase. J Neurosci Res 2008; 86:720-5. [DOI: 10.1002/jnr.21518] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Kawasaki T, Kitao T, Nakagawa K, Fujisaki H, Takegawa Y, Koda K, Ago Y, Baba A, Matsuda T. Nitric oxide-induced apoptosis in cultured rat astrocytes: protection by edaravone, a radical scavenger. Glia 2007; 55:1325-33. [PMID: 17626263 DOI: 10.1002/glia.20541] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Nitric oxide induces apoptosis-like cell death in cultured astrocytes, but the exact mechanism is not known. This study further characterized the mechanism of nitric oxide-induced cytotoxicity, and examined the effect of edaravone, a radical scavenger, on cytotoxicity. Treatment of cultured rat astrocytes with sodium nitroprusside (SNP), a nitric oxide donor, for 72 h, decreased cell viability by causing apoptosis-like cell death. The injury was accompanied by increases in the production of reactive oxygen species and in the level of nuclear apoptosis-inducing factor, but not in caspase activity. SNP-induced cytotoxicity was blocked by the c-jun N-terminal protein kinase (JNK) inhibitor SP600125 (20 microM), the p38 mitogen-activated protein (MAP) kinase inhibitor SB203580 (20 microM), and the extracellular signal-regulating kinase (ERK) inhibitor U0126 (10 microM), and the nitric oxide donor stimulated the phosphorylation of p38 MAP kinase, JNK, and ERK. Edaravone (10 microM) protected astrocytes against SNP-induced cell injury and it inhibited SNP-induced phosphorylation of p38 MAP kinase, JNK, and ERK, and the production of reactive oxygen species. Edaravone also attenuated SNP-induced increase in nuclear apoptosis-inducing factor levels. These results suggest that MAP kinase pathways play a key role in nitric oxide-induced apoptosis and that edaravone protects against nitric oxide-induced cytotoxicity by inhibiting nitric oxide-induced MAP kinase activation in astrocytes.
Collapse
Affiliation(s)
- Toshiyuki Kawasaki
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Nishina A, Sekiguchi A, Fukumoto RH, Koketsu M, Furukawa S. Selenazoles (selenium compounds) facilitate survival of cultured rat pheochromocytoma PC12 cells after serum-deprivation and stimulate their neuronal differentiation via activation of Akt and mitogen-activated protein kinase, respectively. Biochem Biophys Res Commun 2007; 352:360-5. [PMID: 17126295 DOI: 10.1016/j.bbrc.2006.11.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 11/06/2006] [Indexed: 11/23/2022]
Abstract
The activation of extracellular receptor kinase (ERK) is one of the checkpoints to assess the activation of the classical Ras/mitogen-activated protein kinase (MAPK) cascade. Therefore, we tested more than 100 selenium-containing compounds for their ability to activate the MAPK signal pathway. Among them, we found that three selenazoles, 5-chloroacetyl-2-piperidino-1,3-selenazole (CS1), 5-chloroacetyl-2-morpholino-1,3-selenazole (CS2), and 5-chloroacetyl-2-dimethylamino-1,3-selenazole (CS3), induced the phosphorylation of ERK. These compounds also enhanced the phosphorylation of Akt, a signal transducing protein kinase for cell survival; and this phosphorylation was followed by suppression of cell death, thus suggesting that they had anti-apoptotic effects. Moreover, CSs 1-3 induced neurite outgrowth and facilitated the expression of neurofilament-M of PC12 cells, demonstrating that they induced neuronal differentiation of these cells. On the other hand, the CS-induced phosphorylation of MAPK was enhanced by buthionine sulfoximine (BSO), an activator of protein tyrosine phosphatases (PTPs), but inhibited by N-acetyl-l-cysteine (NAC), an inhibitor of receptor tyrosine kinase. These results imply that activation of some receptor tyrosine kinase(s) is involved in the mechanism of action of CSs 1-3. The activation of MAPK by CSs 1-3 was suppressed by U0126, a MEK inhibitor, but not by K252a, an inhibitor of TrkA; AG1478, an antagonist of epidermal growth factor receptor (EGFR); or by pertussis toxin. These results demonstrate that the CS-induced phosphorylation of Akt and MAP kinase (receptor tyrosine kinase(s)-MEK1/2-ERK1/2) cascades was responsible for suppression of apoptosis and facilitation of neuronal differentiation of PC12 cells, respectively. Our results suggest that CSs 1-3 are promising candidates as neuroprotective and/or neurotrophic agents for the treatment of various neurodegenerative neurological disorders.
Collapse
Affiliation(s)
- Atsuyoshi Nishina
- Gunma Industrial Technology Center, 884-1 Kamesato, Maebashi, Gunma 379-2147, Japan.
| | | | | | | | | |
Collapse
|
25
|
Saad SY, Najjar TA, Arafah MM. Cardioprotective Effects of Subcutaneous Ebselen against Daunorubicin-Induced Cardiomyopathy in Rats. Basic Clin Pharmacol Toxicol 2006; 99:412-7. [PMID: 17169121 DOI: 10.1111/j.1742-7843.2006.pto_523.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Daunorubicin is an anthracycline antitumour agent that can cause severe cardiomyopathy leading to a frequently fatal congestive heart failure. Although the exact molecular mechanisms of cardiotoxicity are not well established, oxidative mechanisms involving daunorubicin-induced superoxide anion production have been proposed. In the present study, we showed that ebselen a seleno-organic compound exhibiting glutathione peroxidase-like and antioxidant activities, significantly ameliorated daunorubicin-induced cardiomyopathy. Subcutaneous administration of ebselen to daunorubicin-treated rats showed significant improvement in serum cardiac indices including creatine kinase isoenzyme and lactate dehydrogenase as well as serum glutathione (GSH) peroxidase. Moreover, myocardium of daunorubicin/ebselen-treated rats showed significant improvement in daunorubicin-induced depletion of GSH peroxidase activity and reduced glutathione content, in addition to attenuation of daunorubicin-induced increase in cardiac malondialdehyde production and total nitrate/nitrite concentration levels. These results were confirmed by histopathological examination of ventricles of daunorubicin/ebselen-treated rats that revealed significant improvement of the characteristic cardiomyopathic changes induced by daunorubicin treatment. Interestingly, control rats treated with ebselen showed significant elevation in serum lactate dehydrogenase activity, cardiac malondialdehyde production and total nitrate/nitrite concentration levels compared with the untreated control animals. In conclusion, ebselen treatment significantly alleviates daunorubicin-induced cardiomyopathy.
Collapse
Affiliation(s)
- Sherif Y Saad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | | | | |
Collapse
|
26
|
Fujita Y, Izawa Y, Ali N, Kanematsu Y, Tsuchiya K, Hamano S, Tamaki T, Yoshizumi M. Pramipexole protects against H2O2-induced PC12 cell death. Naunyn Schmiedebergs Arch Pharmacol 2005; 372:257-66. [PMID: 16362428 DOI: 10.1007/s00210-005-0025-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 11/22/2005] [Indexed: 01/06/2023]
Abstract
Pramipexole, a novel non-ergot dopamine (DA) agonist, has been successfully applied to the treatment of Parkinson's disease (PD). Although the specific cause of PD remains unknown, recent studies have provided evidence that oxidative stress plays a role in the parthenogenesis of the disease. In the present study, we examined the effect of pramipexole on hydrogen peroxide (H2O2, 100 microM)-induced PC12 cell death, and the intracellular mechanism of this effect. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay revealed that pretreatment of PC12 cells with pramipexole (1-100 microM) resulted in significant protection against H2O2-induced cell death in a concentration-dependent manner. The protective effect of pramipexole was not affected by pretreatment with the DA receptor antagonists sulpiride, spiperone or domperidone, suggesting that the effect of pramipexole is not mediated by DA receptors. In PC12 cells, pramipexole inhibited H2O2-induced lactate dehydrogenase (LDH) leakage, as well as H2O2-induced cytochrome c release and caspase-3 activation with the resultant apoptosis. It was also observed in PC12 cells that H2O2 stimulated phosphorylation of mitogen-activated protein (MAP) kinases, i.e., extracellular signal-regulated kinase1/2 (ERK1/2), c-Jun NH2-terminal kinase (JNK) and p38 MAP kinase. Pramipexole inhibited H2O2-induced JNK and p38 MAP kinase, but not ERK1/2 phosphorylation. Furthermore, in these cells experiments with a fluorescent probe, 2-[6-(4'-amino)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid, revealed that pramipexole, the JNK inhibitor SP600125 and the p38 MAP kinase inhibitor SB203580 inhibited the generation of H2O2-induced reactive oxygen species. Caspase inhibitors Z-DEVD-FMK and Z-IETD-FMK, as well as SP600125 and SB203580, inhibited H2O2-induced PC12 cell death to a similar extent as pramipexole. These results suggest that pramipexole exerts a protective effect against oxidative stress-induced PC12 cell death in part through an inhibition of JNK and p38 MAP kinase.
Collapse
Affiliation(s)
- Yoshiko Fujita
- Department of Pharmacology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, 770-8503, Japan
| | | | | | | | | | | | | | | |
Collapse
|