1
|
Hou Q, Li Y. Dual inhibition of AChE and MAO-B in Alzheimer's disease: machine learning approaches and model interpretations. Mol Divers 2025:10.1007/s11030-024-11061-x. [PMID: 39838228 DOI: 10.1007/s11030-024-11061-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/20/2024] [Indexed: 01/23/2025]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases. Given the multifactorial pathophysiology of AD, monotargeted agents can only alleviate symptoms but not cure AD. Acetylcholinesterase (AChE) and Monoamine oxidase B (MAO-B) are two key targets in the treatment of AD, molecules that inhibiting both targets are considered promising avenue to develop more effective AD therapies. In the present work, a dual inhibition dataset containing 449 molecules was established, based on which five machine learning algorithms (KNN, SVM, RF, GBDT, and LGBM) four fingerprints (MACCS, ECFP4, RDKitFP, PubChemFP) and DRAGON descriptors were combined to develop 25 classification models in which GBDT paired with ECFP4 and RF paired with PubchemFP achieved the same best performance across multiple metrics (Accuracy = 0.92, F1 Score = 0.94, MCC = 0.81). Moreover, based on the curated bioactivity datasets of AChE and MAO-B, regression models were developed to predict pIC50 values. For the AChE inhibition task, GBDT demonstrated the best performance (RMSE = 0.683, MAE = 0.500, R2 = 0.721). The SVM algorithm emerged as the most effective for MAO-B inhibition (RMSE = 0.668, MAE = 0.507, R2 = 0.675). The SHAP algorithm was used to interpret the optimal models, identifying and analyzing the key substructures and properties for both dual-target and single-target inhibitors. Moreover, molecules docking process provided potential mechanism and Structure-Activity Relationships (SAR) of dual-target inhibition further.
Collapse
Affiliation(s)
- Qinghe Hou
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Yan Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, Liaoning, China.
| |
Collapse
|
2
|
Sharma A, Sharma M, Bharate SB. N-Benzyl piperidine Fragment in Drug Discovery. ChemMedChem 2024; 19:e202400384. [PMID: 38924676 DOI: 10.1002/cmdc.202400384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
The N-benzyl piperidine (N-BP) structural motif is commonly employed in drug discovery due to its structural flexibility and three-dimensional nature. Medicinal chemists frequently utilize the N-BP motif as a versatile tool to fine-tune both efficacy and physicochemical properties in drug development. It provides crucial cation-π interactions with the target protein and also serves as a platform for optimizing stereochemical aspects of potency and toxicity. This motif is found in numerous approved drugs and clinical/preclinical candidates. This review focuses on the applications of the N-BP motif in drug discovery campaigns, emphasizing its role in imparting medicinally relevant properties. The review also provides an overview of approved drugs, the clinical and preclinical pipeline, and discusses its utility for specific therapeutic targets and indications, along with potential challenges.
Collapse
Affiliation(s)
- Ankita Sharma
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohit Sharma
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sandip B Bharate
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, India
| |
Collapse
|
3
|
Yoon G, Sofuoglu M, Petrakis IL, Pittman B, Bell MD. The combination of donepezil and cognitive training for improving treatment outcomes for alcohol use disorder: Design of a randomized controlled trial. Contemp Clin Trials 2024; 145:107657. [PMID: 39111388 PMCID: PMC11423257 DOI: 10.1016/j.cct.2024.107657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 07/13/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND The development of alcohol use disorder (AUD) is a major concern in public health, and cognitive impairments caused by alcohol are involved in this process. Emerging neurobiological evidence suggests that donepezil, an anticholinesterase agent, may improve AUD treatment outcomes by enhancing neurocognitive functioning. Previous research has also suggested that cognitive remediation therapy (CRT) could potentially improve cognitive function and AUD treatment outcomes. We present the rationale and design of a trial to evaluate the combination of donepezil and cognitive remediation therapy (donepezil + CRT) as an intervention for AUD. METHODS We propose a 13-week, randomized, double-blind, placebo-controlled, between-subjects trial comparing 4 groups (donepezil + CRT vs. donepezil alone vs. CRT alone vs. placebos) as an intervention for AUD. The main goal of the study is to evaluate if donepezil + CRT is superior to placebo in reducing heavy drinking days and improving neurocognitive functioning. A total of 160 patients (4 groups, 40 per each group) with AUD between the ages of 18-80 years will be recruited at Yale University and the VA Connecticut Healthcare System. Primary outcome measures include 1) heavy drinking by Timeline Follow Back (TLFB) over 13 weeks and 2) global neurocognitive functioning by a global index of neurocognitive function score at 7 and 13 weeks. DISCUSSION This protocol paper describes the rationale and proposed methods for the randomized controlled trial for improving AUD treatment outcomes. This project has significant clinical potential to help patients suffering from AUD by improving their cognition and reducing alcohol consumption. TRIAL REGISTRATION NCT05042102.
Collapse
Affiliation(s)
- Gihyun Yoon
- VA Connecticut Healthcare System, West Haven, CT, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
| | - Mehmet Sofuoglu
- VA Connecticut Healthcare System, West Haven, CT, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Ismene L Petrakis
- VA Connecticut Healthcare System, West Haven, CT, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Brian Pittman
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Morris D Bell
- VA Connecticut Healthcare System, West Haven, CT, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Duran HE, Beydemir Ş. Naphthoquinones and anthraquinones: Exploring their impact on acetylcholinesterase enzyme activity. Biotechnol Appl Biochem 2024; 71:1079-1093. [PMID: 38715453 DOI: 10.1002/bab.2599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 10/10/2024]
Abstract
The identification of novel acetylcholinesterase inhibitors holds significant relevance in the treatment of Alzheimer's disease (AD), the prevailing form of dementia. The exploration of alternative inhibitors to the conventional acetylcholinesterase inhibitors is steadily gaining prominence. Quinones, categorized as plant metabolites, represent a specific class of compounds. In this study, the inhibitory effects of various naphthoquinone derivatives, along with anthraquinone and its derivatives, on the acetylcholinesterase (AChE) enzyme were investigated for this purpose. An in vitro investigation was conducted to examine the effects of these compounds in order to clarify the possible mechanism of inhibition in the interaction between the enzyme and chemicals. In addition, an in silico investigation was carried out to understand the conceivable inhibitor binding process to the enzyme's active site. The acquired outcomes corroborated the in vitro results. The AChE enzyme was found to be effectively inhibited by both naphthoquinones and anthraquinones, with inhibition constant (KI) values ranging from 0.014 to 0.123 μM (micormolar). The AChE enzyme was inhibited differently by this quinone and its derivatives. Although derivatives of naphthoquinone and anthraquinone exhibited a competitive inhibitory effect, derivatives of anthraquinone exhibited a noncompetitive inhibition effect. Furthermore, because it had the lowest KI value of any of these substances, 1,5-dihydroxyanthraquinone (1c) was shown to be the most potent inhibitor. The findings will add to the body of knowledge on the creation of fresh, potent, and successful treatment approaches.
Collapse
Affiliation(s)
- Hatice Esra Duran
- Department of Medical Biochemistry, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
5
|
Yelamanda Rao K, Chandran R, Dileep KV, Gorantla SC, Jeelan Basha S, Mothukuru S, Siva Kumar I, Vamsi K, Kumar S, Reddy ABM, Subramanyam R, Damu AG. Quinazolinone-Hydrazine Cyanoacetamide Hybrids as Potent Multitarget-Directed Druggable Therapeutics against Alzheimer's Disease: Design, Synthesis, and Biochemical, In Silico, and Mechanistic Analyses. ACS Chem Neurosci 2024; 15:3401-3420. [PMID: 39235838 DOI: 10.1021/acschemneuro.4c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
The discovery of effective multitarget-directed ligands (MTDLs) against multifactorial Alzheimer's disease (AD) remnants has been focused in an incessant drug discovery pursuit. In this perception, the current study explores the rational design, synthesis, and evaluation of 26 quinazolinone-hydrazine cyanoacetamide hybrids 7(a-j), 8(a-j), and 9(a-f) as MTDLs against AD. These new compounds were synthesized in four-step processes using simple phthalimide as the starting material without any major workup procedures and were characterized by different spectroscopic techniques. In Ellman's assay, the most potent analogues 7i, 8j, and 9d were identified as selective and mixed-type inhibitors of hAChE. Furthermore, biophysical and computational assessments revealed that the analogues 7i, 8j, and 9d were bound to both the catalytic active site and peripheral anionic site of hAChE with high affinity. The molecular dynamics simulation analysis highlighted the conformational changes of hAChE upon binding of 7i, 8j, and 9d and also the stability of resulting biomolecular systems all over 100 ns simulations. In addition to antioxidant activity, the most active congeners were found to protect substantially SK-N-SH cells from oxidative damage. Decisively, the most active analogues 7i, 8j, and 9d were assessed as potent Aβ1-42 fibril modulators and protective agents against Aβ1-42-induced toxicity in SH-SY5Y cells. Additionally, glioblastoma C6 cell-based assays also demonstrated the use of the most active congeners 7i, 8j, and 9d as protective agents against Aβ1-42-induced toxicity. Overall, this multifunctional capacity of quinazolinone-hydrazine cyanoacetamide hybrids demonstrated the noteworthy potential of these hybrids to develop as effectual MTDLs against AD. However, further pharmacokinetics, toxicology, and behavioral studies are warranted.
Collapse
Affiliation(s)
- Kandrakonda Yelamanda Rao
- Bioorganic Chemistry Research Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh 516005, India
| | - Remya Chandran
- Laboratory for Computational and Structural Biology, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India
| | - K V Dileep
- Laboratory for Computational and Structural Biology, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India
| | - Sri Charitha Gorantla
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Shaik Jeelan Basha
- Bioorganic Chemistry Research Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh 516005, India
- Department of Chemistry, Santhiram Engineering College (Autonomous), Nandyal, Andhra Pradesh 518501, India
| | - Sreelakshmi Mothukuru
- Bioorganic Chemistry Research Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh 516005, India
| | - Irla Siva Kumar
- Soft Condensed Matter, Raman Research Institute, CV Raman Avenue, Sadashiva Nagar, Bangalore 560080, India
| | - Katta Vamsi
- Department of Chemistry, Indian Institute of Science and Education Research (IISER), Tirupati, Andhra Pradesh 517507, India
| | - Sandeep Kumar
- Soft Condensed Matter, Raman Research Institute, CV Raman Avenue, Sadashiva Nagar, Bangalore 560080, India
- Nitte Meenakshi Institute of Technology, Yelahanka, Bangalore 560064, India
| | - Aramati Bindu Madhava Reddy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Amooru Gangaiah Damu
- Bioorganic Chemistry Research Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh 516005, India
| |
Collapse
|
6
|
Laghchioua F, da Silva CFM, Pinto DCGA, Cavaleiro JA, Mendes RF, Paz FAA, Faustino MAF, Rakib EM, Neves MGPMS, Pereira F, Moura NMM. Design of Promising Thiazoloindazole-Based Acetylcholinesterase Inhibitors Guided by Molecular Docking and Experimental Insights. ACS Chem Neurosci 2024; 15:2853-2869. [PMID: 39037949 PMCID: PMC11311138 DOI: 10.1021/acschemneuro.4c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024] Open
Abstract
Alzheimer's disease is characterized by a progressive deterioration of cognitive function and memory loss, and it is closely associated with the dysregulation of cholinergic neurotransmission. Since acetylcholinesterase (AChE) is a critical enzyme in the nervous system, responsible for breaking down the neurotransmitter acetylcholine, its inhibition holds a significant interest in the treatment of various neurological disorders. Therefore, it is crucial to develop efficient AChE inhibitors capable of increasing acetylcholine levels, ultimately leading to improved cholinergic neurotransmission. The results reported here represent a step forward in the development of novel thiazoloindazole-based compounds that have the potential to serve as effective AChE inhibitors. Molecular docking studies revealed that certain of the evaluated nitroindazole-based compounds outperformed donepezil, a well-known AChE inhibitor used in Alzheimer's disease treatment. Sustained by these findings, two series of compounds were synthesized. One series included a triazole moiety (Tl45a-c), while the other incorporated a carbazole moiety (Tl58a-c). These compounds were isolated in yields ranging from 66 to 87% through nucleophilic substitution and Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) reactions. Among the synthesized compounds, the thiazoloindazole-based 6b core derivatives emerged as selective AChE inhibitors, exhibiting remarkable IC50 values of less than 1.0 μM. Notably, derivative Tl45b displays superior performance as an AChE inhibitor, boasting the lowest IC50 (0.071 ± 0.014 μM). Structure-activity relationship (SAR) analysis indicated that derivatives containing the bis(trifluoromethyl)phenyl-triazolyl group demonstrated the most promising activity against AChE, when compared to more rigid substituents such as carbazolyl moiety. The combination of molecular docking and experimental synthesis provides a suitable and promising strategy for the development of new efficient thiazoloindazole-based AChE inhibitors.
Collapse
Affiliation(s)
- Fatima
Ezzahra Laghchioua
- Laboratory
of Molecular Chemistry, Materials and Catalysis, Faculty of Sciences
and Technics, Sultan Moulay Slimane University, BP 523, Beni-Mellal 23000, Morocco
| | - Carlos F. M. da Silva
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana C. G. A. Pinto
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José A.
S. Cavaleiro
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo F. Mendes
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Filipe A. Almeida Paz
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria A. F. Faustino
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - El Mostapha Rakib
- Laboratory
of Molecular Chemistry, Materials and Catalysis, Faculty of Sciences
and Technics, Sultan Moulay Slimane University, BP 523, Beni-Mellal 23000, Morocco
- Higher
School of Technology, Sultan Moulay Slimane
University, BP 336, Fkih Ben Salah, Morocco
| | | | - Florbela Pereira
- LAQV-REQUIMTE,
Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Nuno M. M. Moura
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
7
|
Wang T, Tan HS, Wang AJ, Li SS, Feng JJ. Fluorescent metal nanoclusters: From luminescence mechanism to applications in enzyme activity assays. Biosens Bioelectron 2024; 257:116323. [PMID: 38669842 DOI: 10.1016/j.bios.2024.116323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Metal nanoclusters (MNCs) have outstanding fluorescence property and biocompatibility, which show widespread applications in biological analysis. Particularly, evaluation of enzyme activity with the fluorescent MNCs has been developed rapidly within the past several years. In this review, we first introduced the fluorescent mechanism of mono- and bi-metallic nanoclusters, respectively, whose interesting luminescence properties are mainly resulted from electron transfer between the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels. Meanwhile, the charge migration within the structure occurs through ligand-metal charge transfer (LMCT) or ligand-metal-metal charge transfer (LMMCT). On such foundation, diverse enzyme activities were rigorously evaluated, including three transferases and nine hydrolases, in turn harvesting rapid research progresses within past 5 years. Finally, we summarized the design strategies for evaluating enzyme activity with the MNCs, presented the major issues and challenges remained in the relevant research, coupled by showing some improvement measures. This review will attract researchers dedicated to the studies of the MNCs and provide some constructive insights for their further applications in enzyme analysis.
Collapse
Affiliation(s)
- Tong Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Hong-Sheng Tan
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Shan-Shan Li
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
8
|
Mishra CB, Shalini S, Gusain S, Kumar P, Kumari S, Choi YS, Kumari J, Moku BK, Yadav AK, Prakash A, Jeon R, Tiwari M. Multitarget action of Benzothiazole-piperazine small hybrid molecule against Alzheimer's disease: In silico, In vitro, and In vivo investigation. Biomed Pharmacother 2024; 174:116484. [PMID: 38565058 DOI: 10.1016/j.biopha.2024.116484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
A novel small molecule based on benzothiazole-piperazine has been identified as an effective multi-target-directed ligand (MTDL) against Alzheimer's disease (AD). Employing a medicinal chemistry approach, combined with molecular docking, MD simulation, and binding free energy estimation, compound 1 emerged as a potent MTDL against AD. Notably, compound 1 demonstrated efficient binding to both AChE and Aβ1-42, involving crucial molecular interactions within their active sites. It displayed a binding free energy (ΔGbind) -18.64± 0.16 and -16.10 ± 0.18 kcal/mol against AChE and Aβ1-42, respectively. In-silico findings were substantiated through rigorous in vitro and in vivo studies. In vitro analysis confirmed compound 1 (IC50=0.42 μM) as an effective, mixed-type, and selective AChE inhibitor, binding at both the enzyme's catalytic and peripheral anionic sites. Furthermore, compound 1 demonstrated a remarkable ability to reduce the aggregation propensity of Aβ, as evidenced by Confocal laser scanning microscopy and TEM studies. Remarkably, in vivo studies exhibited the promising therapeutic potential of compound 1. In a scopolamine-induced memory deficit mouse model of AD, compound 1 showed significantly improved spatial memory and cognition. These findings collectively underscore the potential of compound 1 as a promising therapeutic candidate for the treatment of AD.
Collapse
Affiliation(s)
- Chandra Bhushan Mishra
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, South Korea; Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Shruti Shalini
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India
| | - Siddharth Gusain
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India
| | - Pawan Kumar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shikha Kumari
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Yong-Sung Choi
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, South Korea
| | - Jyoti Kumari
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India
| | - Bala Krishna Moku
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anita Kumari Yadav
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health (AIISH), Amity University Haryana, Amity Education Valley, Gurgaon 122413, India
| | - Raok Jeon
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, South Korea.
| | - Manisha Tiwari
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India.
| |
Collapse
|
9
|
Soylu-Eter Ö, Özsoy N, Karalı N. Synthesis and molecular docking studies of 5-trifluoromethoxy-2-indolinones as cholinesterase dual inhibitors. Future Med Chem 2024; 16:623-645. [PMID: 38470247 DOI: 10.4155/fmc-2023-0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Background: In Alzheimer's disease, butyrylcholinesterase (BuChE) activity gradually increases, while acetylcholinesterase (AChE) activity decreases or remains unchanged. Dual inhibitors have important roles in regulation of synaptic acetylcholine levels and progression of Alzheimer's disease. Methods: 1-(Thiomorpholin-4-ylmethyl)/benzyl-5-trifluoromethoxy-2-indolinones (6-7) were synthesized. AChE and BuChE inhibitory effects were investigated with Ellman's method. Molecular docking studies were performed for analyzing the possible binding interactions at active sites. Results: Compound 6g was the strongest inhibitor against both AChE (Ki = 0.35 μM) and BuChE (Ki = 0.53 μM). It showed higher inhibitory effects than both donepezil and galantamine. Moreover, compound 7m had a higher inhibitory effect than galantamine and the effect was comparable to that of donepezil against both AChE (Ki = 0.69 μM) and BuChE (Ki = 0.95 μM). Conclusion: The benzyl substitution compared with 1-(thiomorpholin-4-ylmethyl) group significantly increased both AChE and BuChE inhibitory effects.
Collapse
Affiliation(s)
- Özge Soylu-Eter
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, 34116, Istanbul, Turkey
- Department of Pharmaceutical Chemistry, Institute of Health Sciences, Istanbul University, 34126, Istanbul, Turkey
| | - Nurten Özsoy
- Department of Biochemistry, Faculty of Pharmacy, Istanbul University, 34116, Istanbul, Turkey
| | - Nilgün Karalı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, 34116, Istanbul, Turkey
| |
Collapse
|
10
|
Pathak C, Kabra UD. A comprehensive review of multi-target directed ligands in the treatment of Alzheimer's disease. Bioorg Chem 2024; 144:107152. [PMID: 38290187 DOI: 10.1016/j.bioorg.2024.107152] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting specifically older population. AD is an irreversible neurodegenerative CNS disorder associated with complex pathophysiology. Presently, the USFDA has approved only four drugs viz. Donepezil, Rivastigmine, Memantine, and Galantamine for the treatment of AD. These drugs exhibit their neuroprotective effects either by inhibiting cholinesterase enzyme (ChE) or N-methyl-d-aspartate (NMDA) receptor. However, the conventional therapy "one target, one molecule" has failed to provide promising therapeutic effects due to the multifactorial nature of AD. This triggered the development of a novel strategy called Multi-Target Directed Ligand (MTDL) which involved designing one molecule that acts on multiple targets simultaneously. The present review discusses the detailed pathology involved in AD and the various MTDL design strategies bearing different heterocycles, in vitro and in vivo activities of the compounds, and their corresponding structure-activity relationships. This knowledge will allow us to identify and design more effective MTDLs for the treatment of AD.
Collapse
Affiliation(s)
- Chandni Pathak
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Uma D Kabra
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India.
| |
Collapse
|
11
|
Shukla D, Suryavanshi A, Bharti SK, Asati V, Mahapatra DK. Recent Advances in the Treatment and Management of Alzheimer's Disease: A Precision Medicine Perspective. Curr Top Med Chem 2024; 24:1699-1737. [PMID: 38566385 DOI: 10.2174/0115680266299847240328045737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
About 60% to 70% of people with dementia have Alzheimer's Disease (AD), a neurodegenerative illness. One reason for this disorder is the misfolding of naturally occurring proteins in the human brain, specifically β-amyloid (Aβ) and tau. Certain diagnostic imaging techniques, such as amyloid PET imaging, tau PET imaging, Magnetic Resonance Imaging (MRI), Computerized Tomography (CT), and others, can detect biomarkers in blood, plasma, and cerebral spinal fluids, like an increased level of β-amyloid, plaques, and tangles. In order to create new pharmacotherapeutics for Alzheimer's disease, researchers must have a thorough and detailed knowledge of amyloid beta misfolding and other related aspects. Donepezil, rivastigmine, galantamine, and other acetylcholinesterase inhibitors are among the medications now used to treat Alzheimer's disease. Another medication that can temporarily alleviate dementia symptoms is memantine, which blocks the N-methyl-D-aspartate (NMDA) receptor. However, it is not able to halt or reverse the progression of the disease. Medication now on the market can only halt its advancement, not reverse it. Interventions to alleviate behavioral and psychological symptoms, exhibit anti- neuroinflammation and anti-tau effects, induce neurotransmitter alteration and cognitive enhancement, and provide other targets have recently been developed. For some Alzheimer's patients, the FDA-approved monoclonal antibody, aducanumab, is an option; for others, phase 3 clinical studies are underway for drugs, like lecanemab and donanemab, which have demonstrated potential in eliminating amyloid protein. However, additional study is required to identify and address these limitations in order to reduce the likelihood of side effects and maximize the therapeutic efficacy.
Collapse
Affiliation(s)
- Deepali Shukla
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Anjali Suryavanshi
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Sanjay Kumar Bharti
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Debarshi Kar Mahapatra
- Department of Pharmaceutical Chemistry, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra, India
| |
Collapse
|
12
|
Yelamanda Rao K, Jeelan Basha S, Monika K, Naidu Gajula N, Sivakumar I, Kumar S, Vadde R, Aramati BMR, Subramanyam R, Damu AG. Development of quinazolinone and vanillin acrylamide hybrids as multi-target directed ligands against Alzheimer's disease and mechanistic insights into their binding with acetylcholinesterase. J Biomol Struct Dyn 2023; 41:11148-11165. [PMID: 37098803 DOI: 10.1080/07391102.2023.2203255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/13/2022] [Indexed: 04/27/2023]
Abstract
In view of Multi-Target Directed Ligand (MTDL) approach in treating Alzheimer's Disease (AD), a series of novel quinazolinone and vanillin cyanoacetamide based acrylamide derivatives (9a-z) were designed, synthesized, and assessed for their activity against a panel of selected AD targets including acetylcholinesterase (AChE), butyrylcholinesterase (BChE), amyloid β protein (Aβ), and also 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and neuroprotective activities. Five of the target analogs 9e, 9h, 9 l, 9t and 9z showed elevated AChE inhibitory activity with IC50 values of 1.058 ± 0.06, 1.362 ± 0.09, 1.434 ± 0.10, 1.015 ± 0.10, 1.035 ± 0.02 µM respectively, high inhibition selectivity against AChE over BChE and good DPPH radical scavenging activity. Enzyme kinetic studies of the potent hybrids in the series disclosed their mixed inhibition approach. Active analogs were found to be non-toxic on SK-N-SH cell lines and have excellent neuroprotective effects against H2O2-induced cell death. Strong modulating affinities on Aβ aggregation process were observed for most active compounds since; they irretrievably interrupted the morphology of Aβ42 fibrils, increased the aggregates and declined the Aβ-induced toxicity in neurons. From the fluorescence emission studies, the binding constants (K) were determined as 2.5 ± 0.021x103, 2.7 ± 0.015x103, 3.7 ± 0.020x103, 2.4 ± 0.013x104, and 5.0 ± 0.033x103 M-1 and binding free energies as -5.82 ± 0.033, -6.07 ± 0.042, -6.26 ± 0.015, -7.71 ± 0.024, and -6.29 ± 0.026 kcal M-1 for complexes of AChE-9e, 9h, 9 l, 9t and 9z, respectively. Moreover, the CD analysis inferred the limited modifications in the AChE secondary structure when it binds to 9e, 9h, 9 l, 9t and 9z. On the basis of docking studies against AChE, the most active congeners were well oriented in the enzyme's active site by interacting with both catalytic active site (CAS) and peripheral anionic site (PAS). In summary, these quinazolinone and vanillin acrylamide hybrid analogs can be used as promising molecular template to further explore their in vivo efficiency in the development of lead compound to treat AD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kandrakonda Yelamanda Rao
- Bioorganic Chemistry Research Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Shaik Jeelan Basha
- Bioorganic Chemistry Research Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Kallubai Monika
- Department of Biochemistry, Rayalaseema University, Kurnool, Andhra Pradesh, India
| | - Navya Naidu Gajula
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Irla Sivakumar
- Soft Condensed Matter, Raman Research Institute, Sadashivanagar, Bangalore, India
| | - Sandeep Kumar
- Soft Condensed Matter, Raman Research Institute, Sadashivanagar, Bangalore, India
- Department of Chemistry, Nitte Meenakshi Institute of Technology, Yelahanka, Bangalore, India
| | - Ramakrishna Vadde
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | | | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Amooru Gangaiah Damu
- Bioorganic Chemistry Research Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| |
Collapse
|
13
|
Al-Rifai NM, Al-Khalileh NM, Zahra JA, El-Barghouthi MI, Darras FH. Synthesis, biological evaluation, and computational studies of N-benzyl pyridinium-curcumin derivatives as potent AChE inhibitors with antioxidant activity. J Enzyme Inhib Med Chem 2023; 38:2281264. [PMID: 37985494 PMCID: PMC11003481 DOI: 10.1080/14756366.2023.2281264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023] Open
Abstract
A library of N-benzylpyridinium-based compounds, 7a-j and 8a-j, was designed and synthesised as potential acetylcholinesterase) AChE (inhibitors. An in vitro assay for the synthesised compounds showed that most compounds had significant AChE inhibitory activities at the nanomolar and submicromolar levels. The benzyl (8a) and fluoro (8b) derivatives were the most active, with IC50 values ≤56 nM. Compound 7f, which had a benzyl moiety, showed the highest potency among all the target compounds, with an IC50 value of 7.5 ± 0.19 nM against AChE, which was higher than that of the activities of tacrine (IC50 = 30 ± 0.2 nM) and donepezil (IC50 = 14 ± 0.12 nM). Compounds with vanillin moieties exhibited antioxidant activity. Among the tested compounds, four derivatives (7f, 7 g, 8f, and 8 g) exhibited superior AChE inhibitory activity, with Ki values of 6-16 nM, which were potent in the same range as the approved drug, donepezil. These compounds showed moderate antioxidant activities, as indicated by the results of the ABTS assay.
Collapse
Affiliation(s)
- Nafisah M. Al-Rifai
- Pharmaceutical-Chemical Engineering Department, School of Medical Sciences, German Jordanian University, P.O. Box 35247, Amman11180, Jordan
| | | | - Jalal A. Zahra
- Chemistry Department, The University of Jordan, Amman, Jordan
| | - Musa I. El-Barghouthi
- Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa13133, Jordan
| | | |
Collapse
|
14
|
Naseem S, Khan S, Hussain S, Mirza MU, Ashraf M, Shafiq Z, Trant JF. Synthesis, biological evaluation, and molecular docking study of xanthene-linked thiosemicarbazones as cholinesterase inhibitors. J Biomol Struct Dyn 2023; 42:13232-13246. [PMID: 37948312 DOI: 10.1080/07391102.2023.2274981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
This study delineates the design and synthesis of a series of xanthene-based thiosemicarbazones that show low μM inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), crucial enzymes associated with, among others, Alzheimer's Disease (AD) pathology. Despite FDA-approved AChE inhibitors being frontline treatments for AD, there remains a need for agents exhibiting improved efficacy and selectivity. Our synthesized series demonstrate meaningful inhibition against AChE (IC50 ranging from 4.2 to 62 μM). These compounds exhibit comparatively lower potency against BChE (IC50 values between 64 and 315 μM), showcasing a pronounced AChE selectivity compared to physostigmine. The selectivity index for the compounds between the two targets does vary between 0.02 and 0.75 highlighting that even minor structural differences can have drastic effects on protein interactions. Molecular docking insights further substantiated these observations, revealing the importance of the xanthene scaffold for AChE-binding and the aryl R2 moiety for BChE interactions. Notably, some compounds demonstrated dual enzyme targeting, emphasizing their interactions could be exploited for developing monotherapies against cholinesterase-associated neurodegenerative afflictions like AD. Collectively, these findings suggest that xanthene-based thiosemicarbazones are a promising and highly accessible scaffold that deserve further investigative exploration in the cholinesterase inhibitor therapeutic landscape.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saira Naseem
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Samra Khan
- Department of Chemistry and Biochemistry, University of Windsor, Canada
| | - Safdar Hussain
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Muhammad Ashraf
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
- Department of Pharmaceutical & Medicinal Chemistry, Universitat Bonn, Bonn, Germany
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, Canada
| |
Collapse
|
15
|
Evyapan S, Oruç-Emre EE, Sıcak Y, Karaküçük-İyidoğan A, Yılmaz GT, Öztürk M. Design, in Silico Studies and Biological Evaluation of New Chiral Thiourea and 1,3-Thiazolidine-4,5-dione Derivatives. Chem Biodivers 2023; 20:e202300626. [PMID: 37477542 DOI: 10.1002/cbdv.202300626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
In this study, new chiral thiourea and 1,3-thiazolidine-4,5-dione derivatives were synthesized, it was aimed to evaluate the various biological activities and molecular docking of these compounds. Firstly, the new thioureas (1-16) were obtained by reacting 1-naphthylisothiocyanate with different chiral amines. Then, the chiral thioureas were cyclized with oxalyl chloride to obtain 1,3-thiazolidine-4,5-dione derivatives (17-32). All compounds were evaluated with several in vitro antioxidant and enzyme inhibition activities. Compound 30 was the most active compound against AChE, with a value of IC50 =8.09±0.58 μM. On the other hand, all compounds were tested in silico absorption, distribution, metabolism, and excretion (ADME) assays to better understand their bioavailability. These physicochemical properties, pharmacokinetics, and drug-likeness of all compounds were calculated using SwissADME. Furthermore, according to molecular docking analyses compound 30 exhibited significant binding affinities for all enzymes. Based on our overall observations, compound 30 could be recommended as a potential lead for the therapuetic of Alzheimer's.
Collapse
Affiliation(s)
- Samet Evyapan
- Department of Chemistry, Faculty of Art and Sciences, Gaziantep University, Gaziantep, 27410, Türkiye
| | - Emine Elçin Oruç-Emre
- Department of Chemistry, Faculty of Art and Sciences, Gaziantep University, Gaziantep, 27410, Türkiye
| | - Yusuf Sıcak
- Department of Medicinal and Aromatic Plants, Köyceğiz Vocational School, Muğla Sıtkı Koçman University, Muğla, 48800, Türkiye
| | | | - Gizem Tatar Yılmaz
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Karadeniz Technical University, Trabzon, 61000, Türkiye
| | - Mehmet Öztürk
- Department of Chemistry, Faculty of Sciences, Muğla Sıtkı Koçman University, Muğla, 48800, Türkiye
| |
Collapse
|
16
|
Kuo YC, De S. Development of carbon dots to manage Alzheimer's disease and Parkinson's disease. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
17
|
Çalışır Ü, Camadan Y, Çiçek B, Akkemik E, Eyüpoğlu V, Adem Ş. Synthesis, characterizations of aryl-substituted dithiodibenzothioate derivatives, and investigating their anti-Alzheimer's properties. J Biomol Struct Dyn 2023; 41:1828-1845. [PMID: 35021953 DOI: 10.1080/07391102.2021.2024884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The main objective of the present study was to synthesize potential inhibitor/activators of AChE and hCA I-II enzymes, which are thought to be directly related to Alzheimer's disease. Dithiodibenzothioate compounds were synthesized by thioesterification. Six different thiolate compounds produced were characterized by 1H-, 13C-NMR, FT-IR, LC-MS/MS methods. HOMO-LUMO calculations and electronic properties of all synthesized compounds were comprehensively illuminated with a semi-empirical molecular orbital (SEMO) package for organic and inorganic systems using Austin Model 1 (AM1)-Hamiltonian as implemented in the VAMP module of Materials Studio. In addition, the inhibition effects of these compounds for AChE and hCA I-II in vitro conditions were investigated. It was revealed that TE-1, TE-2, TE-3, TE-4, TE-5, and TE-6 compounds inhibited the AChE under in vitro conditions. TE-1 compound activated the enzyme hCA I while TE-2, TE-3 TE-4 compounds inhibited it. TE-5 and TE-6, on the other hand, did not exhibit a regular inhibition profile. Similarly, TE-1 activated the hCA II enzyme whereas TE-2, TE-3, TE-4, and TE-5 compounds inhibited it. TE-6 compound did not have a consistent inhibition profile for hCA II. Docking studies were performed with the compounds against AChE and hCA I-II receptors using induced-fit docking method. Molecular Dynamics (MD) simulations for best effective three protein-ligand couple were conducted to explore the binding affinity of the considered compounds in semi-real in-silico conditions. Along with the MD results, TE-1-based protein complexes were found more stable than TE-5. Based on these studies, TE-1 compound could be considered as a potential drug candidate for AD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ümit Çalışır
- Science and Technology Application and Research Center (SIUBTAM), Siirt University, Siirt, Turkey
| | - Yasemin Camadan
- Vocational School of Health Services, Pharmacy Services, Artvin Coruh University, Artvin, Turkey
| | - Baki Çiçek
- Faculty of Arts and Sciences, Chemistry Department, Balıkesir University, Balikesir, Turkey
| | - Ebru Akkemik
- Science and Technology Application and Research Center (SIUBTAM), Siirt University, Siirt, Turkey.,Faculty of Engineering, Food Engineering Department, Siirt University, Siirt, Turkey
| | - Volkan Eyüpoğlu
- Faculty of Sciences, Chemistry Department, Çankırı Karatekin University, Çankırı, Turkey
| | - Şevki Adem
- Faculty of Sciences, Chemistry Department, Çankırı Karatekin University, Çankırı, Turkey
| |
Collapse
|
18
|
Effects of 3 R, 16 S-2-hydroxyethyl apovincaminate (HEAPO), donepezil and galantamine on learning and memory retention in naïve Wistar rats. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:91-105. [PMID: 36692469 DOI: 10.2478/acph-2023-0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 01/25/2023]
Abstract
The effects of 3R,16S-2-hydroxyethyl apovincaminate (HEAPO, RGH-10885) compared with those of two cholinesterase inhibitors, donepezil and galantamine, were examined in naïve Wistar rats using standard active and passive avoidance tests. The active avoidance test (shuttle box) and two passive avoidance tests (step-through and step-down) were performed according to the experimental design. There were 10 groups of rats (n = 8) and the substances studied were applied orally before each testing session. In the active avoidance test, the number of conditioned stimuli (avoidances), unconditioned stimuli (escapes) and intertrial crossings were observed. In step-down and step-through passive avoidance tests, the latencies of reactions were observed. All the studied compounds showed positive effects in the learning and memory tests, compared to the controls. It was concluded that HEAPO, donepezil and galantamine had a memory-enhancing effect in active and passive avoidance tests.
Collapse
|
19
|
Castillo-Lopez E, Rivera-Chacon R, Ricci S, Khorrami B, Haselmann A, Reisinger N, Zebeli Q. Dynamics of chewing and eating behavior, lying behavior, and salivary characteristics associated with duration of high grain feeding in cows with or with no phytogenic supplement. Appl Anim Behav Sci 2023. [DOI: 10.1016/j.applanim.2023.105877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
20
|
Vrabec R, Blunden G, Cahlíková L. Natural Alkaloids as Multi-Target Compounds towards Factors Implicated in Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24054399. [PMID: 36901826 PMCID: PMC10003045 DOI: 10.3390/ijms24054399] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in elderly people; currently, there is no efficient treatment. Considering the increase in life expectancy worldwide AD rates are predicted to increase enormously, and thus the search for new AD drugs is urgently needed. A great amount of experimental and clinical evidence indicated that AD is a complex disorder characterized by widespread neurodegeneration of the CNS, with major involvement of the cholinergic system, causing progressive cognitive decline and dementia. The current treatment, based on the cholinergic hypothesis, is only symptomatic and mainly involves the restoration of acetylcholine (ACh) levels through the inhibition of acetylcholinesterase (AChE). Since the introduction of the Amaryllidaceae alkaloid galanthamine as an antidementia drug in 2001, alkaloids have been one of the most attractive groups for searching for new AD drugs. The present review aims to comprehensively summarize alkaloids of various origins as multi-target compounds for AD. From this point of view, the most promising compounds seem to be the β-carboline alkaloid harmine and several isoquinoline alkaloids since they can simultaneously inhibit several key enzymes of AD's pathophysiology. However, this topic remains open for further research on detailed mechanisms of action and the synthesis of potentially better semi-synthetic analogues.
Collapse
Affiliation(s)
- Rudolf Vrabec
- Secondary Metabolites of Plants as Potential Drugs Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Gerald Blunden
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Lucie Cahlíková
- Secondary Metabolites of Plants as Potential Drugs Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
- Correspondence:
| |
Collapse
|
21
|
Inhibitory Action of Omega-3 and Omega-6 Fatty Acids Alpha-Linolenic, Arachidonic and Linoleic acid on Human Erythrocyte Acetylcholinesterase. Protein J 2022; 42:96-103. [PMID: 36538202 DOI: 10.1007/s10930-022-10088-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Acetylcholinesterase (AChE, E.C. 3.1.1.7) termed as the true cholinesterase functions to end cholinergic transmission at synapses. Due to its diverse expression in non-neural tissues such as erythrocytes and bones along with its various molecular forms, researchers seek a non-classical role for this protein. Here, the inhibitory action of unsaturated 18 carbon fatty acids linoleic acid and alpha-linolenic acid and 20 carbon fatty acid arachidonic acid on AChE were investigated. Enzyme activity was measured in kinetic assay method according to Ellman assay utilizing acetylthiocholine. Analysis of the activity data revealed that among the fatty acids examined the IC50 values differed according to the length of the fatty acid and the number of the double bonds. Arachidonic acid, a 20-carbon fatty acid with 4 unsaturated bonds (20:4 n-6, cis 5,8,11,14) displayed an IC50 value of 2.78 µM and Ki value of 396.35 µM. Linoleic acid, an essential 18-carbon fatty acid (18:2 n-6, cis 9,12) had an IC50 value of 7.95 µM and Ki value of 8027.55 µM. The IC50 value of alpha-linolenic acid, 18-carbon fatty acid (18:3 n-3, cis-9,12,15) was found as 179.11 µM. Analysis of the data fit the inhibition mechanism for linoleic, alpha-linolenic and arachidonic acid as mixed-type; non-competitive. Molecular docking complied with these results yielding the best score for arachidonic acid. The alkenyl chain of the fatty acids predictably reached to the catalytic site while the carboxylate strongly interacted with the peripheric anionic site.
Collapse
|
22
|
Synthesis and in vitro assessment of anticholinesterase and antioxidant properties of triazineamide derivatives. Future Med Chem 2022; 14:1741-1753. [PMID: 36538284 DOI: 10.4155/fmc-2022-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: Cholinesterase inhibitors and radical scavengers have been recognized as powerful symptomatic anti-Alzheimer's disease agents. Hence, the present study aimed to develop new triazineamides as potent anticholinesterase and antioxidant agents. Methods: Triazineamide (7a-i) derivatives were synthesized using cyanuric chloride via nucleophilic substitution followed by condensation. Ellman assay, 2,2-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) radical scavenging assay and molecular docking studies with Autodock 4.2.3 program were conducted. Results: Triazineamide 7c was assessed as a potent, selective and mixed-type dual inhibitor of acetylcholinesterase, with and IC50 of 5.306 ± 0.002 μM, by binding simultaneously with the catalytic active and peripheral anionic sites of acetylcholinesterase, and it had strong 2,2-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) radical scavenging abilities. Conclusion: These results suggest that triazineamides may be of interest to establish a structural basis for new anti-Alzheimer's disease agents.
Collapse
|
23
|
Neganova ME, Aleksandrova YR, Sukocheva OA, Klochkov SG. Benefits and limitations of nanomedicine treatment of brain cancers and age-dependent neurodegenerative disorders. Semin Cancer Biol 2022; 86:805-833. [PMID: 35779712 DOI: 10.1016/j.semcancer.2022.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 02/07/2023]
Abstract
The treatment of central nervous system (CNS) malignancies, including brain cancers, is limited by a number of obstructions, including the blood-brain barrier (BBB), the heterogeneity and high invasiveness of tumors, the inaccessibility of tissues for early diagnosis and effective surgery, and anti-cancer drug resistance. Therapies employing nanomedicine have been shown to facilitate drug penetration across the BBB and maintain biodistribution and accumulation of therapeutic agents at the desired target site. The application of lipid-, polymer-, or metal-based nanocarriers represents an advanced drug delivery system for a growing group of anti-cancer chemicals. The nanocarrier surface is designed to contain an active ligand (cancer cell marker or antibody)-binding structure which can be modified to target specific cancer cells. Glioblastoma, ependymoma, neuroblastoma, medulloblastoma, and primary CNS lymphomas were recently targeted by easily absorbed nanocarriers. The metal- (such as transferrin drug-loaded systems), polymer- (nanocapsules and nanospheres), or lipid- (such as sulfatide-containing nanoliposomes)-based nano-vehicles were loaded with apoptosis- and/or ferroptosis-stimulating agents and demonstrated promising anti-cancer effects. This review aims to discuss effective nanomedicine approaches designed to overcome the current limitations in the therapy of brain cancers and age-dependent neurodegenerative disorders. To accent current obstacles for successful CNS-based cancer therapy, we discuss nanomedicine perspectives and limitations of nanodrug use associated with the specificity of nervous tissue characteristics and the effects nanocarriers have on cognition.
Collapse
Affiliation(s)
- Margarita E Neganova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka 142432, Russia
| | - Yulia R Aleksandrova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka 142432, Russia
| | - Olga A Sukocheva
- School of Health Sciences, Flinders University of South Australia, Bedford Park, SA 5042, Australia.
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka 142432, Russia
| |
Collapse
|
24
|
Ferreira I, Rauter AP, Bandarra NM. Marine Sources of DHA-Rich Phospholipids with Anti-Alzheimer Effect. Mar Drugs 2022; 20:662. [PMID: 36354985 PMCID: PMC9695993 DOI: 10.3390/md20110662] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 07/29/2023] Open
Abstract
Alzheimer's disease (AD) is a complex and progressive disease, which affects millions of people around the world. Despite the many efforts over the years to find efficient therapeutics, there is no cure yet. Nonetheless, many compounds have been proven to decrease Alzheimer's symptoms. After a short overview of the hypotheses considered in AD drug development and the drugs approved for AD treatment, which lead to symptom release, we focus on the valorization of natural marine sources that decrease AD symptoms, particularly on docosahexaenoic acid (DHA), an important component in membrane phospholipids and the most abundant n-3 polyunsaturated fatty acids (PUFA) found in gray matter of the brain and in retina and on the DHA-containing phospholipids (DHA-PLs) present in marine sources, namely fish, krill, mollusks and in fisheries and aquaculture by-products. DHA-PLs' bioactivities are presented, namely their properties in anti-neurodegeneration, neuroinflammation, as anticancer agents, as well as their benefits to obesity and visual problems. Fisheries and aquaculture by-products are also highlighted as they have a high content of DHA and DHA-rich phospholipids, can be extracted by green methodologies and should be considered in a circular economy for a healthy sustainable future.
Collapse
Affiliation(s)
- Inês Ferreira
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Division of Aquaculture, Upgrading and Bioprospecting, Portuguese Institute of the Sea and Atmosphere, 1495-165 Lisboa, Portugal
| | - Amélia P. Rauter
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Narcisa M. Bandarra
- Division of Aquaculture, Upgrading and Bioprospecting, Portuguese Institute of the Sea and Atmosphere, 1495-165 Lisboa, Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4050-123 Porto, Portugal
| |
Collapse
|
25
|
Yang B, Bao W, Hong S. Alzheimer-Compound Identification Based on Data Fusion and forgeNet_SVM. Front Aging Neurosci 2022; 14:931729. [PMID: 35959292 PMCID: PMC9357977 DOI: 10.3389/fnagi.2022.931729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
Rapid screening and identification of potential candidate compounds are very important to understand the mechanism of drugs for the treatment of Alzheimer's disease (AD) and greatly promote the development of new drugs. In order to greatly improve the success rate of screening and reduce the cost and workload of research and development, this study proposes a novel Alzheimer-related compound identification algorithm namely forgeNet_SVM. First, Alzheimer related and unrelated compounds are collected using the data mining method from the literature databases. Three molecular descriptors (ECFP6, MACCS, and RDKit) are utilized to obtain the feature sets of compounds, which are fused into the all_feature set. The all_feature set is input to forgeNet_SVM, in which forgeNet is utilized to provide the importance of each feature and select the important features for feature extraction. The selected features are input to support vector machines (SVM) algorithm to identify the new compounds in Traditional Chinese Medicine (TCM) prescription. The experiment results show that the selected feature set performs better than the all_feature set and three single feature sets (ECFP6, MACCS, and RDKit). The performances of TPR, FPR, Precision, Specificity, F1, and AUC reveal that forgeNet_SVM could identify more accurately Alzheimer-related compounds than other classical classifiers.
Collapse
Affiliation(s)
- Bin Yang
- School of Information Science and Engineering, Zaozhuang University, Zaozhuang, China
| | - Wenzheng Bao
- School of Information and Electrical Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Shichai Hong
- Department of Vascular Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| |
Collapse
|
26
|
Synthesis, and in vitro biological evaluations of novel naphthoquinone conjugated to aryl triazole acetamide derivatives as potential anti-Alzheimer agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Huang X, An Z, Yu Y, Feng X, Wang Y. Synthesis and Evaluation of Novel Ferulic Amide Derivatives and the Treatment of Alzheimer's Disease. ChemistrySelect 2022. [DOI: 10.1002/slct.202200650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xian‐Feng Huang
- School of Pharmacy & School of Medicine Changzhou University Changzhou Jiangsu, 213164 PR China
| | - Zhe An
- School of Pharmacy & School of Medicine Changzhou University Changzhou Jiangsu, 213164 PR China
| | - Ying‐Cong Yu
- School of Pharmacy & School of Medicine Changzhou University Changzhou Jiangsu, 213164 PR China
| | - Xiao‐Qing Feng
- School of Pharmacy & School of Medicine Changzhou University Changzhou Jiangsu, 213164 PR China
- School of Pharmacy & School of Medicine Changzhou University Changzhou Jiangsu, 213164 PR China
| | - Ya‐Jing Wang
- School of Pharmacy & School of Medicine Changzhou University Changzhou Jiangsu, 213164 PR China
| |
Collapse
|
28
|
Aljohani G, Al-Sheikh Ali A, Alraqa SY, Itri Amran S, Basar N. Synthesis, molecular docking and biochemical analysis of aminoalkylated naphthalene-based chalcones as acetylcholinesterase inhibitors. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2021. [DOI: 10.1080/16583655.2021.2005921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ghadah Aljohani
- Chemistry Department, College of Science, Taibah University, Al-Madinah Al Munawarah, Kingdom of Saudi Arabia
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia Johor Bahru, Malaysia
| | - Adeeb Al-Sheikh Ali
- Chemistry Department, College of Science, Taibah University, Al-Madinah Al Munawarah, Kingdom of Saudi Arabia
| | - Shaya Y. Alraqa
- Chemistry Department, College of Science, Taibah University, Al-Madinah Al Munawarah, Kingdom of Saudi Arabia
| | - Syazwani Itri Amran
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia Johor Bahru, Malaysia
| | - Norazah Basar
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia Johor Bahru, Malaysia
| |
Collapse
|
29
|
Mekky AEM, Sanad SMH, El-Idreesy TT. New thiazole and thiazole-chromene hybrids possessing morpholine units: Piperazine-mediated one-pot synthesis of potential acetylcholinesterase inhibitors. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1970774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ahmed E. M. Mekky
- Faculty of Science , Chemistry Department, Cairo University, Giza, Egypt
| | - Sherif M. H. Sanad
- Faculty of Science , Chemistry Department, Cairo University, Giza, Egypt
| | - Tamer T. El-Idreesy
- Faculty of Science , Chemistry Department, Cairo University, Giza, Egypt
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
30
|
Ricci S, Rivera-Chacon R, Petri RM, Sener-Aydemir A, Sharma S, Reisinger N, Zebeli Q, Castillo-Lopez E. Supplementation With Phytogenic Compounds Modulates Salivation and Salivary Physico-Chemical Composition in Cattle Fed a High-Concentrate Diet. Front Physiol 2021; 12:645529. [PMID: 34149443 PMCID: PMC8209472 DOI: 10.3389/fphys.2021.645529] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Saliva facilitates feed ingestion, nutrient circulation, and represents an important pH buffer for ruminants, especially for cattle fed high-concentrate diets that promote rumen acidification. This experiment evaluated the short-term effects of nine phytogenic compounds on salivation, saliva physico-chemical composition as well as ingested feed boli characteristics in cattle. A total of nine ruminally cannulated Holstein cows were used. Each compound was tested in four of these cows as part of a high-concentrate meal (2.5 kg of total mixed ration in dry matter basis for 4 h) in low or high dose, and was compared to a control meal without compound. Saliva was sampled orally (unstimulated saliva) for physico-chemical composition analysis. Composition of the ingested saliva (stimulated saliva), salivation and feed boli characteristics were assessed from ingesta collected at the cardia during the first 30 min of the meal. Analysis of unstimulated saliva showed that supplementation with capsaicin and thyme oil increased buffer capacity, while supplementation with thymol, L-menthol and gentian root decreased saliva pH. In addition, supplementing angelica root decreased saliva osmolality. Regression analysis on unstimulated saliva showed negative associations between mucins and bicarbonate as well as with phosphate when garlic oil, thyme oil or angelica root was supplemented. Analysis of stimulated saliva demonstrated that supplementation with garlic oil increased phosphate concentration, thyme oil tended to increase osmolality, capsaicin and thymol increased buffer capacity, and ginger increased phosphate content. Furthermore, salivation rate increased with ginger and thymol, and tended to increase with garlic oil, capsaicin, L-menthol and mint oil. Feed ensalivation increased with capsaicin. A positive association was found between feed bolus size and salivation rate when any of the phytogenic compounds was supplemented. Overall, our results demonstrate positive short-term effects of several phytogenic compounds on unstimulated and stimulated saliva physico-chemical properties, salivation or feed boli characteristics. Thus, the phytogenic compounds enhancing salivary physico-chemical composition have the potential to contribute to maintain or improve ruminal health in cattle fed concentrate-rich rations.
Collapse
Affiliation(s)
- Sara Ricci
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Raul Rivera-Chacon
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Renee M. Petri
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Arife Sener-Aydemir
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Suchitra Sharma
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | | | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Ezequias Castillo-Lopez
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| |
Collapse
|
31
|
Structure-activity relationships of dually-acting acetylcholinesterase inhibitors derived from tacrine on N-methyl-d-Aspartate receptors. Eur J Med Chem 2021; 219:113434. [PMID: 33892271 DOI: 10.1016/j.ejmech.2021.113434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/27/2022]
Abstract
Tacrine is a classic drug whose efficacy against neurodegenerative diseases is still shrouded in mystery. It seems that besides its inhibitory effect on cholinesterases, the clinical benefit is co-determined by NMDAR-antagonizing activity. Our previous data showed that the direct inhibitory effect of tacrine, as well as its 7-methoxy derivative (7-MEOTA), is ensured via a "foot-in-the-door" open-channel blockage, and that interestingly both tacrine and 7-MEOTA are slightly more potent at the GluN1/GluN2A receptors when compared with the GluN1/GluN2B receptors. Here, we report that in a series of 30 novel tacrine derivatives, designed for assessment of structure-activity relationship, blocking efficacy differs among different compounds and receptors using electrophysiology with HEK293 cells expressing the defined types of NMDARs. Selected compounds (4 and 5) potently inhibited both GluN1/GluN2A and GluN1/GluN2B receptors; other compounds (7 and 23) more effectively inhibited the GluN1/GluN2B receptors; or the GluN1/GluN2A receptors (21 and 28). QSAR study revealed statistically significant model for the data obtained for inhibition of GluN1/Glu2B at -60 mV expressed as IC50 values, and for relative inhibition of GluN1/Glu2A at +40 mV caused by a concentration of 100 μM. The models can be utilized for a ligand-based virtual screening to detect potential candidates for inhibition of GluN1/Glu2A and/or GluN1/Glu2B subtypes. Using in vivo experiments in rats we observed that unlike MK-801, the tested novel compounds did not induce hyperlocomotion in open field, and also did not impair prepulse inhibition of startle response, suggesting minimal induction of psychotomimetic side effects. We conclude that tacrine derivatives are promising compounds since they are centrally available subtype-specific inhibitors of the NMDARs without detrimental behavioral side-effects.
Collapse
|
32
|
Chen Y, Liu W, Zhang B, Suo Z, Xing F, Feng L. A New Strategy Using a Fluorescent Probe Combined with Polydopamine for Detecting the Activity of Acetylcholinesterase. Aust J Chem 2021. [DOI: 10.1071/ch21062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A water-soluble and sensitive fluorescent probe N,N′-bis[tris-(2-aminoethyl)amine]-3,4,9,10-perylenetetracarboxylic diimide (PTRIS) was synthesized and, in combination with polydopamine (PDA), utilised in the detection of acetylcholinesterase (AChE) activity. PDA is spontaneously polymerized from dopamine (DA) in aerobic and alkaline solutions. The excellent absorption of PDA results in the aggregation of PTRIS around PDA as well as π–π stacking between them, which consequently quenched the fluorescence of PTRIS due to aggregation induced quenching (AIQ) in 9min. The hydrolysis product of acetylthiocholine (ATCh) catalyzed by AChE, thiocholine (TCh), was proved to inhibit the polymerization of DA, therefore the free monomeric PTRIS retained its strong fluorescence intensity. The fluorescence was switched off and on depending on the activity of AChE. According to the change of fluorescence intensity at 550nm, the detection limit of AChE was quantified as 0.02mUmL−1. It was also proved that this probe possessed excellent selectivity for AChE. Tacrine and the organophosphate pesticide diazinon were further evaluated for inhibitor screening. The half-maximal inhibitory concentration value of tacrine and diazinon was calculated to be 1.4 and 1.6μM respectively, revealing potential applications for inhibition and pesticide detecting.
Collapse
|
33
|
Guo J, Mi Z, Jiang X, Zhang C, Guo Z, Li L, Gu J, Zhou T, Bai R, Xie Y. Design, synthesis and biological evaluation of potential anti-AD hybrids with monoamine oxidase B inhibitory and iron-chelating effects. Bioorg Chem 2020; 108:104564. [PMID: 33353806 DOI: 10.1016/j.bioorg.2020.104564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/30/2020] [Accepted: 12/13/2020] [Indexed: 12/31/2022]
Abstract
A series of active hybrids combining 3-hydroxypyridin-4(1H)-one and coumarin pharmacophores were designed and synthesized as potential agents for the treatment of Alzheimer's disease (AD). All the compounds exhibited excellent iron-chelating activities (pFe3+ = 14.8-19.2) and showed favorable monoamine oxidase B (MAO-B) inhibitory effects compared to the reference drug Pargyline (IC50 = 86.9 nM). Among them, compound 11 g displayed the best MAO-B inhibitory activity with an IC50 value of 99.3 nM. Molecular docking analysis showed that compound 11 g could enter the entrance cavity and substrate cavity of MAO-B. Furthermore, the compound 11 g had an excellent antioxidant effect and was capable of protecting from the amyloid-β1-42 (Aβ1-42) induced PC12 cell damage. In silico tools were applied for predicting the blood-brain barrier (BBB) penetration and compound 11 g was proved to overcome the brain exposure challenge. In the mice behavioral study, compound 11 g significantly ameliorated cognitive impairment induced by Scopolamine. More importantly, compound 11 g displayed favorable pharmacokinetic profiles in a rat model. In summary, compound 11 g, with both anti-MAO-B and iron-chelating ability, was proved to be a promising potential anti-AD agent for further optimization.
Collapse
Affiliation(s)
- Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Zhisheng Mi
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China
| | - Xiaoying Jiang
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China
| | - Changjun Zhang
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China
| | - Zili Guo
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China
| | - Linzi Li
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China
| | - Jinping Gu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Renren Bai
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, PR China.
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China; Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China.
| |
Collapse
|
34
|
Zondagh LS, Malan SF, Joubert J. Design, synthesis and biological evaluation of edaravone derivatives bearing the N-benzyl pyridinium moiety as multifunctional anti-Alzheimer's agents. J Enzyme Inhib Med Chem 2020; 35:1596-1605. [PMID: 32779503 PMCID: PMC7470113 DOI: 10.1080/14756366.2020.1801673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 12/31/2022] Open
Abstract
A series of multi-target directed edaravone derivatives bearing N-benzyl pyridinium moieties were designed and synthesised. Edaravone is a potent antioxidant with significant neuroprotective effects and N-benzyl pyridinium has previously exhibited positive results as part of a dual-site binding, peripheral anionic site (PAS) and catalytic anionic site (CAS), acetylcholinesterase (AChE) inhibitor. The designed edaravone-N-benzyl pyridinium hybrid compounds were docked within the AChE active site. The results indicated interactions with conserved amino acids (Trp279 in PAS and Trp84 in CAS), suggesting good dual-site inhibitory activity. Significant in vitro AChE inhibitory activities were observed for selected compounds (IC50: 1.2-4.6 µM) with limited butyrylcholinesterase inhibitory activity (IC50's >160 µM), indicating excellent selectivity towards AChE (SI: 46 - >278). The compounds also showed considerable antioxidant ability, similar to edaravone. In silico studies indicated that these compounds should cross the blood-brain barrier, making them promising lead molecules in the development of anti-Alzheimer's agents.
Collapse
Affiliation(s)
- Luke S. Zondagh
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Bellville, South Africa
| | - Sarel F. Malan
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Bellville, South Africa
| | - Jacques Joubert
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
35
|
Aptamer-functionalized magnetic nanoparticles conjugated organic framework for immobilization of acetylcholinesterase and its application in inhibitors screening. Anal Chim Acta 2020; 1140:228-235. [DOI: 10.1016/j.aca.2020.10.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022]
|
36
|
Vitamin B3-Based Biologically Active Compounds as Inhibitors of Human Cholinesterases. Int J Mol Sci 2020; 21:ijms21218088. [PMID: 33138280 PMCID: PMC7663184 DOI: 10.3390/ijms21218088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022] Open
Abstract
We evaluated the potential of nine vitamin B3 scaffold-based derivatives as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors, as a starting point for the development of novel drugs for treating disorders with cholinergic neurotransmission-linked pathology. As the results indicate, all compounds reversibly inhibited both enzymes in the micromolar range pointing to the preference of AChE over BChE for binding the tested derivatives. Molecular docking studies revealed the importance of interactions with AChE active site residues Tyr337 and Tyr124, which dictated most of the observed differences. The most potent inhibitor of both enzymes with Ki of 4 μM for AChE and 8 μM for BChE was the nicotinamide derivative 1-(4′-phenylphenacyl)-3-carbamoylpyridinium bromide. Such a result places it within the range of several currently studied novel cholinesterase inhibitors. Cytotoxicity profiling did not classify this compound as highly toxic, but the induced effects on cells should not be neglected in any future detailed studies and when considering this scaffold for drug development.
Collapse
|
37
|
Yang J, Yun Y, Miao Y, Sun J, Wang X. Synthesis and biological evaluation of 3-arylbenzofuranone derivatives as potential anti-Alzheimer's disease agents. J Enzyme Inhib Med Chem 2020; 35:805-814. [PMID: 32183602 PMCID: PMC7155212 DOI: 10.1080/14756366.2020.1740694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Multi-target drugs can better address the cascade of events involved in oxidative stress and the reduction in cholinergic transmission that occur in Alzheimer’s disease than cholinesterase inhibitors alone. We synthesised a series of 3-arylbenzofuranone derivatives and evaluated their antioxidant activity, cholinesterase inhibitory activity, and monoamine oxidase inhibitory activity. 3-Arylbenzofuranone compounds exhibit good antioxidant activity as well as selective acetylcholinesterase inhibitory activity. The IC50 value of anti-acetylcholinesterase inhibition of Compound 20 (0.089 ± 0.01 μM) is similar to the positive drug donepezil (0.059 ± 0.003 μM). According to the experimental results, Compounds 7, 13 show a certain effect in the in vitro evaluation performed and have the potential as drug candidates for the treatment of Alzheimer’s disease.
Collapse
Affiliation(s)
- Jie Yang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Shandong, Jinan, China.,Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, Jinan, China.,Key Laboratory for Biotech-Drugs Ministry of Health, Shandong, Jinan, China.,Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Shandong, Jinan, China
| | - Yinling Yun
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Shandong, Jinan, China.,Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, Jinan, China.,Key Laboratory for Biotech-Drugs Ministry of Health, Shandong, Jinan, China.,Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Shandong, Jinan, China
| | - Yuhang Miao
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Shandong, Jinan, China.,Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, Jinan, China.,Key Laboratory for Biotech-Drugs Ministry of Health, Shandong, Jinan, China.,Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Shandong, Jinan, China
| | - Jie Sun
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, Jinan, China.,Key Laboratory for Biotech-Drugs Ministry of Health, Shandong, Jinan, China.,Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Shandong, Jinan, China
| | - Xiaojing Wang
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, Jinan, China.,Key Laboratory for Biotech-Drugs Ministry of Health, Shandong, Jinan, China.,Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Shandong, Jinan, China
| |
Collapse
|
38
|
Mekky AEM, Sanad SMH. Synthesis and in vitro study of new coumarin derivatives linked to nicotinonitrile moieties as potential acetylcholinesterase inhibitors. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4134] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ahmed E. M. Mekky
- Chemistry Department, Faculty of Science Cairo University Giza Egypt
| | | |
Collapse
|
39
|
Kumar V, Saha A, Roy K. In silico modeling for dual inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes in Alzheimer's disease. Comput Biol Chem 2020; 88:107355. [PMID: 32801088 DOI: 10.1016/j.compbiolchem.2020.107355] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 01/11/2023]
Abstract
In this research, we have implemented two-dimensional quantitative structure-activity relationship (2D-QSAR) modeling using two different datasets, namely, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzyme inhibitors. A third dataset has been derived based on their selectivity and used for the development of partial least squares (PLS) based regression models. The developed models were extensively validated using various internal and external validation parameters. The features appearing in the model against AChE enzyme suggest that a small ring size, higher number of -CH2- groups, higher number of secondary aromatic amines and higher number of aromatic ketone groups may contribute to the inhibitory activity. The features obtained from the model against BuChE enzyme suggest that the sum of topological distances between two nitrogen atoms, higher number of fragments X-C(=X)-X, higher number of secondary aromatic amides, fragment R--CR-X may be more favorable for inhibition. The features obtained from selectivity based model suggest that the number of aromatic ethers, unsaturation content relative to the molecular size and molecular shape may be more specific for the inhibition of the AChE enzyme in comparison to the BuChE enzyme. Moreover, we have implemented the molecular docking studies using the most and least active molecules from the datasets in order to identify the binding pattern between ligand and target enzyme. The obtained information is then correlated with the essential structural features associated with the 2D-QSAR models.
Collapse
Affiliation(s)
- Vinay Kumar
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, 92 A P C Road, Kolkata 700 009, India
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
40
|
Sanad SMH, Mekky AEM. Novel nicotinonitrile-coumarin hybrids as potential acetylcholinesterase inhibitors: design, synthesis, in vitro and in silico studies. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-02018-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
41
|
Synthesis, biological evaluation and modeling of hybrids from tetrahydro-1H-pyrazolo[3,4-b]quinolines as dual cholinestrase and COX-2 inhibitors. Bioorg Chem 2020; 100:103895. [DOI: 10.1016/j.bioorg.2020.103895] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/19/2020] [Accepted: 04/28/2020] [Indexed: 12/27/2022]
|
42
|
Kabir MT, Uddin MS, Begum MM, Thangapandiyan S, Rahman MS, Aleya L, Mathew B, Ahmed M, Barreto GE, Ashraf GM. Cholinesterase Inhibitors for Alzheimer's Disease: Multitargeting Strategy Based on Anti-Alzheimer's Drugs Repositioning. Curr Pharm Des 2020; 25:3519-3535. [PMID: 31593530 DOI: 10.2174/1381612825666191008103141] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/01/2019] [Indexed: 02/06/2023]
Abstract
In the brain, acetylcholine (ACh) is regarded as one of the major neurotransmitters. During the advancement of Alzheimer's disease (AD) cholinergic deficits occur and this can lead to extensive cognitive dysfunction and decline. Acetylcholinesterase (AChE) remains a highly feasible target for the symptomatic improvement of AD. Acetylcholinesterase (AChE) remains a highly viable target for the symptomatic improvement in AD because cholinergic deficit is a consistent and early finding in AD. The treatment approach of inhibiting peripheral AChE for myasthenia gravis had effectively proven that AChE inhibition was a reachable therapeutic target. Subsequently tacrine, donepezil, rivastigmine, and galantamine were developed and approved for the symptomatic treatment of AD. Since then, multiple cholinesterase inhibitors (ChEIs) have been continued to be developed. These include newer ChEIs, naturally derived ChEIs, hybrids, and synthetic analogues. In this paper, we summarize the different types of ChEIs which are under development and their respective mechanisms of actions.
Collapse
Affiliation(s)
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | | | - Md Sohanur Rahman
- Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Muniruddin Ahmed
- Department of Pharmacy, Daffodil International University, Dhaka, Bangladesh
| | - George E Barreto
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
43
|
Czarnecka K, Girek M, Wójtowicz P, Kręcisz P, Skibiński R, Jończyk J, Łątka K, Bajda M, Walczak A, Galita G, Kabziński J, Majsterek I, Szymczyk P, Szymański P. New Tetrahydroacridine Hybrids with Dichlorobenzoic Acid Moiety Demonstrating Multifunctional Potential for the Treatment of Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21113765. [PMID: 32466601 PMCID: PMC7312527 DOI: 10.3390/ijms21113765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 01/01/2023] Open
Abstract
A series of new tetrahydroacridine and 3,5-dichlorobenzoic acid hybrids with different spacers were designed, synthesized, and evaluated for their ability to inhibit both cholinesterase enzymes. Compounds 3a, 3b, 3f, and 3g exhibited selective butyrylcholinesterase (EqBuChE) inhibition with IC50 values ranging from 24 to 607 nM. Among them, compound 3b was the most active (IC50 = 24 nM). Additionally, 3c (IC50 for EeAChE = 25 nM and IC50 for EqBuChE = 123 nM) displayed dual cholinesterase inhibitory activity and was the most active compound against acetylcholinesterase (AChE). Active compound 3c was also tested for the ability to inhibit Aβ aggregation. Theoretical physicochemical properties of the compounds were calculated using ACD Labs Percepta and Chemaxon. A Lineweaver–Burk plot and docking study showed that 3c targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Moreover, 3c appears to possess neuroprotective activity and could be considered a free-radical scavenger. In addition, 3c did not cause DNA damage and was found to be less toxic than tacrine after oral administration; it also demonstrated little inhibitory activity towards hyaluronidase (HYAL), which may indicate that it possesses anti-inflammatory properties. The screening for new in vivo interactions between 3c and known receptors was realized by yeast three-hybrid technology (Y3H).
Collapse
Affiliation(s)
- Kamila Czarnecka
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (M.G.); (P.W.); (P.K.)
- Correspondence: (K.C.); (P.S.)
| | - Małgorzata Girek
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (M.G.); (P.W.); (P.K.)
| | - Przemysław Wójtowicz
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (M.G.); (P.W.); (P.K.)
| | - Paweł Kręcisz
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (M.G.); (P.W.); (P.K.)
| | - Robert Skibiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Jakub Jończyk
- Department of Physicochemical Drug Analysis, Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.J.); (K.Ł.); (M.B.)
| | - Kamil Łątka
- Department of Physicochemical Drug Analysis, Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.J.); (K.Ł.); (M.B.)
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.J.); (K.Ł.); (M.B.)
| | - Anna Walczak
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Narutowicza 60, 90-647 Lodz, Poland; (A.W.); (G.G.); (J.K.); (I.M.)
| | - Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Narutowicza 60, 90-647 Lodz, Poland; (A.W.); (G.G.); (J.K.); (I.M.)
| | - Jacek Kabziński
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Narutowicza 60, 90-647 Lodz, Poland; (A.W.); (G.G.); (J.K.); (I.M.)
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Narutowicza 60, 90-647 Lodz, Poland; (A.W.); (G.G.); (J.K.); (I.M.)
| | - Piotr Szymczyk
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland;
| | - Paweł Szymański
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (M.G.); (P.W.); (P.K.)
- Correspondence: (K.C.); (P.S.)
| |
Collapse
|
44
|
Moss DE. Improving Anti-Neurodegenerative Benefits of Acetylcholinesterase Inhibitors in Alzheimer's Disease: Are Irreversible Inhibitors the Future? Int J Mol Sci 2020; 21:E3438. [PMID: 32414155 PMCID: PMC7279429 DOI: 10.3390/ijms21103438] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Decades of research have produced no effective method to prevent, delay the onset, or slow the progression of Alzheimer's disease (AD). In contrast to these failures, acetylcholinesterase (AChE, EC 3.1.1.7) inhibitors slow the clinical progression of the disease and randomized, placebo-controlled trials in prodromal and mild to moderate AD patients have shown AChE inhibitor anti-neurodegenerative benefits in the cortex, hippocampus, and basal forebrain. CNS neurodegeneration and atrophy are now recognized as biomarkers of AD according to the National Institute on Aging-Alzheimer's Association (NIA-AA) criteria and recent evidence shows that these markers are among the earliest signs of prodromal AD, before the appearance of amyloid. The current AChE inhibitors (donepezil, rivastigmine, and galantamine) have short-acting mechanisms of action that result in dose-limiting toxicity and inadequate efficacy. Irreversible AChE inhibitors, with a long-acting mechanism of action, are inherently CNS selective and can more than double CNS AChE inhibition possible with short-acting inhibitors. Irreversible AChE inhibitors open the door to high-level CNS AChE inhibition and improved anti-neurodegenerative benefits that may be an important part of future treatments to more effectively prevent, delay the onset, or slow the progression of AD.
Collapse
Affiliation(s)
- Donald E Moss
- Department of Psychology, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
45
|
Design, synthesis and evaluation of phthalide alkyl tertiary amine derivatives as promising acetylcholinesterase inhibitors with high potency and selectivity against Alzheimer's disease. Bioorg Med Chem 2020; 28:115400. [DOI: 10.1016/j.bmc.2020.115400] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 11/18/2022]
|
46
|
Synthesis and evaluation of chromone-2-carboxamido-alkylamines as potent acetylcholinesterase inhibitors. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02508-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Mishra CB, Shalini S, Gusain S, Prakash A, Kumari J, Kumari S, Yadav AK, Lynn AM, Tiwari M. Development of novel N-(6-methanesulfonyl-benzothiazol-2-yl)-3-(4-substituted-piperazin-1-yl)-propionamides with cholinesterase inhibition, anti-β-amyloid aggregation, neuroprotection and cognition enhancing properties for the therapy of Alzheimer's disease. RSC Adv 2020; 10:17602-17619. [PMID: 35515597 PMCID: PMC9053591 DOI: 10.1039/d0ra00663g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/19/2020] [Indexed: 12/14/2022] Open
Abstract
A novel series of benzothiazole–piperazine hybrids were rationally designed, synthesized, and evaluated as multifunctional ligands against Alzheimer's disease (AD). The synthesized hybrid molecules illustrated modest to strong inhibition of acetylcholinesterase (AChE) and Aβ1-42 aggregation. Compound 12 emerged as the most potent hybrid molecule exhibiting balanced functions with effective, uncompetitive and selective inhibition against AChE (IC50 = 2.31 μM), good copper chelation, Aβ1-42 aggregation inhibition (53.30%) and disaggregation activities. Confocal laser scanning microscopy and TEM analysis also validate the Aβ fibril inhibition ability of this compound. Furthermore, this compound has also shown low toxicity and is capable of impeding loss of cell viability elicited by H2O2 neurotoxicity in SHSY-5Y cells. Notably, compound 12 significantly improved cognition and spatial memory against scopolamine-induced memory deficit in a mouse model. Hence, our results corroborate the multifunctional nature of novel hybrid molecule 12 against AD and it may be a suitable lead for further development as an effective therapeutic agent for therapy in the future. A novel series of benzothiazole–piperazine hybrids were rationally designed, synthesized, and evaluated as multifunctional ligands against Alzheimer's disease (AD).![]()
Collapse
Affiliation(s)
- Chandra Bhushan Mishra
- Dr. B. R. Ambedkar Centre for Biomedical Research
- University of Delhi
- New Delhi 110007
- India
| | - Shruti Shalini
- Dr. B. R. Ambedkar Centre for Biomedical Research
- University of Delhi
- New Delhi 110007
- India
| | - Siddharth Gusain
- Dr. B. R. Ambedkar Centre for Biomedical Research
- University of Delhi
- New Delhi 110007
- India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health (AIISH)
- Amity University Haryana
- Gurgaon-122413
- India
| | - Jyoti Kumari
- Dr. B. R. Ambedkar Centre for Biomedical Research
- University of Delhi
- New Delhi 110007
- India
| | - Shikha Kumari
- Dr. B. R. Ambedkar Centre for Biomedical Research
- University of Delhi
- New Delhi 110007
- India
| | - Anita Kumari Yadav
- Dr. B. R. Ambedkar Centre for Biomedical Research
- University of Delhi
- New Delhi 110007
- India
| | - Andrew M. Lynn
- School of Computational & Integrative Sciences
- Jawaharlal Nehru University
- New Delhi 110067
- India
| | - Manisha Tiwari
- Dr. B. R. Ambedkar Centre for Biomedical Research
- University of Delhi
- New Delhi 110007
- India
| |
Collapse
|
48
|
Bidzan L, Bidzan M. Use of Methylphenidate in Excessive Daytime Sleepiness in Alzheimer's Patients Treated with Donepezil: Case Series. Neuropsychiatr Dis Treat 2020; 16:2677-2680. [PMID: 33192066 PMCID: PMC7654307 DOI: 10.2147/ndt.s277740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/13/2020] [Indexed: 11/26/2022] Open
Abstract
Sleep disorders, inversion of sleep rhythm, excessive daytime sleepiness, and sleeplessness at night are common in Alzheimer's disease (AD). Sleep disorders in AD have a diverse pathogenesis and their incidence increases as the disease progresses. Some publications indicate possible beneficial effects of methylphenidate on sleep. We presented two cases of patients with diagnosed AD accompanied by sleep disorders which had a significant impact on their functioning. The pathogenesis of sleep disorders was different in those two cases. In both case studies, the use of methylphenidate brought an immediate clinical effect, improving sleep at night and functioning during the day.
Collapse
Affiliation(s)
- Leszek Bidzan
- Department of Developmental Psychiatry, Psychotic and Geriatric Disorders, Medical University of Gdansk, Gdansk, Poland
| | - Mariola Bidzan
- Institute of Psychology, University of Gdansk, Gdansk, Poland
| |
Collapse
|
49
|
Bai P, Wang K, Zhang P, Shi J, Cheng X, Zhang Q, Zheng C, Cheng Y, Yang J, Lu X, Sang Z. Development of chalcone-O-alkylamine derivatives as multifunctional agents against Alzheimer's disease. Eur J Med Chem 2019; 183:111737. [DOI: 10.1016/j.ejmech.2019.111737] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/23/2023]
|
50
|
Tian C, Qiang X, Song Q, Cao Z, Ye C, He Y, Deng Y, Zhang L. Flurbiprofen-chalcone hybrid Mannich base derivatives as balanced multifunctional agents against Alzheimer's disease: Design, synthesis and biological evaluation. Bioorg Chem 2019; 94:103477. [PMID: 31818478 DOI: 10.1016/j.bioorg.2019.103477] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/21/2019] [Accepted: 11/24/2019] [Indexed: 12/20/2022]
Abstract
The complex pathogenesis of Alzheimer's disease (AD) calls for multitarget approach for disease management. Herein, a series of novel flurbiprofen-chalcone hybrid Mannich base derivatives were designed and synthesized. The biological screening results indicated that most of the derivatives exhibited potent multi-target effects involved in AD. In particular, compound 6c bearing a pyrrolidine group showed the highest activities against self- and Cu2+-induced Aβ1-42 aggregation (70.65% and 54.89% at 25.0 µM, respectively), highly selective inhibition towards AChE and MAO-B (IC50 = 7.15 μM and 0.43 μM respectively), good antioxidant ability and metal-chelating property. Moreover, 6c displayed excellent anti-neuroinflammatory activity and appropriate BBB permeability in vitro. These outstanding results qualified compound 6c as a promising multifunctional agent for further development of disease-modifying treatment of AD.
Collapse
Affiliation(s)
- Chaoquan Tian
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoming Qiang
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qing Song
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhongcheng Cao
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chanyuan Ye
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuxi He
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yong Deng
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Li Zhang
- Department of Elderly Digestive, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China.
| |
Collapse
|