1
|
Meng Y, Wang X, Liu K, Tang X, Li H, Chen J, Zhong Z. A novel KDM5C mutation associated with intellectual disability: molecular mechanisms and clinical implications. Ital J Pediatr 2025; 51:47. [PMID: 39948613 PMCID: PMC11827480 DOI: 10.1186/s13052-025-01887-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 01/12/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Among the disease-causing genes associated with X-linked intellectual disability (XLID), KDM5C is one of the most frequently mutated ones. KDM5C is a widely expressed gene that is most highly expressed in the brain. KDM5C modulates the transcriptional activity of genes through demethylation of H3K4, thereby regulating neural development and normal function. We identified a gene from a Chinese family and found that a nonsense mutation of KDM5C was co-segregated with the intellectual disability (ID). METHODS The candidate mutant genes of patients with ID phenotype were screened by Whole Exome Sequencing (WES), and DNA Sanger sequencing was performed for genetic analysis. Pathogenicity prediction tools were used to evaluate the pathogenicity of new mutations. The fusion plasmid was constructed and transfected into the cells, and the changes of mRNA and protein levels of the mutants were detected by semi-qRT-PCR and Western Blot, and the subcellular localization changes of mutant proteins were detected by Immunofluorescence technique. RESULT The nonsense mutation in KDM5C (c.2785 C > T, p. R929X) was identified by whole exome sequencing (WES) and confirmed by Sanger sequencing, resulting in a truncated protein. The mutation was determined by pathogenicity prediction tool able to find non-sense mediated mRNA decay (NMD). Semi-qRT-PCR and Western Blot showed that the mRNA levels of the mutant gene were down-regulated, while the protein level was up-regulated. Additionally, the subcellular localization of the mutant protein changed. CONCLUSIONS The KDM5C mutation found in our study leads to changes in protein levels through NMD and/or protein degradation, and produces residues lacking nuclear localization, thus altering the subcellular localization of the protein. These results may lead to changes in the expression of KDM5C target genes, ultimately contributing to the clinical phenotype observed in the patients.
Collapse
Affiliation(s)
- Yunlong Meng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Institute of Medical Genetics, Department of Child, Adolescent and Maternal Health, School of Public Health and General Medicine, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xinyao Wang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Institute of Medical Genetics, Department of Child, Adolescent and Maternal Health, School of Public Health and General Medicine, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Kangyu Liu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Institute of Medical Genetics, Department of Child, Adolescent and Maternal Health, School of Public Health and General Medicine, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xingkun Tang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Institute of Medical Genetics, Department of Child, Adolescent and Maternal Health, School of Public Health and General Medicine, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Haining Li
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Institute of Medical Genetics, Department of Child, Adolescent and Maternal Health, School of Public Health and General Medicine, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jianjun Chen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
- Institute of Medical Genetics, Department of Child, Adolescent and Maternal Health, School of Public Health and General Medicine, School of Medicine, Tongji University, Shanghai, 200092, China.
- Tongji University School of Medicine, 500 Zhennan Road Putuo District, Shanghai, 200331, China.
| | - Zilin Zhong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
- Institute of Medical Genetics, Department of Child, Adolescent and Maternal Health, School of Public Health and General Medicine, School of Medicine, Tongji University, Shanghai, 200092, China.
- Tongji University School of Medicine, 500 Zhennan Road Putuo District, Shanghai, 200331, China.
| |
Collapse
|
2
|
Bhatt M, Di Iacovo A, Romanazzi T, Roseti C, Bossi E. Betaine-The dark knight of the brain. Basic Clin Pharmacol Toxicol 2023; 133:485-495. [PMID: 36735640 DOI: 10.1111/bcpt.13839] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
The role of betaine in the liver and kidney has been well documented, even from the cellular and molecular point of view. Despite literature reporting positive effects of betaine supplementation in Alzheimer's, Parkinson's and schizophrenia, the role and function of betaine in the brain are little studied and reviewed. Beneficial effects of betaine in neurodegeneration, excitatory and inhibitory imbalance and against oxidative stress in the central nervous system (CNS) have been collected and analysed to understand the main role of betaine in the brain. There are many 'dark' aspects needed to complete the picture. The understanding of how this osmolyte is transported across neuron and glial cells is also controversial, as the expression levels and functioning of the known protein capable to transport betaine expressed in the brain, betaine-GABA transporter 1 (BGT-1), is itself not well clarified. The reported actions of betaine beyond BGT-1 related to neuronal degeneration and memory impairment are the focus of this work. With this review, we underline the scarcity of detailed molecular and cellular information about betaine action. Consequently, the requirement of detailed focus on and study of the interaction of this molecule with CNS components to sustain the therapeutic use of betaine.
Collapse
Affiliation(s)
- Manan Bhatt
- Department of Biotechnology and Life Sciences, Laboratory of Cellular and Molecular Physiology, University of Insubria, Varese, Italy
- School of Experimental and Translational Medicine, University of Insubria, Varese, Italy
| | - Angela Di Iacovo
- Department of Biotechnology and Life Sciences, Laboratory of Cellular and Molecular Physiology, University of Insubria, Varese, Italy
- School of Experimental and Translational Medicine, University of Insubria, Varese, Italy
| | - Tiziana Romanazzi
- Department of Biotechnology and Life Sciences, Laboratory of Cellular and Molecular Physiology, University of Insubria, Varese, Italy
- School of Experimental and Translational Medicine, University of Insubria, Varese, Italy
| | - Cristina Roseti
- Department of Biotechnology and Life Sciences, Laboratory of Cellular and Molecular Physiology, University of Insubria, Varese, Italy
- Centre for Neuroscience, University of Insubria, Varese, Italy
| | - Elena Bossi
- Department of Biotechnology and Life Sciences, Laboratory of Cellular and Molecular Physiology, University of Insubria, Varese, Italy
- Centre for Neuroscience, University of Insubria, Varese, Italy
| |
Collapse
|
3
|
Knight LS, Knight TA. Making the case for prophylactic use of betaine to promote brain health in young (15-24 year old) athletes at risk for concussion. Front Neurosci 2023; 17:1214976. [PMID: 37811321 PMCID: PMC10556504 DOI: 10.3389/fnins.2023.1214976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Betaine supplementation in the context of human nutrition, athletic performance, and clinical therapy demonstrate that the osmolyte and methyl donor, betaine, is cytoprotective and beneficial to human health. These studies also demonstrate that betaine supplementation in healthy humans is straight-forward with no reported adverse effects. Here, we explore betaine uptake in the central nervous system (CNS) and contribute to evidence that betaine may be uniquely protective to the brain. We specifically describe the therapeutic potential of betaine and explore the potential implications of betaine on inhibition mediated by GABA and glycine neurotransmission. The influence of betaine on neurophysiology complement betaine's role as an osmolyte and metabolite and is consistent with clinical evidence of betaine-mediated improvements to cognitive function (reported in elderly populations) and its anti-convulsant properties. Betaine's therapeutic potential in neurological disorders including epilepsy and neurodegenerative diseases combined with benefits of betaine supplementation on athletic performance support the unique application of betaine as a prophylaxis to concussion. As an example, we identify young athletes (15-24 years old), especially females, for prophylactic betaine supplementation to promote brain health and resilience in a cohort at high risk for concussion and for developing Alzheimer's disease.
Collapse
Affiliation(s)
| | - Thomas A. Knight
- Biology Department, Whitman College, Walla Walla, WA, United States
| |
Collapse
|
4
|
Mueed Z, Mehta D, Rai PK, Kamal MA, Poddar NK. Cross-Interplay between Osmolytes and mTOR in Alzheimer's Disease Pathogenesis. Curr Pharm Des 2021; 26:4699-4711. [PMID: 32418522 DOI: 10.2174/1381612826666200518112355] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease, categorized by the piling of amyloid-β (Aβ), hyperphosphorylated tau, PHFs, NFTs and mTOR hyperactivity, is a neurodegenerative disorder, affecting people across the globe. Osmolytes are known for osmoprotectants and play a pivotal role in protein folding, function and protein stability, thus, preventing proteins aggregation, and counteracting effects of denaturing solutes on proteins. Osmolytes (viz., sorbitol, inositol, and betaine) perform a pivotal function of maintaining homeostasis during hyperosmotic stress. The selective advantage of utilising osmolytes over inorganic ions by cells is in maintaining cell volume without compromising cell function, which is important for organs such as the brain. Osmolytes have been documented not only as neuroprotectors but they also seem to act as neurodegenerators. Betaine, sucrose and trehalose supplementation has been seen to induce autophagy thereby inhibiting the accumulation of Aβ. In contrast, sucrose has also been associated with mTOR hyperactivity, a hallmark of AD pathology. The neuroprotective action of taurine is revealed when taurine supplementation is seen to inhibit neural damage, apoptosis and oxidative damage. Inositol stereoisomers (viz., scyllo-inositol and myo-inositol) have also been seen to inhibit Aβ production and plaque formation in the brain, inhibiting AD pathogenesis. However, TMAO affects the aging process adversely by deregulating the mTOR signalling pathway and then kindling cognitive dysfunction via degradation of chemical synapses and synaptic plasticity. Thus, it can be concluded that osmolytes may act as a probable therapeutic approach for neurodevelopmental disorders. Here, we have reviewed and focussed upon the impact of osmolytes on mTOR signalling pathway and thereby its role in AD pathogenesis.
Collapse
Affiliation(s)
- Zeba Mueed
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Devanshu Mehta
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
| | - Pankaj K Rai
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Enzymoics; Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| | - Nitesh K Poddar
- Department of Biosciences, Manipal University Jaipur, Rajasthan, India
| |
Collapse
|
5
|
Łątka K, Jończyk J, Bajda M. Structure modeling of γ-aminobutyric acid transporters - Molecular basics of ligand selectivity. Int J Biol Macromol 2020; 158:S0141-8130(20)33135-4. [PMID: 32376252 DOI: 10.1016/j.ijbiomac.2020.04.263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 11/15/2022]
Abstract
γ-Aminobutyric acid transporters are responsible for regulating the GABA level in the synaptic cleft. In this way, they affect GABA-ergic transmission which is important for the proper functioning of the central nervous system. The exact structure of GABA transporters is still unknown, which hinders the design of new, potent and selective inhibitors. For these reasons, we decided to create models of all types of human gamma-aminobutyric acid transporters. They were built based on crystal structures of related proteins from the SLC6 family using homology modeling methods. The reliability of the received models has been confirmed by a number of tools assessing the quality of protein models. To determine the ligand binding mode and indicate the amino acids responsible for selectivity, docking studies and molecular dynamics simulations were performed. The amino acids lining the bottom of the main binding site have a major impact on the selective ligand binding. In addition, an important element is the non-helical fragment of the transmembrane domain 10, and several amino acids within the vestibule of the transporters, which affect its volume. To check whether obtained models are suitable to distinguish active compounds from inactive ones, enrichment plots were prepared. Results suggest that our models may be useful in the search for new inhibitors of GABA transporters of the desired selectivity.
Collapse
Affiliation(s)
- Kamil Łątka
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Physicochemical Drug Analysis, 30-688 Cracow, Medyczna 9, Poland
| | - Jakub Jończyk
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Physicochemical Drug Analysis, 30-688 Cracow, Medyczna 9, Poland
| | - Marek Bajda
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Physicochemical Drug Analysis, 30-688 Cracow, Medyczna 9, Poland.
| |
Collapse
|
6
|
Kickinger S, Hellsberg E, Frølund B, Schousboe A, Ecker GF, Wellendorph P. Structural and molecular aspects of betaine-GABA transporter 1 (BGT1) and its relation to brain function. Neuropharmacology 2019; 161:107644. [PMID: 31108110 DOI: 10.1016/j.neuropharm.2019.05.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/14/2019] [Accepted: 05/16/2019] [Indexed: 01/09/2023]
Abstract
ɣ-aminobutyric-acid (GABA) functions as the principal inhibitory neurotransmitter in the central nervous system. Imbalances in GABAergic neurotransmission are involved in the pathophysiology of various neurological diseases such as epilepsy, Alzheimer's disease and stroke. GABA transporters (GATs) facilitate the termination of GABAergic signaling by transporting GABA together with sodium and chloride from the synaptic cleft into presynaptic neurons and surrounding glial cells. Four different GATs have been identified that all belong to the solute carrier 6 (SLC6) transporter family: GAT1-3 (SLC6A1, SLC6A13, SLC6A11) and betaine/GABA transporter 1 (BGT1, SLC6A12). BGT1 has emerged as an interesting target for treating epilepsy due to animal studies that reported anticonvulsant effects for the GAT1/BGT1 selective inhibitor EF1502 and the BGT1 selective inhibitor RPC-425. However, the precise involvement of BGT1 in epilepsy remains elusive because of its controversial expression levels in the brain and the lack of highly selective and potent tool compounds. This review gathers the current structural and functional knowledge on BGT1 with emphasis on brain relevance, discusses all available compounds, and tries to shed light on the molecular determinants driving BGT1 selectivity. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Stefanie Kickinger
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090, Vienna, Austria
| | - Eva Hellsberg
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090, Vienna, Austria
| | - Bente Frølund
- University of Copenhagen, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, 2 Universitetsparken, 2100, Copenhagen, Denmark
| | - Arne Schousboe
- University of Copenhagen, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, 2 Universitetsparken, 2100, Copenhagen, Denmark
| | - Gerhard F Ecker
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090, Vienna, Austria
| | - Petrine Wellendorph
- University of Copenhagen, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, 2 Universitetsparken, 2100, Copenhagen, Denmark.
| |
Collapse
|
7
|
Villar-Briones A, Aird SD. Organic and Peptidyl Constituents of Snake Venoms: The Picture Is Vastly More Complex Than We Imagined. Toxins (Basel) 2018; 10:E392. [PMID: 30261630 PMCID: PMC6215107 DOI: 10.3390/toxins10100392] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 12/24/2022] Open
Abstract
Small metabolites and peptides in 17 snake venoms (Elapidae, Viperinae, and Crotalinae), were quantified using liquid chromatography-mass spectrometry. Each venom contains >900 metabolites and peptides. Many small organic compounds are present at levels that are probably significant in prey envenomation, given that their known pharmacologies are consistent with snake envenomation strategies. Metabolites included purine nucleosides and their bases, neurotransmitters, neuromodulators, guanidino compounds, carboxylic acids, amines, mono- and disaccharides, and amino acids. Peptides of 2⁻15 amino acids are also present in significant quantities, particularly in crotaline and viperine venoms. Some constituents are specific to individual taxa, while others are broadly distributed. Some of the latter appear to support high anabolic activity in the gland, rather than having toxic functions. Overall, the most abundant organic metabolite was citric acid, owing to its predominance in viperine and crotaline venoms, where it chelates divalent cations to prevent venom degradation by venom metalloproteases and damage to glandular tissue by phospholipases. However, in terms of their concentrations in individual venoms, adenosine, adenine, were most abundant, owing to their high titers in Dendroaspis polylepis venom, although hypoxanthine, guanosine, inosine, and guanine all numbered among the 50 most abundant organic constituents. A purine not previously reported in venoms, ethyl adenosine carboxylate, was discovered in D. polylepis venom, where it probably contributes to the profound hypotension caused by this venom. Acetylcholine was present in significant quantities only in this highly excitotoxic venom, while 4-guanidinobutyric acid and 5-guanidino-2-oxopentanoic acid were present in all venoms.
Collapse
Affiliation(s)
- Alejandro Villar-Briones
- Division of Research Support, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan.
| | - Steven D Aird
- Division of Faculty Affairs and Ecology and Evolution Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan.
| |
Collapse
|
8
|
Betaine in the Brain: Characterization of Betaine Uptake, its Influence on Other Osmolytes and its Potential Role in Neuroprotection from Osmotic Stress. Neurochem Res 2017; 42:3490-3503. [PMID: 28918494 DOI: 10.1007/s11064-017-2397-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/15/2017] [Accepted: 08/29/2017] [Indexed: 01/17/2023]
Abstract
Betaine (N-trimethylglycine), a common osmolyte, has received attention because of the number of clinical reports associating betaine supplementation with improved cognition, neuroprotection and exercise physiology. However, tissue analyses report little accumulation of betaine in brain tissue despite the presence of betaine/GABA transporters (BGT1) at the blood brain barrier and in nervous tissue, calling into question whether betaine influences neuronal function directly or indirectly. Therefore, the focus of this study was to determine what capacity nervous tissue has to accumulate betaine, specifically in the hippocampus, a region of the brain associated with learning and memory and one that is particularly susceptible to damage (e.g., seizure activity). Here we report that hippocampal slices actively accumulate betaine in a time, dose and osmolality dependent manner, resulting in peak intracellular concentrations four times extracellular concentrations within 8 h. Our data also indicate that betaine uptake differentially influences the accumulation of other osmolytes. Under isosmotic conditions, betaine uptake minimally impacted some osmolytes (e.g., glycerylphosphorylcholine and glutamate) while significantly reducing others (taurine, creatine, and myo-inositol). Under osmotic stress (hyperosmotic) conditions, we observed dramatic changes in osmolytes like glycine and glutamine-key players in inhibitory neurotransmission-and little change in osmolytes such as taurine, creatine and myo-inositol when betaine was available. These data suggest that betaine may influence pathways of inhibitory neurotransmitter production/recycling in addition to serving as an osmolyte and metabolic intermediate. In sum, our data provide detailed characterization of betaine uptake in the hippocampus that implicates betaine in the modulation of hippocampal neurophysiology and neuroprotection.
Collapse
|
9
|
Astrocytic transporters in Alzheimer's disease. Biochem J 2017; 474:333-355. [DOI: 10.1042/bcj20160505] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/16/2016] [Accepted: 11/29/2016] [Indexed: 12/26/2022]
Abstract
Astrocytes play a fundamental role in maintaining the health and function of the central nervous system. Increasing evidence indicates that astrocytes undergo both cellular and molecular changes at an early stage in neurological diseases, including Alzheimer's disease (AD). These changes may reflect a change from a neuroprotective to a neurotoxic phenotype. Given the lack of current disease-modifying therapies for AD, astrocytes have become an interesting and viable target for therapeutic intervention. The astrocyte transport system covers a diverse array of proteins involved in metabolic support, neurotransmission and synaptic architecture. Therefore, specific targeting of individual transporter families has the potential to suppress neurodegeneration, a characteristic hallmark of AD. A small number of the 400 transporter superfamilies are expressed in astrocytes, with evidence highlighting a fraction of these are implicated in AD. Here, we review the current evidence for six astrocytic transporter subfamilies involved in AD, as reported in both animal and human studies. This review confirms that astrocytes are indeed a viable target, highlights the complexities of studying astrocytes and provides future directives to exploit the potential of astrocytes in tackling AD.
Collapse
|
10
|
Galvez Rojas RL, Ahn IY, Suárez Mantilla B, Sant'Anna C, Pral EMF, Silber AM. The Uptake of GABA in Trypanosoma cruzi. J Eukaryot Microbiol 2015; 62:629-36. [PMID: 25851259 DOI: 10.1111/jeu.12219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/12/2015] [Accepted: 02/02/2015] [Indexed: 12/27/2022]
Abstract
Gamma aminobutyric acid (GABA) is widely known as a neurotransmitter and signal transduction molecule found in vertebrates, plants, and some protozoan organisms. However, the presence of GABA and its role in trypanosomatids is unknown. Here, we report the presence of intracellular GABA and the biochemical characterization of its uptake in Trypanosoma cruzi, the etiological agent of Chagas' disease. Kinetic parameters indicated that GABA is taken up by a single transport system in pathogenic and nonpathogenic forms. Temperature dependence assays showed a profile similar to glutamate transport, but the effect of extracellular cations Na(+) , K(+) , and H(+) on GABA uptake differed, suggesting a different uptake mechanism. In contrast to reports for other amino acid transporters in T. cruzi, GABA uptake was Na(+) dependent and increased with pH, with a maximum activity at pH 8.5. The sensitivity to oligomycin showed that GABA uptake is dependent on ATP synthesis. These data point to a secondary active Na(+) /GABA symporter energized by Na(+) -exporting ATPase. Finally, we show that GABA occurs in the parasite's cytoplasm under normal culture conditions, indicating that it is regularly taken up from the culture medium or synthesized through an still undescribed metabolic pathway.
Collapse
Affiliation(s)
- Robert L Galvez Rojas
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Il-Young Ahn
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Brian Suárez Mantilla
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Celso Sant'Anna
- Instituto Nacional de Metrologia (INMetro), Rio de Janeiro, Brazil
| | | | - Ariel Mariano Silber
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Jinzenji A, Sogawa C, Miyawaki T, Wen XF, Yi D, Ohyama K, Kitayama S, Sogawa N, Morita K. Antiallodynic action of 1-(3-(9H-Carbazol-9-yl)-1-propyl)-4-(2-methyoxyphenyl)-4-piperidinol (NNC05-2090), a betaine/GABA transporter inhibitor. J Pharmacol Sci 2014; 125:217-26. [PMID: 24881960 DOI: 10.1254/jphs.13146fp] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The GABAergic system in the spinal cord has been shown to participate in neuropathic pain in various animal models. GABA transporters (GATs) play a role in controlling the synaptic clearance of GABA; however, their role in neuropathic pain remains unclear. In the present study, we compared the betaine/GABA transporter (BGT-1) with other GAT subtypes to determine its participation in neuropathic pain using a mouse model of sciatic nerve ligation. 1-(3-(9H-Carbazol-9-yl)-1-propyl)-4-(2-methyoxyphenyl)-4-piperidinol (NNC05-2090), an inhibitor that displays moderate selectivity for BGT-1, had an antiallodynic action on model mice treated through both intrathecally and intravenous administration routes. On the other hand, SKF89976A, a selective GAT-1 inhibitor, had a weak antiallodynic action, and (S)-SNAP5114, an inhibitor that displays selectivity for GAT-3, had no antiallodynic action. Systemic analysis of these compounds on GABA uptake in CHO cells stably expressing BGT-1 revealed that NNC05-2090 not only inhibited BGT-1, but also serotonin, noradrenaline, and dopamine transporters, using a substrate uptake assay in CHO cells stably expressing each transporter, with IC50: 5.29, 7.91, and 4.08 μM, respectively. These values were similar to the IC50 value at BGT-1 (10.6 μM). These results suggest that the antiallodynic action of NNC05-2090 is due to the inhibition of both BGT-1 and monoamine transporters.
Collapse
Affiliation(s)
- Ayako Jinzenji
- Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hiramatsu M. [Functional role for GABA transporters in the CNS]. Nihon Yakurigaku Zasshi 2014; 143:187-192. [PMID: 24717607 DOI: 10.1254/fpj.143.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
|
13
|
Sałat K, Kulig K, Gajda J, Więckowski K, Filipek B, Malawska B. Evaluation of anxiolytic-like, anticonvulsant, antidepressant-like and antinociceptive properties of new 2-substituted 4-hydroxybutanamides with affinity for GABA transporters in mice. Pharmacol Biochem Behav 2013; 110:145-53. [PMID: 23850524 DOI: 10.1016/j.pbb.2013.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/14/2013] [Accepted: 06/28/2013] [Indexed: 01/01/2023]
Abstract
PURPOSE The inhibition of plasma membrane GABA transporters (GATs) is responsible for anxiolytic-like, anticonvulsant, antinociceptive and antidepressant-like effects in mice. It also influences animals' motor coordination and their sensitivity to ethanol. The aim of this study was to assess the pharmacological activity of two novel 2-substituted 4-hydroxybutanamides (BM 130 and BM 131) in some screening models. An attempt has been made to establish the relationship between the inhibition of GAT subtype and the observed in vivo activity. METHODS The affinity for GAT subtypes was evaluated by means of [(3)H]GABA uptake assay. It indicated that BM 130 inhibited GAT1 and GAT2, whereas BM 131 inhibited GAT1 and GAT3. In mice anxiolytic-like, antidepressant-like, anticonvulsant and antinociceptive properties of the test compounds were assessed. Their influence on motor coordination, locomotor activity and the ability to potentiate effects of subnarcotic doses of ethanol was also tested. RESULTS Both compounds administered intraperitoneally exerted a significant anxiolytic-like effect in the four plate test with ED50 values 3.4 and 7.9 mg/kg, respectively. At 30 mg/kg they reduced duration of immobility in the forced swim test for 33% and 19%, respectively. They had no effect on electroconvulsive threshold or pain reactivity in the hot plate assay but they were antinociceptive in the acetic acid-induced writhing test (ED50 values were 12.7 and 18.6 mg/kg, respectively) and in both phases of the formalin test (ED50 values in the first phase were 10.2 and 2.1 mg/kg for BM 130 and BM 131, respectively). No motor adverse effects were observed in mice pretreated with the test compounds in the rotarod or chimney tests but BM 131 caused a transient but statistically significant decrease of animals' locomotor activity. CONCLUSIONS In mice BM 130 and BM 131 have anxiolytic-like, antidepressant-like and antinociceptive properties which can be attributed to their affinity for not only mGAT1 but also mGAT2-4.
Collapse
Affiliation(s)
- Kinga Sałat
- Department of Pharmacodynamics, Jagiellonian University, Medical College, Medyczna 9, 30-688 Cracow, Poland.
| | | | | | | | | | | |
Collapse
|
14
|
Amiraslani B, Sabouni F, Abbasi S, Nazem H, Sabet M. Recognition of betaine as an inhibitor of lipopolysaccharide-induced nitric oxide production in activated microglial cells. IRANIAN BIOMEDICAL JOURNAL 2012; 16:84-9. [PMID: 22801281 DOI: 10.6091/ibj.1012.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Neuroinflammation, as a major outcome of microglia activation, is an important factor for progression of neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. Microglial cells, as the first-line defense in the central nervous system, act as a source of neurotoxic factors such as nitric oxide (NO), a free radical which is involved in neuronal cell death. The aim of this study was to inhibit production of NO in activated microglial cells in order to decrease neurological damages that threat the central nervous system. METHODS An in vitro model of a newborn rat brain cell culture was used to examine the effect of betaine on the release of NO induced by lipopolysaccharide (LPS). Briefly, primary microglial cells were stimulated by LPS and after 2 minutes, they were treated by different concentrations of betaine. The production of NO was assessed by the Griess assay while cell viability was determined by the MTT assay. RESULTS Our investigations indicated that LPS-induced NO release was attenuated by betaine, suggesting that this compound might inhibit NO release. The effects of betaine on NO production in activated microglial cells after 24 h were "dose-dependent". It means that microglial cells which were treated with higher concentrations of betaine, released lower amounts of NO. Also our observations showed that betaine compound has no toxic effect on microglial cells. CONCLUSION Betaine has an inhibitory effect on NO release in activated microglial cells and may be an effective therapeutic component to control neurological disorders.
Collapse
Affiliation(s)
- Banafsheh Amiraslani
- Dept. of Biology, Payame Noor University, I.R. of Iran.,National Institute of Genetic Engineering and
Biotechnology (NIGEB), Tehran, Iran
| | - Farzaneh Sabouni
- National Institute of Genetic Engineering and
Biotechnology (NIGEB), Tehran, Iran
| | - Shahsanam Abbasi
- National Institute of Genetic Engineering and
Biotechnology (NIGEB), Tehran, Iran
| | | | - Mohammadsadegh Sabet
- Dept. of Agronomy and Plant Breeding,
School of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
15
|
Jackson PL, Hanson CD, Farrell AK, Butcher RJ, Stables JP, Eddington ND, Scott K. Enaminones 12. An explanation of anticonvulsant activity and toxicity per Linus Pauling’s clathrate hypothesis. Eur J Med Chem 2012; 51:42-51. [DOI: 10.1016/j.ejmech.2012.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 01/29/2012] [Accepted: 02/01/2012] [Indexed: 10/14/2022]
|
16
|
Inhibitory action of antidepressants on mouse Betaine/GABA transporter (BGT1) heterologously expressed in cell cultures. Int J Mol Sci 2012; 13:2578-2589. [PMID: 22489112 PMCID: PMC3317675 DOI: 10.3390/ijms13032578] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 01/28/2012] [Accepted: 02/17/2012] [Indexed: 11/23/2022] Open
Abstract
Betaine/γ-aminobutyric acid (GABA) transporter (BGT1, SLC6A12) is a member of the Na+- and Cl−-dependent neurotransmitter transporter gene family with a homology to the GABA transporters (GATs), GAT1 (SLC6A1), GAT2 (SLC6A13) and GAT3 (SLC6A11) (HUGO nomenclature). Since antidepressants have been reported to inhibit GABA uptake, we examined those effects on mouse BGT1 (mBGT1) in comparison with other mouse GAT (mGAT) subtypes in the heterologously expressed cell cultures. All antidepressants tested here inhibited the [3H]GABA uptake through mBGT1 and mGATs in a rank order of potency with mBGT1 > mGAT1-3. Kinetic analyses for maprotilline, mianserine and trimipramine revealed that they inhibited mBGT1 and mGAT1 noncompetitively, except that mianserine competitively inhibited mBGT1. These results provided a clue to investigate the structure-function relationship of mBGT1 using antidepressants as a tool, leading to the identification of potential candidates for selective and specific inhibitors of mBGT1.
Collapse
|
17
|
Analgesic and anticonvulsant activity of new derivatives of 2-substituted 4-hydroxybutanamides in mice. Pharmacol Rep 2012; 64:102-12. [DOI: 10.1016/s1734-1140(12)70736-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 09/15/2011] [Indexed: 01/18/2023]
|
18
|
Vaz SH, Jørgensen TN, Cristóvão-Ferreira S, Duflot S, Ribeiro JA, Gether U, Sebastião AM. Brain-derived neurotrophic factor (BDNF) enhances GABA transport by modulating the trafficking of GABA transporter-1 (GAT-1) from the plasma membrane of rat cortical astrocytes. J Biol Chem 2011; 286:40464-76. [PMID: 21969376 DOI: 10.1074/jbc.m111.232009] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The γ-aminobutyric acid (GABA) transporters (GATs) are located in the plasma membrane of neurons and astrocytes and are responsible for termination of GABAergic transmission. It has previously been shown that brain derived neurotrophic factor (BDNF) modulates GAT-1-mediated GABA transport in nerve terminals and neuronal cultures. We now report that BDNF enhances GAT-1-mediated GABA transport in cultured astrocytes, an effect mostly due to an increase in the V(max) kinetic constant. This action involves the truncated form of the TrkB receptor (TrkB-t) coupled to a non-classic PLC-γ/PKC-δ and ERK/MAPK pathway and requires active adenosine A(2A) receptors. Transport through GAT-3 is not affected by BDNF. To elucidate if BDNF affects trafficking of GAT-1 in astrocytes, we generated and infected astrocytes with a functional mutant of the rat GAT-1 (rGAT-1) in which the hemagglutinin (HA) epitope was incorporated into the second extracellular loop. An increase in plasma membrane of HA-rGAT-1 as well as of rGAT-1 was observed when both HA-GAT-1-transduced astrocytes and rGAT-1-overexpressing astrocytes were treated with BDNF. The effect of BDNF results from inhibition of dynamin/clathrin-dependent constitutive internalization of GAT-1 rather than from facilitation of the monensin-sensitive recycling of GAT-1 molecules back to the plasma membrane. We therefore conclude that BDNF enhances the time span of GAT-1 molecules at the plasma membrane of astrocytes. BDNF may thus play an active role in the clearance of GABA from synaptic and extrasynaptic sites and in this way influence neuronal excitability.
Collapse
Affiliation(s)
- Sandra H Vaz
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
GABA, the principal inhibitory neurotransmitter in the cerebral cortex, maintains the inhibitory tone that counterbalances neuronal excitation. The identification and subsequent development of GABA-transport inhibitors has shown the important role that GABA transporters play in the control of the CNS. To date, four GABA transporters have been cloned (GAT1-4). Compounds that inhibit GABA uptake are targets for epilepsy treatment. Currently, they are also being investigated for other possible indications such as the treatment of psychosis, general anxiety and sleep disorders, drug addiction, acute and chronic pain. These and other issues are discussed in this article.
Collapse
|
20
|
Hu J, Reutter W, Fan H. Significance of N-Glycosylation and Sialylation of GABA Transporter 1. J Carbohydr Chem 2011. [DOI: 10.1080/07328303.2011.604455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
21
|
|
22
|
A Possible Role of the Non-GAT1 GABA Transporters in Transfer of GABA From GABAergic to Glutamatergic Neurons in Mouse Cerebellar Neuronal Cultures. Neurochem Res 2010; 35:1384-90. [DOI: 10.1007/s11064-010-0196-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2010] [Indexed: 10/19/2022]
|
23
|
Riera JJ, Schousboe A, Waagepetersen HS, Howarth C, Hyder F. The micro-architecture of the cerebral cortex: functional neuroimaging models and metabolism. Neuroimage 2008; 40:1436-59. [PMID: 18343162 PMCID: PMC4348032 DOI: 10.1016/j.neuroimage.2007.12.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 12/19/2007] [Accepted: 12/20/2007] [Indexed: 01/22/2023] Open
Abstract
In order to interpret/integrate data obtained with different functional neuroimaging modalities (e.g. fMRI, EEG/MEG, PET/SPECT, fNIRS), forward-generative models of a diversity of brain mechanisms at the mesoscopic level are considered necessary. For the cerebral cortex, the brain structure with possibly the most relevance for functional neuroimaging, a variety of such biophysical models has been proposed over the last decade. The development of technological tools to investigate in vitro the physiological, anatomical and biochemical principles at the microscopic scale in comparative studies formed the basis for such theoretical progresses. However, with the most recent introduction of systems to record electrical (e.g. miniaturized probes chronically/acutely implantable in the brain), optical (e.g. two-photon laser scanning microscopy) and atomic nuclear spectral (e.g. nuclear magnetic resonance spectroscopy) signals using living laboratory animals, the field is receiving even greater attention. Major advances have been achieved by combining such sophisticated recording systems with new experimental strategies (e.g. transgenic/knock-out animals, high resolution stereotaxic manipulation systems for probe-guidance and cellular-scale chemical-delivery). Theoreticians may now be encouraged to re-consider previously formulated mesoscopic level models in order to incorporate important findings recently made at the microscopic scale. In this series of reviews, we summarize the background at the microscopic scale, which we suggest will constitute the foundations for upcoming representations at the mesoscopic level. In this first part, we focus our attention on the nerve ending particles in order to summarize basic principles and mechanisms underlying cellular metabolism in the cerebral cortex. It will be followed by two parts highlighting major features in its organization/working-principles to regulate both cerebral blood circulation and neuronal activity, respectively. Contemporary theoretical models for functional neuroimaging will be revised in the fourth part, with particular emphasis in their applications, advantages/limitations and future prospects.
Collapse
Affiliation(s)
- Jorge J Riera
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | | | | | | | | |
Collapse
|
24
|
Inhibition of the betaine-GABA transporter (mGAT2/BGT-1) modulates spontaneous electrographic bursting in the medial entorhinal cortex (mEC). Epilepsy Res 2008; 79:6-13. [PMID: 18262393 DOI: 10.1016/j.eplepsyres.2007.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 12/12/2007] [Accepted: 12/17/2007] [Indexed: 11/24/2022]
Abstract
Disruptions in GABAergic neurotransmission have been implicated in numerous CNS disorders, including epilepsy and neuropathic pain. Selective inhibition of neuronal and glial GABA transporter subtypes may offer unique therapeutic options for regaining balance between inhibitory and excitatory systems. The ability of two GABA transport inhibitors to modulate inhibitory tone via inhibition of mGAT1 (tiagabine) or mGAT2/BGT-1 (N-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]-4-(methylamino-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol), also known as EF1502) was evaluated using an in vitro model of spontaneous interictal-like bursting (SB). SBs were recorded extracellularly in combined mEC-HC horizontal brain slices (400 microm; 31+/-1 degrees C) obtained from KA-treated rats. Slice recordings demonstrated that EF1502 exhibited a concentration-dependent reduction in SB frequency. EF1502 significantly reduced SB rate to 32% of control at the 30 microM concentration, while reducing the area and duration of SB activity to 60% and 46% of control, respectively, at the 10 microM concentration. In contrast, the GAT1 selective inhibitor tiagabine (3, 10, and 30 microM) was unable to significantly reduce the frequency of SB activity in the mEC, despite significantly reducing both the duration (51% of control) and area (58% of control) of the SB at concentrations as low as 3 microM. The ability of EF1502, but not tiagabine, to inhibit SBs in the mEC suggests that this in vitro model of pharmacoresistant SB activity is useful to differentiate between novel anticonvulsants with similar mechanisms of action and suggests a therapeutic potential for non-GAT1 transport inhibitors.
Collapse
|
25
|
Christiansen B, Meinild AK, Jensen AA, Braüner-Osborne H. Cloning and Characterization of a Functional Human γ-Aminobutyric Acid (GABA) Transporter, Human GAT-2. J Biol Chem 2007; 282:19331-41. [PMID: 17502375 DOI: 10.1074/jbc.m702111200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasma membrane gamma-aminobutyric acid (GABA) transporters act to terminate GABA neurotransmission in the mammalian brain. Intriguingly four distinct GABA transporters have been cloned from rat and mouse, whereas only three functional homologs of these transporters have been cloned from human. The aim of this study therefore was to search for this fourth missing human transporter. Using a bioinformatics approach, we successfully identified and cloned the full-length cDNA of a so far uncharacterized human GABA transporter (GAT). The predicted protein displays high sequence similarity to rat GAT-2 and mouse GAT3, and in accordance with the nomenclature for rat GABA transporters, we therefore refer to the transporter as human GAT-2. We used electrophysiological and cell-based methods to demonstrate that this protein is a functional transporter of GABA. The transport was saturable and dependent on both Na(+) and Cl(-). Pharmacologically the transporter is distinct from the other human GABA transporters and similar to rat GAT-2 and mouse GAT3 with high sensitivity toward GABA and beta-alanine. Furthermore the GABA transport inhibitor (S)-SNAP-5114 displayed some inhibitory activity at the transporter. Expression analysis by reverse transcription-PCR showed that GAT-2 mRNA is present in human brain, kidney, lung, and testis. The finding of the human GAT-2 demonstrates for the first time that the four plasma membrane GABA transporters identified in several mammalian species are all conserved in human. Furthermore the availability of human GAT-2 enables the use of all human clones of the GABA transporters in drug development programs and functional characterization of novel inhibitors of GABA transport.
Collapse
Affiliation(s)
- Bolette Christiansen
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|
26
|
De Sampaio Schitine C, Cussa Kubrusly RC, De Melo Reis RA, Yamasaki EN, De Mello MCF, De Mello FG. GABA uptake by purified avian Müller glia cells in culture. Neurotox Res 2007; 12:145-53. [DOI: 10.1007/bf03033923] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Tahiliani M, Mei P, Fang R, Leonor T, Rutenberg M, Shimizu F, Li J, Rao A, Shi Y. The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation. Nature 2007; 447:601-5. [PMID: 17468742 DOI: 10.1038/nature05823] [Citation(s) in RCA: 339] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 04/10/2007] [Indexed: 12/13/2022]
Abstract
Gene transcription is critically influenced by chromatin structure and the modification status of histone tails. Methylation of lysine residues in histone tails is dynamically regulated by the opposing activities of histone methyltransferases and histone demethylases. Here we show that JARID1C/SMCX, a JmjC-domain-containing protein implicated in X-linked mental retardation and epilepsy, possesses H3K4 tri-demethylase activity and functions as a transcriptional repressor. An SMCX complex isolated from HeLa cells contains additional chromatin modifiers (the histone deacetylases HDAC1 and HDAC2, and the histone H3K9 methyltransferase G9a) and the transcriptional repressor REST, suggesting a direct role for SMCX in chromatin dynamics and REST-mediated repression. Chromatin immunoprecipitation reveals that SMCX and REST co-occupy the neuron-restrictive silencing elements in the promoters of a subset of REST target genes. RNA-interference-mediated depletion of SMCX derepresses several of these targets and simultaneously increases H3K4 trimethylation at the sodium channel type 2A (SCN2A) and synapsin I (SYN1) promoters. We propose that loss of SMCX activity impairs REST-mediated neuronal gene regulation, thereby contributing to SMCX-associated X-linked mental retardation.
Collapse
Affiliation(s)
- Mamta Tahiliani
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine and BCMP, Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Avenue Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wanka L, Cabrele C, Vanejews M, Schreiner PR. γ-Aminoadamantanecarboxylic Acids Through Direct C–H Bond Amidations. European J Org Chem 2007. [DOI: 10.1002/ejoc.200600975] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Schousboe A, Waagepetersen HS. GABA: Homeostatic and pharmacological aspects. PROGRESS IN BRAIN RESEARCH 2007; 160:9-19. [PMID: 17499106 DOI: 10.1016/s0079-6123(06)60002-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The central nervous system (CNS) operates by a fine-tuned balance between excitatory and inhibitory signalling. In this context, the inhibitory neurotransmission may be of particular interest as it has been suggested that such neuronal pathways may constitute 'command pathways' and the principle of 'dis-inhibition' leading ultimately to excitation may play a fundamental role (Roberts, E. (1974). Adv. Neurol., 5: 127-143). The neurotransmitter responsible for this signalling is gamma-aminobutyrate (GABA) which was first discovered in the CNS as a curious amino acid (Roberts, E., Frankel, S. (1950). J. Biol. Chem., 187: 55-63) and later proposed as an inhibitory neurotransmitter (Curtis, D.R., Watkins, J.C. (1960). J. Neurochem., 6: 117-141; Krnjevic, K., Schwartz, S. (1967). Exp. Brain Res., 3: 320-336). The present review will describe aspects of GABAergic neurotransmission related to homeostatic mechanisms such as biosynthesis, metabolism, release and inactivation. Additionally, pharmacological and therapeutic aspects of this will be discussed.
Collapse
Affiliation(s)
- Arne Schousboe
- Department of Pharmacology and Pharmacotherapy, The Faculty of Pharmaceutical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | | |
Collapse
|
30
|
Shigeri Y, Shimamoto K. [Pharmacology of inhibitory amino acid transporters (GABA transporters and glycine transporters)]. Nihon Yakurigaku Zasshi 2006; 127:279-87. [PMID: 16755080 DOI: 10.1254/fpj.127.279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
|
31
|
Albrecht J, Schousboe A. Taurine interaction with neurotransmitter receptors in the CNS: an update. Neurochem Res 2006; 30:1615-21. [PMID: 16362781 DOI: 10.1007/s11064-005-8986-6] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2005] [Indexed: 10/25/2022]
Abstract
Taurine appears to have multiple functions in the brain participating both in volume regulation and neurotransmission. In the latter context it may exert its actions by serving as an agonist at receptors of the GABAergic and glycinergic neurotransmitter systems. Its interaction with GABAA and GABAB receptors as well as with glycine receptors is reviewed and the physiological relevance of such interactions is evaluated. The question as to whether local extracellular concentrations of taurine are likely to reach the threshold level for the pertinent receptor populations cannot presently be answered satisfactorily. Hence more sophisticated analytical methods are warranted in order to obtain a definite answer to this important question.
Collapse
Affiliation(s)
- Jan Albrecht
- Department of Neurotoxicology, Medical Research Centre, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland.
| | | |
Collapse
|
32
|
Azadi S, Paquet-Durand F, Medstrand P, van Veen T, Ekström PAR. Up-regulation and increased phosphorylation of protein kinase C (PKC) delta, mu and theta in the degenerating rd1 mouse retina. Mol Cell Neurosci 2006; 31:759-73. [PMID: 16503160 DOI: 10.1016/j.mcn.2006.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 12/16/2005] [Accepted: 01/06/2006] [Indexed: 11/18/2022] Open
Abstract
The rd1 mouse serves as a model for inherited photoreceptor degeneration: retinitis pigmentosa. Microarray techniques were employed to compare the transcriptomes of rd1 and congenic wild-type retinas at postnatal day 11, when degenerative processes have started but most photoreceptors are still present. Of the several genes that were differentially expressed, focus was put on those associated with the protein kinase C (PKC) signaling pathway, in particular PKCdelta, mu and theta. Microarray identified these as being up-regulated in the rd1 retina, which was confirmed by QRT-PCR. Western blotting and immunostaining, using antibodies against either total or phosphorylated variants of the PKC isoforms, revealed increased expression and phosphorylation of PKCdelta, mu and theta in the rd1 retina at the protein level as well. Our results suggest that these PKC isoforms are involved in rd1 degeneration.
Collapse
Affiliation(s)
- Seifollah Azadi
- Department of Ophthalmology, Lund University, BMC-B13, SE-221 84 Lund, Sweden
| | | | | | | | | |
Collapse
|
33
|
Olsen M, Sarup A, Larsson OM, Schousboe A. Effect of Hyperosmotic Conditions on the Expression of the Betaine-GABA-Transporter (BGT-1) in Cultured Mouse Astrocytes. Neurochem Res 2005; 30:855-65. [PMID: 16187220 DOI: 10.1007/s11064-005-6879-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2005] [Indexed: 11/30/2022]
Abstract
The adaptation of cells to hyperosmotic conditions involves accumulation of organic osmolytes to achieve osmotic equilibrium and maintenance of cell volume. The Na+ and Cl(-)-coupled betaine/GABA transporter, designated BGT-1, is responsible for the cellular accumulation of betaine and has been proposed to play a role in osmoregulation in the brain. BGT-1 is also called GAT2 (GABA transporter 2) when referring to the mouse transporter homologue. Using Western Blotting the expression of the mouse GAT2 protein was investigated in astrocyte primary cultures exposed to a growth medium made hyperosmotic (353+/-2.5 mosmol/kg) by adding sodium chloride. A polyclonal anti-BGT-1 antibody revealed the presence of two characteristic bands at 69 and 138 kDa. When astrocytes were grown for 24 h under hyperosmotic conditions GAT2 protein was up-regulated 2-4-fold compared to the level of the isotonic control. Furthermore, the expected dimer of GAT2 was also up-regulated after 24 h under the hyperosmotic conditions. The [3H]GABA uptake was examined in the hyperosmotic treated astrocytes, and characterized using different selective GABA transport inhibitors. The up-regulation of GAT2 protein was not affecting total GABA uptake but the hyperosmotic condition did change total GABA uptake possibly involving GAT1. Immunocytochemical studies revealed cell membrane localization of GAT2 throughout astroglial processes. Taken together, these results indicate that astroglial GAT2 expression and function may be regulated by hyperosmolarity in cultured mouse astrocytes, suggesting a role of GAT2 in osmoregulation in neural cells.
Collapse
Affiliation(s)
- Mads Olsen
- Department of Pharmacology, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, Copenhagen, DK-2100, Denmark
| | | | | | | |
Collapse
|
34
|
Schousboe A, Sarup A, Larsson OM, White HS. GABA transporters as drug targets for modulation of GABAergic activity. Biochem Pharmacol 2004; 68:1557-63. [PMID: 15451399 DOI: 10.1016/j.bcp.2004.06.041] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 06/22/2004] [Indexed: 11/26/2022]
Abstract
The identification and subsequent development of the GABA transport inhibitor tiagabine has confirmed the important role that GABA transporters play in the control of CNS excitability. Tiagabine was later demonstrated to be a selective inhibitor of the GABA transporter GAT1. Although selective for GAT1, tiagabine lacks cell type selectivity and is an equipotent inhibitor of neuronal and glial GAT1. To date, four GABA transporters have been cloned, i.e., GAT1-4. The finding that some of these display differential cellular and regional expression patterns suggests that drugs targeting GABA transporters other than GAT1 might offer some therapeutic advantage over GAT1 selective inhibitors. Furthermore, it is particularly interesting that several recently defined GABA transport inhibitors have been demonstrated to display a preferential selectivity for the astrocytic GAT1 transporter. That cellular heterogeneity of GAT1 plays a role in the control of CNS function is confirmed by the demonstration that inhibition of astrocytic GABA uptake is highly correlated to anticonvulsant activity. At the present time, a functional role for the other GABA transporters is less well defined. However, recent findings have suggested a role for the mouse GAT2 (homologous to the human betaine transporter) in the control of seizure activity. In these studies, the non-selective GAT1 and mouse GAT2 transport inhibitor EF1502 (N-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]-3-hydroxy-4-(methylamino)-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol) was found to exert a synergistic anticonvulsant action when tested in combination with the GAT1 selective inhibitors tiagabine and LU-32-176B (N-[4,4-bis(4-fluorophenyl)-butyl]-3-hydroxy-4-amino-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol). Additional studies will be required to define a role for the other GABA transporters and to further identify the functional importance of their demonstrated cellular and regional heterogeneity. A summary of these and other issues are discussed in this brief review.
Collapse
Affiliation(s)
- Arne Schousboe
- Department of Pharmacology, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|