1
|
Alshawwa SZ, El-Masry TA, Elekhnawy E, Alotaibi HF, Sallam AS, Abdelkader DH. Fabrication of Celecoxib PVP Microparticles Stabilized by Gelucire 48/16 via Electrospraying for Enhanced Anti-Inflammatory Action. Pharmaceuticals (Basel) 2023; 16:258. [PMID: 37259403 PMCID: PMC9960083 DOI: 10.3390/ph16020258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 01/13/2025] Open
Abstract
Electrospraying (ES) technology is considered an efficient micro/nanoparticle fabrication technique with controlled dimensions and diverse morphology. Gelurice® 48/16 (GLR) has been employed to stabilize the aqueous dispersion of Celecoxib (CXB) for enhancing its solubility and oral bioavailability. Our formula is composed of CXB loaded in polyvinylpyllodine (PVP) stabilized with GLR to formulate microparticles (MPs) (CXB-GLR-PVP MPs). CXB-GLR-PVP MPs display excellent in vitro properties regarding particle size (548 ± 10.23 nm), zeta potential (-20.21 ± 2.45 mV), and drug loading (DL, 1.98 ± 0.059 mg per 10 mg MPs). CXB-GLR-PVP MPs showed a significant (p < 0.05) higher % cumulative release after ten minutes (50.31 ± 4.36) compared to free CXB (10.63 ± 2.89). CXB exhibited good dispersibility, proved by X-ray diffractometry (XRD), adequate compatibility of all components, confirmed by Fourier-Transform Infrared Spectroscopy (FTIR), and spherical geometry as revealed in scanning electron microscopy (SEM). Concerning our anti-inflammatory study, there was a significant decrease in the scores of the inflammatory markers' immunostaining in the CXB-GLR-PVP MPs treated group. Also, the amounts of the oxidative stress biomarkers, as well as mRNA expression of interleukins (IL-1β and IL-6), considerably declined (p < 0.05) in CXB-GLR-PVP MPs treated group alongside an enhancement in the histological features was revealed. CXB-GLR-PVP MPs is an up-and-coming delivery system that could be elucidated in future clinical investigations.
Collapse
Affiliation(s)
- Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Thanaa A. El-Masry
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | | - Dalia H. Abdelkader
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
2
|
Arabacı Tamer S, Akbulut S, Erdoğan Ö, Çevik Ö, Ercan F, Yeğen BÇ. Neuropeptide W Exhibits Preventive and Therapeutic Effects on Acetic Acid-Induced Colitis via Modulation of the Cyclooxygenase Enzyme System. Dig Dis Sci 2023; 68:2441-2453. [PMID: 36631709 DOI: 10.1007/s10620-022-07811-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND The novel peptide neuropeptide W (NPW) was originally shown to function in the control of feeding behavior and energy homeostasis. The aim of this study was to elucidate the putative preventive and therapeutic effects of NPW on colitis-associated oxidative injury and the underlying mechanisms for its action. METHODS Sprague-Dawley rats in the acute colitis groups received NPW (0.5, 1 or 5 µg/kg/day) injections prior to induction of colitis with acetic acid, while the chronic colitis groups were treated after the induction of colitis. In both acute and chronic colitis (CC) groups, treatments were continued for 5 days and the rats were decapitated at the 24th hour of the last injections and colon tissues were collected for assessments. RESULTS NPW pretreatment given for 5 days before colitis induction, as well as treating rats with NPW during the 5-day course of CC, abolished colonic lipid peroxidation. NPW treatment prevented colitis-induced reduction in blood flow, diminished neutrophil infiltration, and pro-inflammatory cytokine responses. NPW pretreatment only at the higher dose reduced colonic edema and microscopic score and preserved colonic glutathione stores. Elevations in cyclooxygenase (COX) enzyme activity and COX-1 protein level during the acute phase of colitis as well as reduction in COX-2 were all reversed with NPW pretreatment. In contrast, NPW treatment was effective in reducing the elevated COX-2 concentration during the chronic phase. CONCLUSIONS NPW alleviates acetic acid-induced oxidative colonic injury in rats through the upregulation of colonic blood flow as well as the inhibition of COX-2 protein expression and pro-inflammatory cytokine production.
Collapse
Affiliation(s)
- Sevil Arabacı Tamer
- Department of Physiology, Marmara University School of Medicine, Basibüyük Mah. Maltepe Basibüyük Yolu No. 9/1, Maltepe, 34854, Istanbul, Turkey.,Department of Physiology, Sakarya University School of Medicine, Sakarya, Turkey
| | - Selin Akbulut
- Department of Histology & Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Ömer Erdoğan
- Department of Biochemistry, Aydın Adnan Menderes University Faculty of Medicine, Aydın, Turkey
| | - Özge Çevik
- Department of Biochemistry, Aydın Adnan Menderes University Faculty of Medicine, Aydın, Turkey
| | - Feriha Ercan
- Department of Histology & Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Department of Physiology, Marmara University School of Medicine, Basibüyük Mah. Maltepe Basibüyük Yolu No. 9/1, Maltepe, 34854, Istanbul, Turkey.
| |
Collapse
|
3
|
Joung EJ, Cao L, Gwon WG, Kwon MS, Lim KT, Kim HR. Meroterpenoid-Rich Ethanoic Extract of Sargassum macrocarpum Ameliorates Dextran Sulfate Sodium-Induced Colitis in Mice. Foods 2022; 11:foods11030329. [PMID: 35159480 PMCID: PMC8834051 DOI: 10.3390/foods11030329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 11/28/2022] Open
Abstract
Colitis is a colon mucosal disorder characterized by intestinal damage and inflammation. This current study aimed to evaluate the effect of meroterpenoid-rich ethanoic extract of a brown algae, Sargassum macrocarpum (MES) on dextran sulfate sodium (DSS)-induced colitis in mice and explore the possible mechanisms. Mice were given 4% DSS in drinking water for 7 days to induce colitis, followed by 3 days of regular water. MES (12 mg/kg body weight) or celecoxib (10 mg/kg body weight) was administrated orally to mice on a daily basis during these 10 days. Both MES and celecoxib supplementations significantly attenuated DSS-induced weight loss, shortening of colon length, elevated myeloperoxidase activity as well as histomorphological changes of colon. MES and celecoxib reduced the inflammation level of colon tissue, as indicated by its suppression on a panel of pro-inflammatory cytokines, including interleukin (IL)-1β, IL-17, tumor necrosis factor α, and interferon γ, and a group of inflammatory proteins, including intracellular adhesion molecule 1, vascular adhesion molecule 1, matrix metalloproteinase (MMP)-2, MMP-9, MMP-13, and inducible nitric oxidase. In addition, their administration down-regulated pro-inflammatory cytokines in serum. Moreover, the supplementation of MES suppressed the DSS-induced hyperactivation of Akt, JNK, and NF-κB signaling pathways. Taken together, our results demonstrate that MES ameliorates DSS-induced colitis in mice, suggesting that MES may have therapeutic implications for the treatment of colitis.
Collapse
Affiliation(s)
- Eun-Ji Joung
- Department of Food Science and Nutrition, Pukyong National University, Busan 608737, Korea; (E.-J.J.); (W.-G.G.); (M.-S.K.)
| | - Lei Cao
- Institute of Marine Sciences, Pukyong National University, Busan 608737, Korea;
| | - Wi-Gyeong Gwon
- Department of Food Science and Nutrition, Pukyong National University, Busan 608737, Korea; (E.-J.J.); (W.-G.G.); (M.-S.K.)
| | - Mi-Sung Kwon
- Department of Food Science and Nutrition, Pukyong National University, Busan 608737, Korea; (E.-J.J.); (W.-G.G.); (M.-S.K.)
| | - Kwon Taek Lim
- Department of Display Engineering, Pukyong National University, Busan 608737, Korea;
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 608737, Korea
| | - Hyeung-Rak Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan 608737, Korea; (E.-J.J.); (W.-G.G.); (M.-S.K.)
- Correspondence: ; Tel.: +82-051-629-5847
| |
Collapse
|
4
|
Kamalian A, Sohrabi Asl M, Dolatshahi M, Afshari K, Shamshiri S, Momeni Roudsari N, Momtaz S, Rahimi R, Abdollahi M, Abdolghaffari AH. Interventions of natural and synthetic agents in inflammatory bowel disease, modulation of nitric oxide pathways. World J Gastroenterol 2020; 26:3365-3400. [PMID: 32655263 PMCID: PMC7327787 DOI: 10.3748/wjg.v26.i24.3365] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/09/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) refers to a group of disorders characterized by chronic inflammation of the gastrointestinal (GI) tract. The elevated levels of nitric oxide (NO) in serum and affected tissues; mainly synthesized by the inducible nitric oxide synthase (iNOS) enzyme; can exacerbate GI inflammation and is one of the major biomarkers of GI inflammation. Various natural and synthetic agents are able to ameliorate GI inflammation and decrease iNOS expression to the extent comparable with some IBD drugs. Thereby, the purpose of this study was to gather a list of natural or synthetic mediators capable of modulating IBD through the NO pathway. Electronic databases including Google Scholar and PubMed were searched from 1980 to May 2018. We found that polyphenols and particularly flavonoids are able to markedly attenuate NO production and iNOS expression through the nuclear factor κB (NF-κB) and JAK/STAT signaling pathways. Prebiotics and probiotics can also alter the GI microbiota and reduce NO expression in IBD models through a broad array of mechanisms. A number of synthetic molecules have been found to suppress NO expression either dependent on the NF-κB signaling pathway (i.e., dexamethasone, pioglitazone, tropisetron) or independent from this pathway (i.e., nicotine, prednisolone, celecoxib, β-adrenoceptor antagonists). Co-administration of natural and synthetic agents can affect the tissue level of NO and may improve IBD symptoms mainly by modulating the Toll like receptor-4 and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Aida Kamalian
- Department of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Masoud Sohrabi Asl
- Department of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mahsa Dolatshahi
- Department of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Khashayar Afshari
- Department of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Shiva Shamshiri
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran 1417614411, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran 1417614411, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran 1417614411, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran 1417614411, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| |
Collapse
|
5
|
Preparation, characterization, and evaluation of celecoxib eutectic mixtures with adipic acid/saccharin for improvement of wettability and dissolution rate. Int J Pharm 2019; 554:61-71. [DOI: 10.1016/j.ijpharm.2018.10.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 11/18/2022]
|
6
|
Fakhraei N, Javadian N, Rahimian R, Nili F, Rahimi N, Hashemizadeh S, Dehpour AR. Involvement of central opioid receptors in protective effects of methadone on experimental colitis in rats. Inflammopharmacology 2018; 26:1399-1413. [PMID: 30318564 DOI: 10.1007/s10787-018-0538-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 10/01/2018] [Indexed: 01/16/2023]
Abstract
PURPOSE There are several lines of evidence on the protective roles of opioids in gastrointestinal inflammatory conditions. This study aims to distinguish the central and peripheral roles of methadone, a non-selective opioid receptor agonist, in an acute model of ulcerative colitis in male rats. METHODS Ulcerative colitis was induced by intrarectal administration of acetic acid 4%. Methadone was injected subcutaneously (s.c.), 5 and 10 mg/kg, and intracerebroventricular (i.c.v.), 50 and 300 ng/rat. Opioid antagonists were employed. Methylnaltrexone (MNTX; 5 mg/kg, i.p.), a peripherally acting opioid receptor antagonist, and naltrexone (NTX; 5 mg/kg, i.p. and 10 ng/rat, i.c.v.), a peripherally and centrally acting opioid receptor antagonist were injected before methadone (10 mg/kg, s.c. and or 300 ng/rat, i.c.v.) administration. NTX (5 mg/kg, i.p. and 10 ng/rat, i.c.v.) were administered 30 min prior to administration of methadone (10 mg/kg, s.c. and 300 ng/rat, i.c.v.), respectively. MNTX (5 mg/kg, i.p.) was injected 30 min prior to methadone (10 mg/kg, s.c.). Seventy-two hours following colitis induction, macroscopic and microscopic mucosal lesions, and the colonic levels of tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) were determined. RESULTS Methadone (300 ng/rat, i.c.v.) and Methadone (5 and 10 mg/kg, s.c.) improved the macroscopic and microscopic scores through opioid receptors. Also, a significant reduction in TNF-α and IL-1β was observed. Peripherally and centrally injected NTX significantly reversed methadone 10 mg/kg s.c. anti-inflammatory effects while MNTX could not completely reverse this effect. Moreover, centrally administered methadone (300 ng/rat) showed the anti-inflammatory effect which was reversed by central administration of NTX (10 ng/rat). CONCLUSIONS The opioid receptors mainly the central opioid receptors may mediate the protective actions of methadone on the experimental model of inflammatory bowel disease in rat.
Collapse
MESH Headings
- Acetic Acid
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/therapeutic use
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Colitis, Ulcerative/chemically induced
- Colitis, Ulcerative/mortality
- Colitis, Ulcerative/prevention & control
- Injections, Intraventricular
- Injections, Subcutaneous
- Interleukin-1beta/biosynthesis
- Intestinal Mucosa/pathology
- Male
- Methadone/administration & dosage
- Methadone/therapeutic use
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Rats
- Rats, Wistar
- Receptors, Opioid/drug effects
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Nahid Fakhraei
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nina Javadian
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Rahimian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, G1J 2G3, Canada
| | - Fatemeh Nili
- Department of Pathology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Rahimi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Hashemizadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Lin X, Sun Q, Zhou L, He M, Dong X, Lai M, Liu M, Su Y, Jia C, Han Z, Liu S, Zheng H, Jiang Y, Ling H, Li M, Chen J, Zou Z, Bai X. Colonic epithelial mTORC1 promotes ulcerative colitis through COX-2-mediated Th17 responses. Mucosal Immunol 2018; 11:1663-1673. [PMID: 30082707 DOI: 10.1038/s41385-018-0018-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 01/29/2018] [Accepted: 02/17/2018] [Indexed: 02/07/2023]
Abstract
The functional role of colonic epithelium in the pathogenesis of ulcerative colitis (UC) remains unclear. Here, we reveal a novel mechanism by which colonic epithelia recruit T helper-17 (Th17) cells during the onset of UC. mTOR complex 1 (mTORC1) was hyper-activated in colonic epithelia of UC mice. While colonic epithelial TSC1 (mTORC1 negative regulator) disruption induced constitutive mTORC1 activation in the colon epithelia and aggravated UC, RPTOR (essential mTORC1 component) depletion inactivated mTORC1 and ameliorated UC. TSC1 deficiency enhanced, whereas RPTOR ablation reduced the expression of cyclooxygenase 2 (COX-2), interleukin-1 (IL-1), IL-6, and IL-23, as well as Th17 infiltration in the colon. Importantly, inhibition of COX-2 reversed the elevation in the expression of these proinflammatory mediators induced by TSC1 deficiency, and subsequently reduced the symptoms and pathological characteristics of UC in mouse models. Mechanistically, mTORC1 activates COX-2 transcription via phosphorylating STAT3 and enhancing it's binding to the COX-2 promoter. Consistently, enhanced mTORC1 activity and COX2 expression, as well as strong positive correlation between each other, were observed in colonic epithelial tissues of UC patients. Collectively, our study demonstrates an essential role of epithelial mTORC1 in UC pathogenesis and establishes a novel link between colonic epithelium, Th17 responses, and UC development.
Collapse
Affiliation(s)
- Xiaojun Lin
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China
| | - Qiuyi Sun
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China
| | - Ling Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Minhong He
- Department of Oncology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Xiaoying Dong
- Department of Oncology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Mingqiang Lai
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China
| | - Miao Liu
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China
| | - Yongchun Su
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China
| | - Chunhong Jia
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China
| | - Zelong Han
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Side Liu
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Hang Zheng
- Department of Oncology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Hui Ling
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 7054, USA
| | - Mangmang Li
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China
| | - Juan Chen
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China.
| | - Zhipeng Zou
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China.
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China.
| |
Collapse
|
8
|
Shrimp JH, Garlick JM, Tezil T, Sorum AW, Worth AJ, Blair IA, Verdin E, Snyder NW, Meier JL. Defining Metabolic and Nonmetabolic Regulation of Histone Acetylation by NSAID Chemotypes. Mol Pharm 2017; 15:729-736. [PMID: 29240439 DOI: 10.1021/acs.molpharmaceut.7b00943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are well-known for their effects on inflammatory gene expression. Although NSAIDs are known to impact multiple cellular signaling mechanisms, a recent finding is that the NSAID salicylate can disrupt histone acetylation, in part through direct inhibition of the lysine acetyltransferase (KAT) p300/CBP. While salicylate is a relatively weak KAT inhibitor, its CoA-linked metabolite is more potent; however, the ability of NSAID metabolites to inhibit KAT enzymes biochemically and in cells remains relatively unexplored. Here we define the role of metabolic and nonmetabolic mechanisms in inhibition of KAT activity by NSAID chemotypes. First, we screen a small panel of NSAIDs for biochemical inhibition of the prototypical KAT p300, leading to the finding that many carboxylate-containing NSAIDs, including ibuprofen, are able to function as weak inhibitors. Assessing the inhibition of p300 by ibuprofen-CoA, a known NSAID metabolite, reveals that linkage of ibuprofen to CoA increases its biochemical potency toward p300 and other KAT enzymes. In cellular studies, we find that carboxylate-containing NSAIDs inhibit histone acetylation. Finally, we exploit the stereoselective metabolism of ibuprofen to assess the role of its acyl-CoA metabolite in regulation of histone acetylation. This unique strategy reveals that formation of ibuprofen-CoA and histone acetylation are poorly correlated, suggesting metabolism may not be required for ibuprofen to inhibit histone acetylation. Overall, these studies provide new insights into the ability of NSAIDs to alter histone acetylation, and illustrate how selective metabolism may be leveraged as a tool to explore the influence of metabolic acyl-CoAs on cellular enzyme activity.
Collapse
Affiliation(s)
- Jonathan H Shrimp
- Chemical Biology Laboratory , National Cancer Institute , Frederick , Maryland 21702 , United States
| | - Julie M Garlick
- Chemical Biology Laboratory , National Cancer Institute , Frederick , Maryland 21702 , United States
| | - Tugsan Tezil
- Buck Institute for Research on Aging, Novato , California 94945 , United States
| | - Alexander W Sorum
- Chemical Biology Laboratory , National Cancer Institute , Frederick , Maryland 21702 , United States
| | - Andrew J Worth
- Penn SRP Center, Center of Excellence in Environmental Toxicology , University of Pennsylvania , Philadelphia Pennsylvania 19104 , United States
| | - Ian A Blair
- Penn SRP Center, Center of Excellence in Environmental Toxicology , University of Pennsylvania , Philadelphia Pennsylvania 19104 , United States
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato , California 94945 , United States
| | - Nathaniel W Snyder
- Drexel University, A.J. Drexel Autism Institute , 3020 Market Street , Philadelphia Pennsylvania 19104 , United States
| | - Jordan L Meier
- Chemical Biology Laboratory , National Cancer Institute , Frederick , Maryland 21702 , United States
| |
Collapse
|
9
|
Nagarjun S, Dhadde SB, Veerapur VP, Thippeswamy BS, Chandakavathe BN. Ameliorative effect of chromium-d-phenylalanine complex on indomethacin-induced inflammatory bowel disease in rats. Biomed Pharmacother 2017; 89:1061-1066. [PMID: 28292014 DOI: 10.1016/j.biopha.2017.02.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/11/2017] [Accepted: 02/13/2017] [Indexed: 02/06/2023] Open
Abstract
Present study was designed to evaluate the effect of chromium-d-phenylalanine complex (Cr (d-phe)3) on indomethacin-induced inflammatory bowel disease (IBD) in rats. Adult Wistar rats were pretreated with vehicle/Cr (d-phe)3 (30, 60 and 90μg/kg, p.o.) for 11days. On day 8 and 9, after one h of the above mentioned treatment, indomethacin (7.5mg/kg/day,s.c.) was administered to induce IBD. On day 12, blood samples were collected from animals for lactate dehydrogenase (LDH) estimation and ileum was isolated for macroscopic scoring, biochemical estimation (lipid peroxidation, reduced glutathione and myeloperoxidase activity) and histopathological study. Administration of indomethacin significantly altered the serum LDH, macroscopic and microscopic appearance and biochemical parameters in ileum tissue. Cr (d-phe)3, at all the tested doses, caused a significant reversal of changes induced by indomethacin. Present study demonstrates the protective effect of Cr (d-phe)3 against indomethacin-induced IBD in rats. The observed protective effect might be attributed to the antioxidant and anti-inflammatory properties of Cr (d-phe)3.
Collapse
Affiliation(s)
- S Nagarjun
- Sree Siddaganga College of Pharmacy, Tumkur, 572 102, Karnataka, India
| | - Shivsharan B Dhadde
- D.S.T.S. Mandal's College of Pharmacy, Solapur, 413 004, Maharashtra, India.
| | | | - B S Thippeswamy
- Sree Siddaganga College of Pharmacy, Tumkur, 572 102, Karnataka, India
| | | |
Collapse
|
10
|
Young Cho J, Yeon Kim H, Me Kim H, Na Song H, Hong E, Hwang JK, Sook Chun H. Standardized ethanolic extract of the rhizome of Curcuma xanthorrhiza prevents murine ulcerative colitis by regulation of inflammation. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.01.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
11
|
Wu C, Gong MQ, Liu BY, Zhuo RX, Cheng SX. Co-delivery of multiple drug resistance inhibitors by polymer/inorganic hybrid nanoparticles to effectively reverse cancer drug resistance. Colloids Surf B Biointerfaces 2016; 149:250-259. [PMID: 27768915 DOI: 10.1016/j.colsurfb.2016.10.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 09/26/2016] [Accepted: 10/13/2016] [Indexed: 01/09/2023]
Abstract
To effectively reverse multiple drug resistance (MDR) in tumor treatments, a functional nano-sized drug delivery system with active targeting function and pH sensitivity was prepared for the co-delivery of multiple drug resistance inhibitors. Buthionine sulfoximine (BSO) to inhibit GSH synthesis and celecoxib (CXB) to down-regulate P-gp expression were co-loaded in polymer/inorganic hybrid nanoparticles to form buthionine sulfoximine/celecoxib@biotin-heparin/heparin/calcium carbonate/calcium phosphate nanoparticles (BSO/CXB@BNP). To investigate the reversal of MDR, the drug resistant cells (MCF-7/ADR) were pretreated by the dual-inhibitor loaded nanoparticles (BSO/CXB@BNP) followed by the treatment of doxorubicin (DOX) loaded nanoparticles (DOX@BNP). The dual-inhibitor loaded nanoparticles (BSO/CXB@BNP) exhibited greatly enhanced efficiency in down-regulation of GSH and P-gp since BSO and CXB had combined effects on the reduction of GSH and P-gp in drug resistant tumor cells. As a result, BSO/CXB@BNP exhibited a significantly improved capability in reversal of MDR compared with mono-inhibitor loaded nanoparticles (CXB@BNP and BSO@BNP). As compared with free drug resistance inhibitors, delivery of drug resistance inhibitors by functional nanocarriers could obviously improve the therapeutic efficiency due to enhanced cellular uptake and increased intracellular drug accumulation. The study on immunostimulatory effects of different treatments showed that BSO/CXB@BNP treatment resulted in the lowest concentration of interleukin 10, a cytokine related to tumor development. These results suggest the nanoparticulate drug delivery platform developed in this study has promising applications in multiple drug delivery to overcome drug resistance in tumor treatments.
Collapse
Affiliation(s)
- Cong Wu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Meng-Qing Gong
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Bo-Ya Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China.
| |
Collapse
|
12
|
Bazan L, Bendas ER, El Gazayerly ON, Badawy SS. Comparative pharmaceutical study on colon targeted micro-particles of celecoxib: in-vitro–in-vivo evaluation. Drug Deliv 2016; 23:3339-3349. [DOI: 10.1080/10717544.2016.1178824] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Lamyaa Bazan
- Pharmaceutical Technology Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt,
| | - Ehab R. Bendas
- Clinical Pharmacy Department, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University, Cairo, Egypt, and
| | - Omaima N. El Gazayerly
- Pharmaceutics & Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sabry Sayed Badawy
- Pharmaceutical Technology Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt,
| |
Collapse
|
13
|
Moreno-Borque R, Matito A, Álvarez-Twose I, Morgado JM, Sánchez-Muñoz L, Orfao A, Escribano L. Response to celecoxib in a patient with indolent systemic mastocytosis presenting with intractable diarrhea. Ann Allergy Asthma Immunol 2016; 115:456-7. [PMID: 26505934 DOI: 10.1016/j.anai.2015.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/28/2015] [Accepted: 08/12/2015] [Indexed: 10/22/2022]
Affiliation(s)
- Ricardo Moreno-Borque
- Servicio de Alergología, Hospital Rey Juan Carlos, Móstoles, Madrid; Spanish Network on Mastocytosis, Toledo, Spain.
| | - Almudena Matito
- Spanish Network on Mastocytosis, Toledo, Spain; Instituto de Estudios de Mastocitosis de Castilla-La Mancha, Hospital Virgen del Valle, Toledo, Spain
| | - Ivan Álvarez-Twose
- Spanish Network on Mastocytosis, Toledo, Spain; Instituto de Estudios de Mastocitosis de Castilla-La Mancha, Hospital Virgen del Valle, Toledo, Spain
| | - Jose Mario Morgado
- Spanish Network on Mastocytosis, Toledo, Spain; Instituto de Estudios de Mastocitosis de Castilla-La Mancha, Hospital Virgen del Valle, Toledo, Spain
| | - Laura Sánchez-Muñoz
- Spanish Network on Mastocytosis, Toledo, Spain; Instituto de Estudios de Mastocitosis de Castilla-La Mancha, Hospital Virgen del Valle, Toledo, Spain
| | - Alberto Orfao
- Spanish Network on Mastocytosis, Toledo, Spain; Servicio General de Citometría, Centro de Investigación del Cáncer/IBMCC (USAL/CSIC) and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Luis Escribano
- Spanish Network on Mastocytosis, Toledo, Spain; Servicio General de Citometría, Centro de Investigación del Cáncer/IBMCC (USAL/CSIC) and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
14
|
Pervin M, Hasnat MA, Lim JH, Lee YM, Kim EO, Um BH, Lim BO. Preventive and therapeutic effects of blueberry (Vaccinium corymbosum) extract against DSS-induced ulcerative colitis by regulation of antioxidant and inflammatory mediators. J Nutr Biochem 2015; 28:103-13. [PMID: 26878787 DOI: 10.1016/j.jnutbio.2015.10.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 10/06/2015] [Accepted: 10/12/2015] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD) is an inflammatory disorder caused by hyperactivation of effector immune cells that produce high levels of proinflammatory cytokines. The aims of our study were to determine whether orally administered blueberry extract (BE) could attenuate or prevent the development of experimental colitis in mice and to elucidate the mechanism of action. Female Balb/C mice (n=7) were randomized into groups differing in treatment conditions (prevention and treatment) and dose of BE (50 mg/kg body weight). Acute ulcerative colitis was induced by oral administration of 3% dextran sodium sulfate for 7 days in drinking water. Colonic mucosal injury was assessed by clinical, macroscopic, biochemical and histopathological examinations. BE significantly decreased disease activity index and improved the macroscopic and histological score of colons when compared to the colitis group (P<.05). BE markedly attenuated myeloperoxidase accumulation (colitis group 54.97±2.78 nmol/mg, treatment group 30.78±1.33 nmol/mg) and malondialdehyde in colon and prostaglandin E2 level in serum while increasing the levels of superoxide dismutase and catalase (colitis group 11.94±1.16 U/ml, BE treatment group 16.49±0.39 U/ml) compared with the colitis group (P<.05). mRNA levels of the cyclooxygenase (COX)-2, interferon-γ, interleukin (IL)-1β and inducible nitric oxide synthase cytokines were determined by reverse transcriptase polymerase chain reaction. Immunohistochemical analysis showed that BE attenuates the expression of COX-2 and IL-1β in colonic tissue. Moreover, BE reduced the nuclear translocation of nuclear transcription factor kappa B (NF-κB) by immunofluorescence analysis. Thus, the anti-inflammatory effect of BE at colorectal sites is a result of a number of mechanisms: antioxidation, down-regulation of the expression of inflammatory mediators and inhibition of the nuclear translocation of NF-κB.
Collapse
Affiliation(s)
- Mehnaz Pervin
- College of Biomedical & Health Science, Department of Life Science, Konkuk University, Chungju, 380-701, Republic of Korea
| | - Md Abul Hasnat
- College of Biomedical & Health Science, Department of Life Science, Konkuk University, Chungju, 380-701, Republic of Korea
| | - Ji-Hong Lim
- College of Biomedical & Health Science, Department of Life Science, Konkuk University, Chungju, 380-701, Republic of Korea
| | - Yoon-Mi Lee
- College of Biomedical & Health Science, Department of Life Science, Konkuk University, Chungju, 380-701, Republic of Korea
| | - Eun Ok Kim
- Functional Food Center, KIST Gangneung Institute, 290, Daejeon-dong, Gangneung, Gangwon, 210-340, Republic of Korea
| | - Byung-Hun Um
- Functional Food Center, KIST Gangneung Institute, 290, Daejeon-dong, Gangneung, Gangwon, 210-340, Republic of Korea
| | - Beong Ou Lim
- College of Biomedical & Health Science, Department of Life Science, Konkuk University, Chungju, 380-701, Republic of Korea.
| |
Collapse
|
15
|
Murrell DE, Denham JW, Harirforoosh S. Histopathology and oxidative stress analysis of concomitant misoprostol and celecoxib administration. J Toxicol Pathol 2015; 28:165-70. [PMID: 26441478 PMCID: PMC4588210 DOI: 10.1293/tox.2015-0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/24/2015] [Indexed: 12/16/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs), non-selective or selective inhibitors of
cyclooxygenase (COX-1 and -2), reduce pain and inflammation associated with arthritic
diseases. Celecoxib, a COX-2-selective inhibitor providing decreased gastric injury
relative to non-selective NSAIDs, is commonly prescribed. Misoprostol, a prostaglandin
analog, supplements NSAID-inhibited prostaglandin levels. As concomitant celecoxib and
misoprostol administration has been shown to intensify renal adverse effects, this article
examined the influence of concomitant administration on hepatic histopathology, oxidative
stress, and celecoxib concentration. On days 1 and 2, rat groups (n = 6) were gavaged
twice daily (two groups with vehicle and two groups with 100 μg/kg misoprostol). From day
3 to day 9, one celecoxib dose (40 mg/kg) replaced a vehicle dose of one group and one
group received celecoxib in addition to misoprostol. Livers were harvested on day 10. No
hepatic abnormalities were observed denoting a lack of influence by either drug. Also no
change in mean biomarker levels was detected. The changes in hepatic celecoxib
concentration in the misoprostol-receiving group compared to control were not significant.
Thus misoprostol does not influence hepatic celecoxib effects in terms of histopathology,
oxidative stress, or celecoxib concentration level at the dosage and duration
examined.
Collapse
Affiliation(s)
- Derek E Murrell
- Department of Pharmaceutical Sciences, Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - James W Denham
- Department of Pathology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Sam Harirforoosh
- Department of Pharmaceutical Sciences, Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, United States of America
| |
Collapse
|
16
|
Lee S, Lee Y, Kim W, Nam J, Jeong S, Yoo JW, Kim MS, Moon HR, Jung Y. Evaluation of glycine-bearing celecoxib derivatives as a colon-specific mutual prodrug acting on nuclear factor-κB, an anti-inflammatory target. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:4227-37. [PMID: 26300626 PMCID: PMC4535551 DOI: 10.2147/dddt.s88543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In an inflammatory state where HOCl is generated, glycine readily reacts with HOCl to produce glycine chloramine, an anti-inflammatory oxidant. Colonic delivery of celecoxib elicits anticolitic effects in a trinitrobenzene sulfonic acid-induced rat colitis model. Glycine-bearing celecoxib derivatives were prepared and evaluated as a colon-specific mutual prodrug acting on nuclear factor-κB (NFκB), an anticolitic target. Glycylcelecoxib (GC), N-glycylaspart-1-ylcelecoxib (N-GA1C), and C-glycylaspart-1-ylcelecoxib (C-GA1C) were synthesized and their structures identified using infrared and proton nuclear magnetic resonance spectrometer. The celecoxib derivatives were chemically stable in pH 6.8 and 1.2 buffers. GC and C-GA1C were resistant to degradation in the small intestinal contents, while N-GA1C was substantially cleaved to release celecoxib. In contrast, all the celecoxib derivatives were degraded to liberate celecoxib in the cecal content. These results suggest that GC and C-GA1C could be delivered to and liberate celecoxib and glycine in the large intestine. In human colon carcinoma HCT116 and murine macrophage RAW264.7 cells, combined celecoxib–glycine chloramine treatment additively suppressed the production of proinflammatory NFκB target gene products. Collectively, our data suggest that C-GA1C is a potential colon-specific mutual prodrug acting against NFκB.
Collapse
Affiliation(s)
- Sunyoung Lee
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Yonghyun Lee
- College of Pharmacy, Pusan National University, Busan, South Korea ; Bio-Nanomedicine Lab, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Wooseong Kim
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Joon Nam
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Seongkeun Jeong
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Hyung Ryong Moon
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan, South Korea
| |
Collapse
|
17
|
Lee Y, Kim J, Kim W, Nam J, Jeong S, Lee S, Yoo JW, Kim MS, Jung Y. Celecoxib coupled to dextran via a glutamic acid linker yields a polymeric prodrug suitable for colonic delivery. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:4105-13. [PMID: 26251576 PMCID: PMC4524528 DOI: 10.2147/dddt.s89077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Celecoxib, a selective cyclooxygenase-2 inhibitor, is potentially useful for the treatment of colonic diseases such as colorectal cancer and colitis. However, the cardiovascular toxicity of celecoxib limits its routine use in the clinic. Generally, colon-specific delivery of a drug both increases the therapeutic availability in the large intestine and decreases the systemic absorption of the drug, most likely resulting in enhanced therapeutic effects against colonic diseases such as colitis and reduced systemic side effects. To develop a colon-specific prodrug of celecoxib that could reduce its cardiovascular toxicity and improve its therapeutic activity, dextran–glutamic acid–celecoxib conjugate (glutam-1-yl celecoxib-dextran ester [G1CD]) was prepared and evaluated. While stable in pH 1.2 and 6.8 buffer solutions and small-intestinal contents, G1CD efficiently released celecoxib in cecal contents. Oral administration of G1CD to rats delivered a larger amount of celecoxib to the large intestine than free celecoxib. G1CD prevented the systemic absorption of celecoxib and did not decrease the serum level of 6-ketoprostaglandin F1α, an inverse indicator of cardiovascular toxicity of celecoxib. Collectively, G1CD may be a polymeric colon-specific celecoxib prodrug with therapeutic and toxicological advantages.
Collapse
Affiliation(s)
- Yonghyun Lee
- College of Pharmacy, Pusan National University, Busan, Republic of Korea ; Bio-Nanomedicine Laboratory, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jungyun Kim
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Wooseong Kim
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Joon Nam
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Seongkeun Jeong
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Sunyoung Lee
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
18
|
Kim W, Lee Y, Jeong S, Nam J, Lee S, Jung Y. Colonic delivery of celecoxib is a potential pharmaceutical strategy for repositioning the selective COX-2 inhibitor as an anti-colitic agent. Arch Pharm Res 2015; 38:1830-8. [PMID: 25860026 DOI: 10.1007/s12272-015-0602-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/06/2015] [Indexed: 11/26/2022]
Abstract
Celecoxib is a selective cyclooxygenase-2 inhibitor applied to the treatment of arthritis. Repositioning the anti-inflammatory drug as an anti-inflammatory bowel disease drug has obstacles such as controversial anti-colitic efficacy and potential side effects. We examined whether colonic delivery of celecoxib could circumvent the therapeutic limitations. N-succinylglutam-1-yl celecoxib (SG1C), a colon-specific prodrug of celecoxib), was administered orally to rats with colitis and the anti-inflammatory activity and pharmacologic mechanisms were investigated. SG1C alleviated the colonic injury and lowered myeloperoxidase activity in the inflamed colonic tissues much more effectively than conventional celecoxib. While suppressing expression of pro-inflammatory nuclear factor kappaB gene products including cyclooxygenase-2, SG1C elevated an anti-inflammatory nuclear factor-erythroid 2 p45 (NF-E2)-related factor 2 (Nrf2) and its target gene product heme oxygenase (HO)-1 in the inflamed colon. In contrast, no significant molecular effects were observed with conventional celecoxib. Unlike conventional celecoxib, SG1C did not lower the serum level of 6-keto-PGF1α, an inverse indicator of cardiovascular adverse effects. Collectively, colonic delivery of celecoxib, likely improving therapeutic and toxicological properties of celecoxib, may be a feasible pharmaceutical strategy to therapeutically switch celecoxib to an anti-colitic drug.
Collapse
Affiliation(s)
- Wooseong Kim
- College of Pharmacy, Pusan National University, Busan, 609-735, South Korea.
| | - Yonghyun Lee
- College of Pharmacy, Pusan National University, Busan, 609-735, South Korea.
- Bio-Nanomedicine Laboratory, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, South Korea.
| | - Seongkeun Jeong
- College of Pharmacy, Pusan National University, Busan, 609-735, South Korea.
| | - Joon Nam
- College of Pharmacy, Pusan National University, Busan, 609-735, South Korea.
| | - Sunyoung Lee
- College of Pharmacy, Pusan National University, Busan, 609-735, South Korea.
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan, 609-735, South Korea.
| |
Collapse
|
19
|
Lee Y, Kim W, Hong S, Park H, Yum S, Yoon JH, Jung Y. Colon-targeted celecoxib ameliorates TNBS-induced rat colitis: a potential pharmacologic mechanism and therapeutic advantages. Eur J Pharmacol 2014; 726:49-56. [PMID: 24462351 DOI: 10.1016/j.ejphar.2014.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/20/2013] [Accepted: 01/08/2014] [Indexed: 01/22/2023]
Abstract
The clinical usefulness of celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, for treatment of inflammatory bowel disease (IBD) is controversial in terms of efficacy and toxicity. To overcome these problems, colon-specific drug delivery was adopted, which generally confers therapeutic and toxicological advantages of drugs for treatment of colonic diseases. N-succinylaspart-1-yl celecoxib (SA1C), a colon-specific prodrug of celecoxib, was administered orally to rats with experimental colitis, and the anti-colitic effects and a molecular mechanism were investigated and compared to those of conventional celecoxib. SA1C, which delivered a much greater amount of celecoxib to the inflamed colon, alleviated the colonic injury, lowered myeloperoxidase activity in the inflamed colonic tissues and was much more effective than conventional celecoxib. SA1C but not conventional celecoxib significantly attenuated expression of NFκB target gene products in the inflamed tissues. Consistent with this, SA1C effectively prevented nuclear accumulation of p65 in the inflamed tissues. Moreover, while conventional celecoxib lowered the serum level of 6-keto-PGF1α, an inverse indicator of cardiovascular toxicity, SA1C did not change its serum level. Our data suggest that colonic delivery of celecoxib is a feasible strategy for treatment of IBD with improved therapeutic and toxicological properties.
Collapse
|
20
|
Ixeris dentata NAKAI Reduces Clinical Score and HIF-1 Expression in Experimental Colitis in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:671281. [PMID: 24194783 PMCID: PMC3782128 DOI: 10.1155/2013/671281] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 08/07/2013] [Indexed: 01/17/2023]
Abstract
Ixeris dentata (ID) is an herbal medicine used in Asian countries to treat indigestion, pneumonia, hepatitis, contusions, and tumors; however, its effect on intestinal inflammation is unknown. Thus, we investigated the effect of ID in the dextran sulfate sodium (DSS) model of colitis in female BALB/c mice; animals were evaluated after seven days of DSS treatment. DSS-treated mice showed considerable clinical signs, including weight loss, reduced colon length, colonic epithelial injury, infiltration of inflammatory cells in the colon tissue, and upregulation of inflammatory mediators. However, administration of ID attenuated body weight loss, colon shortening, and the increase in disease activity index score. ID also significantly decreased the colonic mucosal injury and the number of infiltrating mast cells. Moreover, ID inhibited the expressions of cyclooxygenase-2 and hypoxia-inducible factor-1α in colon tissue. Taken together, the results provide experimental evidence that ID might be a useful therapy for patients with ulcerative colitis.
Collapse
|
21
|
Xing J, You C, Dong K, Sun J, You H, Dong Y, Sun J. Ameliorative effects of 3,4-oxo-isopropylidene-shikimic acid on experimental colitis and their mechanisms in rats. Int Immunopharmacol 2013; 15:524-31. [PMID: 23434856 DOI: 10.1016/j.intimp.2013.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 01/26/2013] [Accepted: 02/07/2013] [Indexed: 01/17/2023]
Abstract
The aim of the present study was to investigate the therapeutic effect and mechanism of 3,4-oxo-isopropylidene-shikimic acid (ISA) on 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis in rats. (50, 100, 200 mg/kg) was administered for 14 days, 1 day after the induction of colitis by TNBS. The colonic injury and inflammation were assessed by macroscopic damage scores and myeloperoxidase (MPO) activity. Malondialdehyde (MDA) and nitric oxide (NO) levels, and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in plasma were measured with biochemical methods. Prostaglandin E2 (PGE2) level in colon was determined by radioimmunoassay. Expressions of inducible nitric oxide synthase (iNOS), cyclo-oxygenase-2 (COX-2), inhibitor kappa B-alpha (IκBα) and nuclear factor kappa B (NF-κB) p65 proteins in the colonic tissue were detected with immunohistochemistry. Enhanced colonic mucosal injury, inflammatory response and oxidative stress were observed in the animals clystered with TNBS, which was manifested as the significant increase in colon mucosal damage index, MPO activity, levels of MDA, NO and PGE2, as well as the expressions of iNOS, COX-2 and NF-κB p65 proteins in the colonic mucosa, and the significant decrease in expressions of IκBα proteins in the colonic mucosa. However, these parameters were found to be significantly ameliorated in rats treated with ISA at given doses, especially at 100 mg/kg and 200 mg/kg. Administration of ISA may have significant therapeutic effects on experimental colitis in rats, probably due to its mechanism of antioxidation, its inhibition of arachidonic acid metabolism and its modulation of the IκBα/NF-κB p65 expression.
Collapse
Affiliation(s)
- Jianfeng Xing
- Department of Pharmacy, College of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Qandil AM, El Mohtadi FH, Tashtoush BM. Chemical and in vitro enzymatic stability of newly synthesized celecoxib lipophilic and hydrophilic amides. Int J Pharm 2011; 416:85-96. [DOI: 10.1016/j.ijpharm.2011.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 06/06/2011] [Accepted: 06/09/2011] [Indexed: 12/20/2022]
|
23
|
Al-Saffar F, Ganabadi S, Fakurazi S, Yaakub H. Response of Hepatic Metabolizing Enzymes and Oxidative Stress in Orally Administrated Zerumbone Against MIA-Induced Osteoarthritis in Rats. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/javaa.2011.566.573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Varshosaz J, Ahmadi F, Emami J, Tavakoli N, Minaiyan M, Mahzouni P, Dorkoosh F. Microencapsulation of budesonide with dextran by spray drying technique for colon-targeted delivery: an in vitro/in vivo evaluation in induced colitis in rat. J Microencapsul 2011; 28:62-73. [PMID: 21171817 DOI: 10.3109/02652048.2010.529947] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The aim of this study was developing colon targeted-delivery of budesonide for ulcerative colitis. Microcapsules were prepared using spray drying technique by different drug-to-dextran ratios and three molecular weights (MWs) of polymer. Differential scanning calorimetry, X-ray diffraction (XRD), drug release and loading efficiency of microcapsules were studied. In vivo efficacy of the selected formulation prepared by 1 : 10 drug-to-polymer ratio and dextran with MW 500 000 (D10M500) against acetic acid-induced colitis in rats was evaluated and compared to the control and reference groups (mesalasine and budesonide suspensions). The results showed that D10M500 microcapsules could target the drug to colon and its efficacy in reducing macroscopic damage score was higher than mesalasine suspension. Treatment with D10M500 decreased the scores of crypt damage and total colitis significantly compared to the control group which just received the vehicle and the groups treated with mesalasine and budesonide suspension which could not reduce the colitis parameters significantly.
Collapse
Affiliation(s)
- Jaleh Varshosaz
- Department of Pharmaceutics and Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | | | | | | | | | | | | |
Collapse
|
25
|
Ahmadi F, Varshosaz J, Emami J, Tavakoli N, Minaiyan M, Mahzouni P, Dorkoosh F. Preparation and in vitro/in vivo evaluation of dextran matrix tablets of budesonide in experimental ulcerative colitis in rats. Drug Deliv 2010; 18:122-30. [DOI: 10.3109/10717544.2010.520352] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Effectiveness of budesonide-succinate-dextran conjugate as a novel prodrug of budesonide against acetic acid-induced colitis in rats. Int J Colorectal Dis 2010; 25:1159-65. [PMID: 20669022 DOI: 10.1007/s00384-010-1026-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/14/2010] [Indexed: 02/04/2023]
Abstract
BACKGROUND Anti-inflammatory drugs with high potency and low systemic adverse effects, such as budesonide, are drugs of choice for the treatment of ulcerative colitis (UC). Budesonide controlled-release formulations are now being used to induce and maintain clinical remission of Crohn's disease. Budesonide-dextran conjugates were synthesized as novel prodrugs of budesonide for oral controlled delivery of the major part of the drug to the colon without needing to coat the pellets of the drug. The aim of this study was to evaluate the in vivo efficacy of this conjugate against acetic acid-induced colitis in rats. MATERIALS AND METHODS Experimental UC was induced by rectal instillation of 4% solution of acetic acid to rats. After induction of colitis, rats were treated with vehicle (dextran solution), mesalasine (120 mg/kg), budesonide suspension (300 microg/kg) and BSD-70 (equivalent to 300 microg/kg of budesonide), prednisolon (4 mg/kg), hydrocortisone acetate enema (20 mg/kg), and 5-ASA enema (Asacol) (400 mg/kg) for 5 days and then colon macroscopic and microscopic sections were examined for inflammatory response. RESULTS Vehicle-treated rats presented bloody diarrhoea and gross lesions. The effective formulations for attenuating the damage were BSD-70, oral prednisolon and hydrocortisone acetate enema. Rats treated with BSD-70 showed huge improvement in macroscopic and histological scores of colitis compared to the negative control group and mesalasine and budesonide suspension. CONCLUSION Data indicated that budesonide-dextran conjugate is effective in improving signs of inflammation in experimental model of colitis through selective delivery of the drug to the inflamed area.
Collapse
|
27
|
Varshosaz J, Emami J, Ahmadi F, Tavakoli N, Minaiyan M, Fassihi A, Mahzouni P, Dorkoosh F. Preparation of budesonide–dextran conjugates using glutarate spacer as a colon-targeted drug delivery system:in vitro/in vivoevaluation in induced ulcerative colitis. J Drug Target 2010; 19:140-53. [DOI: 10.3109/10611861003801826] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Cui X, Jin Y, Hofseth AB, Pena E, Habiger J, Chumanevich A, Poudyal D, Nagarkatti M, Nagarkatti PS, Singh UP, Hofseth LJ. Resveratrol suppresses colitis and colon cancer associated with colitis. Cancer Prev Res (Phila) 2010; 3:549-59. [PMID: 20332304 DOI: 10.1158/1940-6207.capr-09-0117] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Resveratrol is a naturally occurring polyphenol that exhibits pleiotropic health beneficial effects, including anti-inflammatory, cardio-protective, and cancer-protective activities. It is recognized as one of the more promising natural molecules in the prevention and treatment of chronic inflammatory and autoimmune disorders. Ulcerative colitis is an idiopathic, chronic inflammatory disease of the colon associated with a high colon cancer risk. Here, we used a dextran sulfate sodium (DSS) mouse model of colitis, which resembles human ulcerative colitis pathology. Resveratrol mixed in food ameliorates DSS-induced colitis in mice in a dose-dependent manner. Resveratrol significantly improves inflammation score, downregulates the percentage of neutrophils in the mesenteric lymph nodes and lamina propria, and modulates CD3(+) T cells that express tumor necrosis factor-alpha and IFN-gamma. Markers of inflammation and inflammatory stress (p53 and p53-phospho-Ser(15)) are also downregulated by resveratrol. Because chronic colitis drives colon cancer risk, we carried out experiments to determine the chemopreventive properties of resveratrol. Tumor incidence is reduced from 80% in mice treated with azoxymethane (AOM) + DSS to 20% in mice treated with AOM + DSS + resveratrol (300 ppm). Tumor multiplicity also decreased with resveratrol treatment. AOM + DSS-treated mice had 2.4 +/- 0.7 tumors per animal compared with AOM + DSS + 300 ppm resveratrol, which had 0.2 +/- 0.13 tumors per animal. The current study indicates that resveratrol is a useful, nontoxic complementary and alternative strategy to abate colitis and potentially colon cancer associated with colitis.
Collapse
Affiliation(s)
- Xiangli Cui
- Department of Biomedical and Pharmaceutical Sciences, South Carolina College of Pharmacy, University of South Carolina, 770 Sumter Street, Columbia, SC 29208, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Paiotti APR, Miszputen SJ, Oshima CTF, de Oliveira Costa H, Ribeiro DA, Franco M. Effect of COX-2 inhibitor after TNBS-induced colitis in Wistar rats. J Mol Histol 2009; 40:317-24. [PMID: 19941098 DOI: 10.1007/s10735-009-9243-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 11/09/2009] [Indexed: 01/06/2023]
Abstract
Inflammatory bowel disease (IBD) is a common chronic gastrointestinal disorder characterized by alternating periods of remission and active intestinal inflammation. Some studies suggest that antiinflammatory drugs are a promising alternative for treatment of the disease. Thus, this study aimed to evaluate the effect of lumiracoxib, a selective-cyclooxygenase-2 (COX-2) inhibitor, on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced experimental colitis. Wistar rats (n = 25) were randomized into four groups, as follows: Group (1) Sham group: sham induced-colitis rats; Group (2) TNBS group: nontreated induced-colitis rats; Group (3) Lumiracoxib control group; and Group (4) Lumiracoxib-treated induced-colitis rats. Our results showed that rats from groups 2 and 4 presented similar histopathological damage and macroscopic injury in the distal colon as depicted by significant statistically differences (P < 0.01; P < 0.05) compared to the other two groups. Weak expression of COX-2 mRNA was detected in normal colon cells, while higher levels of COX-2 mRNA were detected in group 2 and group 4. Therapy with lumiracoxib reduced COX-2 expression by 20-30%, but it was still higher and statistically significant compared to data obtained from the lumiracoxib control group. Treatment with the selective COX-2 inhibitor lumiracoxib did not reduce inflammation-associated colonic injury in TNBS-induced experimental colitis. Thus, the use of COX-2 inhibitors for treating IBD should be considered with caution and warrants further experimental investigation to elucidate their applicability.
Collapse
Affiliation(s)
- Ana Paula Ribeiro Paiotti
- Department of Pathology, Paulista Medical School, Federal University of Sao Paulo, Rua Botucatu, Sao Paulo, 04023-062, Brazil.
| | | | | | | | | | | |
Collapse
|
30
|
Mousavizadeh K, Rahimian R, Fakhfouri G, Aslani FS, Ghafourifar P. Anti-inflammatory effects of 5-HT receptor antagonist, tropisetron on experimental colitis in rats. Eur J Clin Invest 2009; 39:375-83. [PMID: 19302562 DOI: 10.1111/j.1365-2362.2009.02102.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND There is a pressing need for research that will lead to the development of new therapeutic approaches for treating inflammatory bowel disease (IBD). The aim of this study was to investigate the effects of tropisetron, a 5-Hydroxytryptamine (5-HT)-3 receptor antagonist with anti-inflammatory properties in a model of experimental colitis in rat. MATERIALS AND METHODS Acetic acid model of colitis in rats was used. Colitis was induced by intracolonal instillation of 4% (v/v) acetic acid. One hour after induction of colitis, intraperitoneal (IP) or intrarectal (IR) tropisetron (2 mg kg(-1), either route) or dexamethasone (1 mg kg(-1), either route) was administered. The severity of colitis was assessed 24 h later using macroscopic and microscopic changes of damaged colon, measurement of inflammatory cytokines interleukin-1beta, interleukin-6 and tumour necrosis factor-alpha levels and oxidative stress markers myeloperoxidase (MPO) and malondialdehyde (MDA) in colonic tissues. RESULTS Tropisetron decreased colonic macroscopic and microscopic damage scores. This was associated with significant reduction in both neutrophil infiltration indicated by decreased colonic MPO activity and lipid peroxidation measured by MDA content, as well as a decreased colonic inflammatory cytokines. IR tropisetron decreased colonic damage that was associated with decreased neutrophil infiltration, lipid peroxidation and colonic inflammatory cytokines. Beneficial effects of tropisetron were lower than those of dexamethasone. No significant differences were observed between IP and IR administration with the exception of MDA level more diminished by IP tropisetron and dexamethasone. CONCLUSIONS Tropisetron exert beneficial effects in experimental rat colitis and therefore might be useful in the treatment of IBD.
Collapse
|
31
|
Tanaka KI, Suemasu S, Ishihara T, Tasaka Y, Arai Y, Mizushima T. Inhibition of both COX-1 and COX-2 and resulting decrease in the level of prostaglandins E2 is responsible for non-steroidal anti-inflammatory drug (NSAID)-dependent exacerbation of colitis. Eur J Pharmacol 2008; 603:120-32. [PMID: 19101538 DOI: 10.1016/j.ejphar.2008.11.058] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 11/07/2008] [Accepted: 11/24/2008] [Indexed: 12/17/2022]
Abstract
A number of clinical studies have shown that non-steroidal anti-inflammatory drugs (NSAIDs) exacerbate inflammatory bowel disease; however the molecular mechanism whereby this occurs remains unclear. NSAIDs inhibit cyclooxygenase (COX), which has subtypes COX-1 and COX-2. In this study, we have examined the effect of various types of NSAIDs on the development of dextran sulfate sodium (DSS)-induced colitis, an animal model of inflammatory bowel disease. The DSS-induced colitis was worsened by administration of non-selective NSAIDs but not by COX-1 or COX-2 selective inhibitors. However, administration of a combination of both COX-1- and COX-2-selective inhibitors exacerbated the colitis. The intestinal level of PGE(2) dramatically decreased in response to administration of COX-1- and COX-2-selective inhibitors, and exogenously administered PGE(2) suppressed the exacerbation of colitis by NSAIDs. The expression of mucin proteins, which protect the intestinal mucosa, was suppressed by non-selective NSAIDs and this expression was restored by PGE(2), both in vivo and in vitro. Intestinal mucosal cell growth was inhibited by non-selective NSAIDs and this cell growth was restored by PGE(2), both in vivo and in vitro. This study provides evidence that inhibition of both COX-1 and COX-2 and the resulting dramatic decrease in the intestinal level of PGE(2) is responsible for NSAID-dependent exacerbation of DSS-induced colitis. Furthermore, expression of mucin proteins and intestinal mucosal cell growth seems to be involved in this exacerbation and its suppression by PGE(2).
Collapse
Affiliation(s)
- Ken-Ichiro Tanaka
- Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Oral colon targeted delivery systems for treatment of inflammatory bowel diseases: Synthesis, in vitro and in vivo assessment. Int J Pharm 2008; 358:248-55. [DOI: 10.1016/j.ijpharm.2008.04.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 04/07/2008] [Accepted: 04/14/2008] [Indexed: 01/26/2023]
|
33
|
Cauli O, Rodrigo R, Piedrafita B, Boix J, Felipo V. Inflammation and hepatic encephalopathy: ibuprofen restores learning ability in rats with portacaval shunts. Hepatology 2007; 46:514-9. [PMID: 17659565 DOI: 10.1002/hep.21734] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
UNLABELLED One of the neurological alterations in patients with minimal or overt hepatic encephalopathy is cognitive impairment. This impairment is reproduced in rats with chronic liver failure due to portacaval shunt (PCS). These rats show decreased ability to learn a conditional discrimination task in a Y-maze, likely due to reduced function of the glutamate-nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) pathway in brain. It has been proposed that inflammation exacerbates the neuropsychological alterations induced by hyperammonemia, suggesting that inflammation-associated alterations may contribute to cognitive impairment in hepatic encephalopathy. This study assessed whether treatment with an anti-inflammatory drug, ibuprofen, is able to restore the function of the glutamate-NO-cGMP pathway in cerebral cortex in brain in vivo and/or learning ability in PCS rats. We show that PCS rats have increased levels of interleukin-6 and increased activities of cyclooxygenase and of inducible NO synthase in cerebral cortex, indicating the presence of inflammation. Chronic treatment with ibuprofen normalizes cyclooxygenase and inducible NO synthase activities but not interleukin-6 levels. Moreover, ibuprofen normalizes the function of the glutamate-NO-cGMP pathway in cerebral cortex in vivo and completely restores the ability of rats with chronic liver failure to learn the Y-maze task. This supports that inflammation contributes to the cognitive impairment in hepatic encephalopathy. CONCLUSION the results reported point to the possible therapeutic utility of decreasing inflammation in the treatment of the cognitive deficits in patients with minimal or overt hepatic encephalopathy.
Collapse
Affiliation(s)
- Omar Cauli
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | | | | |
Collapse
|
34
|
Fillmann H, Kretzmann NA, San-Miguel B, Llesuy S, Marroni N, González-Gallego J, Tuñón MJ. Glutamine inhibits over-expression of pro-inflammatory genes and down-regulates the nuclear factor kappaB pathway in an experimental model of colitis in the rat. Toxicology 2007; 236:217-26. [PMID: 17543437 DOI: 10.1016/j.tox.2007.04.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 04/18/2007] [Accepted: 04/19/2007] [Indexed: 12/14/2022]
Abstract
We investigated the effects of glutamine on markers of oxidative stress, nuclear factor kappaB (NF-kappaB) activation, and pro-inflammatory mediators in a rat model of experimental colitis induced by intracolonic administration of 7% acetic acid. Glutamine (25 mg/kg) was given by rectal route 48 and 24h before acetic acid instillation. Glutamine significantly reduced gross damage and histopathological scores, and partially prevented the decrease of anal pressure observed in the animals receiving acetic acid. Increases in the cytosolic concentration of TBARS and hydroperoxide-initiated chemiluminescence were significantly prevented in glutamine-treated animals. Acetic acid instillation induced a marked increase of the NF-kappaB p65 subunit expression in the nucleus and resulted in significant changes in the cytosolic protein level of IkappaB kinases (IKKalpha and IKKbeta) and the non-phosphorylated form of the inhibitor IkappaBalpha. Protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were significantly increased. All these effects were partially prevented by administration of glutamine. It is concluded that the anti-inflammatory activity of glutamine in a rat model of acetic acid-induced colitis may be mediated, at least in part, by inhibition of the expression of certain pro-inflammatory mediators which are regulated by the oxidative stress-sensitive NF-kappaB signalling pathway.
Collapse
Affiliation(s)
- Henrique Fillmann
- Universidade Luterana do Brasil, Hospital de Clinicas Porto Alegre, Brazil
| | | | | | | | | | | | | |
Collapse
|