1
|
Dong Z, Xiong B, Sun T, Jiang R, Feng F, Sun H. Brief analysis of Na v1.7 inhibitors: Mechanism of action and new research trends. Bioorg Med Chem 2025; 128:118180. [PMID: 40403415 DOI: 10.1016/j.bmc.2025.118180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/12/2025] [Accepted: 04/01/2025] [Indexed: 05/24/2025]
Abstract
Nav1.7 has been the most studied ion channel among the 9 subtypes of sodium ion, and it is also one of the popular analgesic targets in recent years. Compared with opioid receptors, because of its advantages of targeting a variety of pain types and being unrelated to addiction, many related inhibitors have been excavated for it, including old drugs and new uses, peptides, and new skeleton small molecules. Some of these inhibitors have reached the second phase of clinical research, and some are still in the laboratory research stage. So far, no exclusive Nav1.7 inhibitor has successfully passed the third phase of clinical research and entered the field of vision of patients. This article reviews the action sites and mechanisms of different Nav1.7 inhibitors in terms of historical background and related analgesic activities, and also summarizes the related inhibitors that are currently under active development, hoping to provide useful information for the research of new Nav1.7 inhibitors.
Collapse
Affiliation(s)
- Zhoujun Dong
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Baichen Xiong
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tianyu Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ruijia Jiang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
2
|
Niu HL, Liu YN, Xue DQ, Dong LY, Liu HJ, Wang J, Zheng YL, Zou AR, Shao LM, Wang K. Inhibition of Nav1.7 channel by a novel blocker QLS-81 for alleviation of neuropathic pain. Acta Pharmacol Sin 2021; 42:1235-1247. [PMID: 34103689 PMCID: PMC8285378 DOI: 10.1038/s41401-021-00682-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 04/14/2021] [Indexed: 02/02/2023]
Abstract
Voltage-gated sodium channel Nav1.7 robustly expressed in peripheral nociceptive neurons has been considered as a therapeutic target for chronic pain, but there is no selective Nav1.7 inhibitor available for therapy of chronic pain. Ralfinamide has shown anti-nociceptive activity in animal models of inflammatory and neuropathic pain and is currently under phase III clinical trial for neuropathic pain. Based on ralfinamide, a novel small molecule (S)-2-((3-(4-((2-fluorobenzyl) oxy) phenyl) propyl) amino) propanamide (QLS-81) was synthesized. Here, we report the electrophysiological and pharmacodynamic characterization of QLS-81 as a Nav1.7 channel inhibitor with promising anti-nociceptive activity. In whole-cell recordings of HEK293 cells stably expressing Nav1.7, QLS-81 (IC50 at 3.5 ± 1.5 μM) was ten-fold more potent than its parent compound ralfinamide (37.1 ± 2.9 μM) in inhibiting Nav1.7 current. QLS-81 inhibition on Nav1.7 current was use-dependent. Application of QLS-81 (10 μM) caused a hyperpolarizing shift of the fast and slow inactivation of Nav1.7 channel about 7.9 mV and 26.6 mV, respectively, and also slowed down the channel fast and slow inactivation recovery. In dissociated mouse DRG neurons, QLS-81 (10 μM) inhibited native Nav current and suppressed depolarizing current pulse-elicited neuronal firing. Administration of QLS-81 (2, 5, 10 mg· kg-1· d-1, i.p.) in mice for 10 days dose-dependently alleviated spinal nerve injury-induced neuropathic pain and formalin-induced inflammatory pain. In addition, QLS-81 (10 μM) did not significantly affect ECG in guinea pig heart ex vivo; and administration of QLS-81 (10, 20 mg/kg, i.p.) in mice had no significant effect on spontaneous locomotor activity. Taken together, our results demonstrate that QLS-81, as a novel Nav1.7 inhibitor, is efficacious on chronic pain in mice, and it may hold developmental potential for pain therapy.
Collapse
Affiliation(s)
- He-Ling Niu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Ya-Ni Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266073, China.
| | - Deng-Qi Xue
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Li-Ying Dong
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Hui-Jie Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Jing Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Yi-Lin Zheng
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - An-Ruo Zou
- Institute of Innovative Drug, Qingdao University, Qingdao, 266021, China
| | - Li-Ming Shao
- School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266073, China.
- Institute of Innovative Drug, Qingdao University, Qingdao, 266021, China.
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Tamar, Hong Kong, China.
| |
Collapse
|
3
|
Gambeta E, Chichorro JG, Zamponi GW. Trigeminal neuralgia: An overview from pathophysiology to pharmacological treatments. Mol Pain 2021; 16:1744806920901890. [PMID: 31908187 PMCID: PMC6985973 DOI: 10.1177/1744806920901890] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The trigeminal nerve (V) is the fifth and largest of all cranial nerves, and it is responsible for detecting sensory stimuli that arise from the craniofacial area. The nerve is divided into three branches: ophthalmic (V1), maxillary (V2), and mandibular (V3); their cell bodies are located in the trigeminal ganglia and they make connections with second-order neurons in the trigeminal brainstem sensory nuclear complex. Ascending projections via the trigeminothalamic tract transmit information to the thalamus and other brain regions responsible for interpreting sensory information. One of the most common forms of craniofacial pain is trigeminal neuralgia. Trigeminal neuralgia is characterized by sudden, brief, and excruciating facial pain attacks in one or more of the V branches, leading to a severe reduction in the quality of life of affected patients. Trigeminal neuralgia etiology can be classified into idiopathic, classic, and secondary. Classic trigeminal neuralgia is associated with neurovascular compression in the trigeminal root entry zone, which can lead to demyelination and a dysregulation of voltage-gated sodium channel expression in the membrane. These alterations may be responsible for pain attacks in trigeminal neuralgia patients. The antiepileptic drugs carbamazepine and oxcarbazepine are the first-line pharmacological treatment for trigeminal neuralgia. Their mechanism of action is a modulation of voltage-gated sodium channels, leading to a decrease in neuronal activity. Although carbamazepine and oxcarbazepine are the first-line treatment, other drugs may be useful for pain control in trigeminal neuralgia. Among them, the anticonvulsants gabapentin, pregabalin, lamotrigine and phenytoin, baclofen, and botulinum toxin type A can be coadministered with carbamazepine or oxcarbazepine for a synergistic approach. New pharmacological alternatives are being explored such as the active metabolite of oxcarbazepine, eslicarbazepine, and the new Nav1.7 blocker vixotrigine. The pharmacological profiles of these drugs are addressed in this review.
Collapse
Affiliation(s)
- Eder Gambeta
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Juliana G Chichorro
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Brazil
| | - Gerald W. Zamponi
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Effects of ralfinamide in models of nerve injury and chemotherapy-induced neuropathic pain. Eur J Pharmacol 2018; 823:27-34. [PMID: 29408090 DOI: 10.1016/j.ejphar.2018.01.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/29/2017] [Accepted: 01/25/2018] [Indexed: 11/22/2022]
Abstract
Neuropathic pain is among the most common and difficult-to-treat types of chronic pain and is associated with sodium channel malfunction. The sodium channel blocker ralfinamide has exhibited potent analgesic effects in several preclinical pain models and in patients with mixed neuropathic pain syndromes (Phase II trials), but it failed to ameliorate neuropathic low back pain in Phase III trials. It is unclear whether ralfinamide is effective against neuropathic pain induced by specified etiologies. In the present study, the antinociceptive effects of ralfinamide in neuropathic pain models induced by spared nerve injury and chemotherapy were compared in a gabapentin-controlled manner. The effects of ralfinamide on physiological pain were evaluated in mechanical withdrawal, hot plate, and acetic acid writhing tests. We also investigated the effects of ralfinamide on cardiovascular function and locomotor activity. Oral ralfinamide dose-dependently alleviated spared nerve injury-induced allodynia in rats and mice. Ralfinamide increased mechanical withdrawal thresholds in oxaliplatin-induced and paclitaxel-induced neuropathic pain. Ralfinamide did not affect physiological pain, locomotion, or cardiovascular function. Together, ralfinamide attenuated mechanical allodynia in all the neuropathic pain models tested, with subtle differences in efficacy. The effect of ralfinamide is comparable to that of gabapentin, but with no interference in basal mechanical sensitivity. The present study supports the effectiveness of selective sodium channel blockade as an analgesic strategy, as well as the development of compounds similar to ralfinamide.
Collapse
|
5
|
Sacco E, Recupero S, Bientinesi R, Palermo G, D’Agostino D, Currò D, Bassi P. Pioneering drugs for overactive bladder and detrusor overactivity: Ongoing research and future directions. World J Obstet Gynecol 2015; 4:24-39. [DOI: 10.5317/wjog.v4.i2.24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 01/31/2015] [Accepted: 04/14/2015] [Indexed: 02/05/2023] Open
Abstract
The ongoing research on pioneering drug candidates for the overactive bladder (OAB) aimed to overcome the limitations of currently licensed pharmacotherapies, such as antimuscarinics, β3-adrenergic agents, and botulinum neurotoxin, has been reviewed performing a systematic literature review and web search. The review covers the exploratory agents alternative to available medications for OAB and that may ultimately prove to be therapeutically useful in the future management of OAB patients based on preclinical and early clinical data. It emerges that many alternative pharmacological strategies have been discovered or are under investigation in disease-oriented studies. Several potential therapeutics are known for years but still find obstacles to pass the clinical stages of development, while other completely novel compounds, targeting new pharmacological targets, have been recently discovered and show potential to translate into clinical therapeutic agents for idiopathic and neurogenic OAB syndrome. The global scenario of investigational drugs for OAB gives promise for the development of innovative therapeutics that may ultimately prove effective as first, combined or second-line treatments within a realistic timescale of ten years.
Collapse
|
6
|
Park KD, Yang XF, Dustrude ET, Wang Y, Ripsch MS, White FA, Khanna R, Kohn H. Chimeric agents derived from the functionalized amino acid, lacosamide, and the α-aminoamide, safinamide: evaluation of their inhibitory actions on voltage-gated sodium channels, and antiseizure and antinociception activities and comparison with lacosamide and safinamide. ACS Chem Neurosci 2015; 6:316-30. [PMID: 25418676 PMCID: PMC4372064 DOI: 10.1021/cn5002182] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
![]()
The functionalized amino acid, lacosamide
((R)-2), and the α-aminoamide,
safinamide ((S)-3), are neurological
agents that have been extensively
investigated and have displayed potent anticonvulsant activities in
seizure models. Both compounds have been reported to modulate voltage-gated
sodium channel activity. We have prepared a series of chimeric compounds,
(R)-7–(R)-10, by merging key structural units in these two clinical
agents, and then compared their activities with (R)-2 and (S)-3. Compounds
were assessed for their ability to alter sodium channel kinetics for
inactivation, frequency (use)-dependence, and steady-state activation
and fast inactivation. We report that chimeric compounds (R)-7–(R)-10 in catecholamine A-differentiated (CAD) cells and embryonic rat
cortical neurons robustly enhanced sodium channel inactivation at
concentrations far lower than those required for (R)-2 and (S)-3, and that
(R)-9 and (R)-10, unlike (R)-2 and (S)-3, produce sodium channel frequency (use)-dependence
at low micromolar concentrations. We further show that (R)-7–(R)-10 displayed
excellent anticonvulsant activities and pain-attenuating properties
in the animal formalin model. Of these compounds, only (R)-7 reversed mechanical hypersensitivity in the tibial-nerve
injury model for neuropathic pain in rats.
Collapse
Affiliation(s)
| | - Xiao-Fang Yang
- Department
of Pharmacology and Neuroscience Graduate Interdisciplinary Program,
College of Medicine, University of Arizona, Tucson, Arizona 85742, United States
| | | | - Yuying Wang
- Department
of Pharmacology and Neuroscience Graduate Interdisciplinary Program,
College of Medicine, University of Arizona, Tucson, Arizona 85742, United States
| | | | | | - Rajesh Khanna
- Department
of Pharmacology and Neuroscience Graduate Interdisciplinary Program,
College of Medicine, University of Arizona, Tucson, Arizona 85742, United States
| | - Harold Kohn
- NeuroGate Therapeutics, Inc., 150
Fayetteville Street, Suite 2300, Raleigh, North Carolina 27601, United States
| |
Collapse
|
7
|
Cummins TR, Rush AM. Voltage-gated sodium channel blockers for the treatment of neuropathic pain. Expert Rev Neurother 2014; 7:1597-612. [DOI: 10.1586/14737175.7.11.1597] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Kuffler DP. Platelet-rich plasma and the elimination of neuropathic pain. Mol Neurobiol 2013; 48:315-32. [PMID: 23832571 DOI: 10.1007/s12035-013-8494-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 06/16/2013] [Indexed: 12/12/2022]
Abstract
Peripheral neuropathic pain typically results from trauma-induced nociceptive neuron hyperexcitability and their spontaneous ectopic activity. This pain persists until the trauma-induced cascade of events runs its full course, which results in complete tissue repair, including the nociceptive neurons recovering their normal biophysical properties, ceasing to be hyperexcitable, and stopping having spontaneous electrical activity. However, if a wound undergoes no, insufficient, or too much inflammation, or if a wound becomes stuck in an inflammatory state, chronic neuropathic pain persists. Although various drugs and techniques provide temporary relief from chronic neuropathic pain, many have serious side effects, are not effective, none promotes the completion of the wound healing process, and none provides permanent pain relief. This paper examines the hypothesis that chronic neuropathic pain can be permanently eliminated by applying platelet-rich plasma to the site at which the pain originates, thereby triggering the complete cascade of events involved in normal wound repair. Many published papers claim that the clinical application of platelet-rich plasma to painful sites, such as muscle injuries and joints, or to the ends of nerves evoking chronic neuropathic pain, a process often referred to as prolotherapy, eliminates pain initiated at such sites. However, there is no published explanation of a possible mechanism/s by which platelet-rich plasma may accomplish this effect. This paper discusses the normal physiological cascade of trauma-induced events that lead to chronic neuropathic pain and its eventual elimination, techniques being studied to reduce or eliminate neuropathic pain, and how the application of platelet-rich plasma may lead to the permanent elimination of neuropathic pain. It concludes that platelet-rich plasma eliminates neuropathic pain primarily by platelet- and stem cell-released factors initiating the complex cascade of wound healing events, starting with the induction of enhanced inflammation and its complete resolution, followed by all the subsequent steps of tissue remodeling, wound repair and axon regeneration that result in the elimination of neuropathic pain, and also by some of these same factors acting directly on neurons to promote axon regeneration thereby eliminating neuropathic pain.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, University of Puerto Rico, 201 Blvd. del Valle, San Juan, PR, 00901, USA,
| |
Collapse
|
9
|
Eijkelkamp N, Linley JE, Baker MD, Minett MS, Cregg R, Werdehausen R, Rugiero F, Wood JN. Neurological perspectives on voltage-gated sodium channels. Brain 2012; 135:2585-612. [PMID: 22961543 PMCID: PMC3437034 DOI: 10.1093/brain/aws225] [Citation(s) in RCA: 273] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The activity of voltage-gated sodium channels has long been linked to disorders of neuronal excitability such as epilepsy and chronic pain. Recent genetic studies have now expanded the role of sodium channels in health and disease, to include autism, migraine, multiple sclerosis, cancer as well as muscle and immune system disorders. Transgenic mouse models have proved useful in understanding the physiological role of individual sodium channels, and there has been significant progress in the development of subtype selective inhibitors of sodium channels. This review will outline the functions and roles of specific sodium channels in electrical signalling and disease, focusing on neurological aspects. We also discuss recent advances in the development of selective sodium channel inhibitors.
Collapse
Affiliation(s)
- Niels Eijkelkamp
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Di Stefano AFD, Radicioni MM, Rusca A. Pressor response to oral tyramine and monoamine oxidase inhibition during treatment with ralfinamide (NW-1029). Neurotox Res 2012; 23:315-26. [PMID: 22872464 DOI: 10.1007/s12640-012-9344-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/18/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
Abstract
Ralfinamide, an original Na(+) channel blocker developed for the treatment of chronic pain, inhibits monoamineoxidase-B with no apparent effect on monoamineoxidase-A. To evaluate the pressor response to oral tyramine under fasting conditions during treatment with ralfinamide in healthy normotensive subjects. Ten women and 10 men aged 52.9 ± 5.5, sensitive to the oral tyramine pressor effect in the dose range 200-400 mg, received ralfinamide 320 mg daily during 7 days of confinement. Starting on day 5, ascending doses of tyramine 50, 100 and 200 mg were daily administered to subjects, who had responded to 200 mg at screening, and 100, 200 and 400 mg to the 400 mg responders. Vital parameters were monitored. The systolic blood pressure peak (ΔSBP), the time to achieve the peak (Δt) and the area under the pressure curve (over baseline) were calculated. ΔSBP ≥ 30 mmHg were measured for one subject with tyramine 200 mg and for 11 subjects with 400 mg, whilst ΔSBP was <30 mmHg for eight subjects at all the tested doses. ΔSBP, Δt and AUC after co-treatment with ralfinamide and tyramine were not significantly different from those measured after tyramine alone. Ralfinamide did not potentiate the pressor response to single oral doses of tyramine from 50 to 400 mg. These preliminary results give an evidence for the specificity of ralfinamide for MAO-B in comparison with MAO-A, analogously to the observations previously done for safinamide. Dietary tyramine restrictions may not be necessary in neuropathic pain patients receiving ralfinamide as a therapy.
Collapse
|
11
|
Wang Y, Wilson SM, Brittain JM, Ripsch MS, Salomé C, Park KD, White FA, Khanna R, Kohn H. Merging Structural Motifs of Functionalized Amino Acids and α-Aminoamides Results in Novel Anticonvulsant Compounds with Significant Effects on Slow and Fast Inactivation of Voltage-gated Sodium Channels and in the Treatment of Neuropathic Pain. ACS Chem Neurosci 2011; 2:317-322. [PMID: 21765969 PMCID: PMC3134314 DOI: 10.1021/cn200024z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 04/11/2011] [Indexed: 11/28/2022] Open
Abstract
We recently reported that merging key structural pharmacophores of the anticonvulsant drugs lacosamide (a functionalized amino acid) with safinamide (an α-aminoamide) resulted in novel compounds with anticonvulsant activities superior to that of either drug alone. Here, we examined the effects of six such chimeric compounds on Na(+)-channel function in central nervous system catecholaminergic (CAD) cells. Using whole-cell patch clamp electrophysiology, we demonstrated that these compounds affected Na(+) channel fast and slow inactivation processes. Detailed electrophysiological characterization of two of these chimeric compounds that contained either an oxymethylene ((R)-7) or a chemical bond ((R)-11) between the two aromatic rings showed comparable effects on slow inactivation, use-dependence of block, development of slow inactivation, and recovery of Na(+) channels from inactivation. Both compounds were equally effective at inducing slow inactivation; (R)-7 shifted the fast inactivation curve in the hyperpolarizing direction greater than (R)-11, suggesting that in the presence of (R)-7, a larger fraction of the channels are in an inactivated state. None of the chimeric compounds affected veratridine- or KCl-induced glutamate release in neonatal cortical neurons. There was modest inhibition of KCl-induced calcium influx in cortical neurons. Finally, a single intraperitoneal administration of (R)-7, but not (R)-11, completely reversed mechanical hypersensitivity in a tibial-nerve injury model of neuropathic pain. The strong effects of (R)-7 on slow and fast inactivation of Na(+) channels may contribute to its efficacy and provide a promising novel therapy for neuropathic pain, in addition to its antiepileptic potential.
Collapse
Affiliation(s)
- Yuying Wang
- Department Pharmacology and Toxicology, Department of Anesthesia, and Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Sarah M. Wilson
- Department Pharmacology and Toxicology, Department of Anesthesia, and Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Joel M. Brittain
- Department Pharmacology and Toxicology, Department of Anesthesia, and Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Matthew S. Ripsch
- Department Pharmacology and Toxicology, Department of Anesthesia, and Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Christophe Salomé
- Department of Chemistry and Division of Medicinal Chemistry and Natural Products, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Ki Duk Park
- Department of Chemistry and Division of Medicinal Chemistry and Natural Products, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Fletcher A. White
- Department Pharmacology and Toxicology, Department of Anesthesia, and Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Rajesh Khanna
- Department Pharmacology and Toxicology, Department of Anesthesia, and Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Harold Kohn
- Department of Chemistry and Division of Medicinal Chemistry and Natural Products, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
12
|
Kawaura K, Miki R, Urashima Y, Honda S, Shehata AM, Soeda F, Shirasaki T, Takahama K. Tipepidine enhances the antinociceptive-like action of carbamazepine in the acetic acid writhing test. Eur J Pharmacol 2011; 651:106-8. [DOI: 10.1016/j.ejphar.2010.10.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 10/06/2010] [Accepted: 10/29/2010] [Indexed: 10/18/2022]
|
13
|
Abstract
Neuropathic pain, a severe chronic pain condition characterized by a complex pathophysiology, is a largely unmet medical need. Ion channels, which underlie cell excitability, are heavily implicated in the biological mechanisms that generate and sustain neuropathic pain. This review highlights the biological evidence supporting the involvement of voltage-, proton- and ligand-gated ion channels in the neuropathic pain setting. Ion channel modulators at different research or development stages are reviewed and referenced. Ion channel modulation is one of the main avenues to achieve novel, improved neuropathic pain treatments. Voltage-gated sodium and calcium channel and glutamate receptor modulators are likely to produce new, improved agents in the future. Rationally targeting subtypes of known ion channels, tackling recently discovered ion channel targets or combining drugs with different mechanism of action will be primary sources of new drugs in the longer term.
Collapse
|
14
|
Kemp MI. Structural trends among second-generation voltage-gated sodium channel blockers. PROGRESS IN MEDICINAL CHEMISTRY 2010; 49:81-111. [PMID: 20855039 DOI: 10.1016/s0079-6468(10)49003-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mark I Kemp
- Pfizer Global Research & Development, Sandwich, Kent, UK
| |
Collapse
|
15
|
McGowan E, Hoyt SB, Li X, Lyons KA, Abbadie C. A Peripherally Acting Nav1.7 Sodium Channel Blocker Reverses Hyperalgesia and Allodynia on Rat Models of Inflammatory and Neuropathic Pain. Anesth Analg 2009; 109:951-8. [DOI: 10.1213/ane.0b013e3181b01b02] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Browne LE, Clare JJ, Wray D. Functional and pharmacological properties of human and rat NaV1.8 channels. Neuropharmacology 2009; 56:905-14. [DOI: 10.1016/j.neuropharm.2009.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 01/21/2009] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
|
17
|
Potet F, Chagot B, Anghelescu M, Viswanathan PC, Stepanovic SZ, Kupershmidt S, Chazin WJ, Balser JR. Functional Interactions between Distinct Sodium Channel Cytoplasmic Domains through the Action of Calmodulin. J Biol Chem 2009; 284:8846-54. [PMID: 19171938 DOI: 10.1074/jbc.m806871200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sodium channels are fundamental signaling molecules in excitable cells, and are molecular targets for local anesthetic agents and intracellular free Ca(2+) ([Ca(2+)](i)). Two regions of Na(V)1.5 have been identified previously as [Ca(2+)](i)-sensitive modulators of channel inactivation. These include a C-terminal IQ motif that binds calmodulin (CaM) in different modes depending on Ca(2+) levels, and an immediately adjacent C-terminal EF-hand domain that directly binds Ca(2+). Here we show that a mutation of the IQ domain (A1924T; Brugada Syndrome) that reduces CaM binding stabilizes Na(V)1.5 inactivation, similarly and more extensively than even reducing [Ca(2+)](i). Because the DIII-DIV linker is an essential structure in Na(V)1.5 inactivation, we evaluated this domain for a potential CaM binding interaction. We identified a novel CaM binding site within the linker, validated its interaction with CaM by NMR spectroscopy, and revealed its micromolar affinity by isothermal titration calorimetry. Mutation of three consecutive hydrophobic residues (Phe(1520)-Ile(1521)-Phe(1522)) to alanines in this CaM-binding domain recapitulated the electrophysiology phenotype observed with mutation of the C-terminal IQ domain: Na(V)1.5 inactivation was stabilized; moreover, mutations of either CaM-binding domain abolish the well described stabilization of inactivation by lidocaine. The direct physical interaction of CaM with the C-terminal IQ domain and the DIII-DIV linker, combined with the similarity in phenotypes when CaM-binding sites in either domain are mutated, suggests these cytoplasmic structures could be functionally coupled through the action of CaM. These findings have bearing upon Na(+) channel function in genetically altered channels and under pathophysiologic conditions where [Ca(2+)](i) impacts cardiac conduction.
Collapse
Affiliation(s)
- Franck Potet
- Departments of Anesthesiology, Pharmacology, Medicine, Biochemistry, and Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Docherty RJ, Farmer CE. The pharmacology of voltage-gated sodium channels in sensory neurones. Handb Exp Pharmacol 2009:519-61. [PMID: 19655117 DOI: 10.1007/978-3-540-79090-7_15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium channels (VGSCs) are vital for the normal functioning of most excitable cells. At least nine distinct functional subtypes of VGSCs are recognized, corresponding to nine genes for their pore-forming alpha-subunits. These have different developmental expression patterns, different tissue distributions in the adult and are differentially regulated at the cellular level by receptor-coupled cell signalling systems. Unsurprisingly, VGSC blockers are found to be useful as drugs in diverse clinical applications where excessive excitability of tissue leads to pathological dysfunction, e.g. epilepsy or cardiac tachyarrhythmias. The effects of most clinically useful VGSC blockers are use-dependent, i.e. their efficacy depends on channel activity. In addition, many natural toxins have been discovered that interact with VGSCs in complex ways and they have been used as experimental probes to study the structure and function of the channels and to better understand how drugs interact with the channels. Here we have attempted to summarize the properties of VGSCs in sensory neurones, discuss how they are regulated by cell signalling systems and we have considered briefly current concepts of their physiological function. We discuss in detail how drugs and toxins interact with archetypal VGSCs and where possible consider how they act on VGSCs in peripheral sensory neurones. Increasingly, drugs that block VGSCs are being used as systemic analgesic agents in chronic pain syndromes, but the full potential for VGSC blockers in this indication is yet to be realized and other applications in sensory dysfunction are also possible. Drugs targeting VGSC subtypes in sensory neurones are likely to provide novel systemic analgesics that are tissue-specific and perhaps even disease-specific, providing much-needed novel therapeutic approaches for the relief of chronic pain.
Collapse
Affiliation(s)
- Reginald J Docherty
- Neurorestoration Group, Wolfson CARD, King's College London, London SE1 9RT, UK.
| | | |
Collapse
|
19
|
Ralfinamide administered orally before hindpaw neurectomy or postoperatively provided long-lasting suppression of spontaneous neuropathic pain-related behavior in the rat. Pain 2008; 139:293-305. [DOI: 10.1016/j.pain.2008.04.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 04/18/2008] [Accepted: 04/24/2008] [Indexed: 11/22/2022]
|
20
|
Gold MS. Na(+) channel blockers for the treatment of pain: context is everything, almost. Exp Neurol 2008; 210:1-6. [PMID: 18234194 PMCID: PMC2312090 DOI: 10.1016/j.expneurol.2007.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 11/30/2007] [Accepted: 12/03/2007] [Indexed: 12/17/2022]
Affiliation(s)
- Michael S Gold
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
21
|
Yamane H, de Groat WC, Sculptoreanu A. Effects of ralfinamide, a Na+ channel blocker, on firing properties of nociceptive dorsal root ganglion neurons of adult rats. Exp Neurol 2007; 208:63-72. [PMID: 17707373 PMCID: PMC2117901 DOI: 10.1016/j.expneurol.2007.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 07/08/2007] [Accepted: 07/10/2007] [Indexed: 12/11/2022]
Abstract
Recent studies revealed that ralfinamide, a Na(+) channel blocker, suppressed tetrodotoxin-resistant Na(+) currents in dorsal root ganglion (DRG) neurons and reduced pain reactions in animal models of inflammatory and neuropathic pain. Here, we investigated the effects of ralfinamide on Na(+) currents; firing properties and action potential (AP) parameters in capsaicin-responsive and -unresponsive DRG neurons from adult rats in the presence of TTX (0.5 microM). Ralfinamide inhibited TTX-resistant Na(+) currents in a frequency- and voltage-dependent manner. Small to medium sized neurons exhibited different firing properties during prolonged depolarizing current pulses (600 ms). One group of neurons fired multiple spikes (tonic), while another group fired four or less APs (phasic). In capsaicin-responsive tonic firing neurons, ralfinamide (25 microM) reduced the number of APs from 10.6+/-1.8 to 2.6+/-0.7 APs/600 ms, whereas in capsaicin-unresponsive tonic neurons, the drug did not significantly change firing (8.4+/-0.9 in control to 6.6+/-2.0 APs/600 ms). In capsaicin-responsive phasic neurons, substance P and 4-aminopyridine induced multiple spikes, an effect that was reversed by ralfinamide (25 microM). In addition to effects on firing, ralfinamide increased the threshold, decreased the overshoot, and increased the rate of rise of the AP. To conclude, ralfinamide suppressed afferent hyperexcitability selectively in capsaicin-responsive, presumably nociceptive neurons, but had no measurable effects on firing in CAPS-unresponsive neurons. The action of ralfinamide to selectively inhibit tonic firing in nociceptive neurons very likely contributes to the effectiveness of the drug in reducing inflammatory and neuropathic pain as well as bladder overactivity.
Collapse
Affiliation(s)
- Hana Yamane
- Department of Pharmacology, University of Pittsburgh School of Medicine, E1304 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
22
|
Jarvis MF, Honore P, Shieh CC, Chapman M, Joshi S, Zhang XF, Kort M, Carroll W, Marron B, Atkinson R, Thomas J, Liu D, Krambis M, Liu Y, McGaraughty S, Chu K, Roeloffs R, Zhong C, Mikusa JP, Hernandez G, Gauvin D, Wade C, Zhu C, Pai M, Scanio M, Shi L, Drizin I, Gregg R, Matulenko M, Hakeem A, Gross M, Johnson M, Marsh K, Wagoner PK, Sullivan JP, Faltynek CR, Krafte DS. A-803467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat. Proc Natl Acad Sci U S A 2007; 104:8520-5. [PMID: 17483457 PMCID: PMC1895982 DOI: 10.1073/pnas.0611364104] [Citation(s) in RCA: 422] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Activation of tetrodotoxin-resistant sodium channels contributes to action potential electrogenesis in neurons. Antisense oligonucleotide studies directed against Na(v)1.8 have shown that this channel contributes to experimental inflammatory and neuropathic pain. We report here the discovery of A-803467, a sodium channel blocker that potently blocks tetrodotoxin-resistant currents (IC(50) = 140 nM) and the generation of spontaneous and electrically evoked action potentials in vitro in rat dorsal root ganglion neurons. In recombinant cell lines, A-803467 potently blocked human Na(v)1.8 (IC(50) = 8 nM) and was >100-fold selective vs. human Na(v)1.2, Na(v)1.3, Na(v)1.5, and Na(v)1.7 (IC(50) values >or=1 microM). A-803467 (20 mg/kg, i.v.) blocked mechanically evoked firing of wide dynamic range neurons in the rat spinal dorsal horn. A-803467 also dose-dependently reduced mechanical allodynia in a variety of rat pain models including: spinal nerve ligation (ED(50) = 47 mg/kg, i.p.), sciatic nerve injury (ED(50) = 85 mg/kg, i.p.), capsaicin-induced secondary mechanical allodynia (ED(50) approximately 100 mg/kg, i.p.), and thermal hyperalgesia after intraplantar complete Freund's adjuvant injection (ED(50) = 41 mg/kg, i.p.). A-803467 was inactive against formalin-induced nociception and acute thermal and postoperative pain. These data demonstrate that acute and selective pharmacological blockade of Na(v)1.8 sodium channels in vivo produces significant antinociception in animal models of neuropathic and inflammatory pain.
Collapse
Affiliation(s)
- Michael F. Jarvis
- *Neuroscience Research, Abbott Laboratories, Abbott Park, IL 60064; and
- To whom correspondence may be addressed at:
Abbott Laboratories, R-4PM, AP9A/3,100 Abbott Park Road, Abbott Park, IL 60064. E-mail:
| | - Prisca Honore
- *Neuroscience Research, Abbott Laboratories, Abbott Park, IL 60064; and
| | - Char-Chang Shieh
- *Neuroscience Research, Abbott Laboratories, Abbott Park, IL 60064; and
| | | | - Shailen Joshi
- *Neuroscience Research, Abbott Laboratories, Abbott Park, IL 60064; and
| | - Xu-Feng Zhang
- *Neuroscience Research, Abbott Laboratories, Abbott Park, IL 60064; and
| | - Michael Kort
- *Neuroscience Research, Abbott Laboratories, Abbott Park, IL 60064; and
| | - William Carroll
- *Neuroscience Research, Abbott Laboratories, Abbott Park, IL 60064; and
| | | | | | | | | | | | - Yi Liu
- Icagen, Inc., Durham, NC 27703
| | - Steve McGaraughty
- *Neuroscience Research, Abbott Laboratories, Abbott Park, IL 60064; and
| | - Katharine Chu
- *Neuroscience Research, Abbott Laboratories, Abbott Park, IL 60064; and
| | | | - Chengmin Zhong
- *Neuroscience Research, Abbott Laboratories, Abbott Park, IL 60064; and
| | - Joseph P. Mikusa
- *Neuroscience Research, Abbott Laboratories, Abbott Park, IL 60064; and
| | | | - Donna Gauvin
- *Neuroscience Research, Abbott Laboratories, Abbott Park, IL 60064; and
| | - Carrie Wade
- *Neuroscience Research, Abbott Laboratories, Abbott Park, IL 60064; and
| | - Chang Zhu
- *Neuroscience Research, Abbott Laboratories, Abbott Park, IL 60064; and
| | - Madhavi Pai
- *Neuroscience Research, Abbott Laboratories, Abbott Park, IL 60064; and
| | - Marc Scanio
- *Neuroscience Research, Abbott Laboratories, Abbott Park, IL 60064; and
| | - Lei Shi
- *Neuroscience Research, Abbott Laboratories, Abbott Park, IL 60064; and
| | - Irene Drizin
- *Neuroscience Research, Abbott Laboratories, Abbott Park, IL 60064; and
| | - Robert Gregg
- *Neuroscience Research, Abbott Laboratories, Abbott Park, IL 60064; and
| | - Mark Matulenko
- *Neuroscience Research, Abbott Laboratories, Abbott Park, IL 60064; and
| | - Ahmed Hakeem
- *Neuroscience Research, Abbott Laboratories, Abbott Park, IL 60064; and
| | | | | | - Kennan Marsh
- *Neuroscience Research, Abbott Laboratories, Abbott Park, IL 60064; and
| | | | - James P. Sullivan
- *Neuroscience Research, Abbott Laboratories, Abbott Park, IL 60064; and
| | | | - Douglas S. Krafte
- Icagen, Inc., Durham, NC 27703
- To whom correspondence may be addressed at:
Icagen, Inc., P.O. Box 14487, Research Triangle Park, NC 27709. E-mail:
| |
Collapse
|
23
|
Liberatore AM, Schulz J, Favre-Guilmard C, Pommier J, Lannoy J, Pawlowski E, Barthelemy MA, Huchet M, Auguet M, Chabrier PE, Bigg D. Butyl 2-(4-[1.1′-biphenyl]-4-yl-1H-imidazol-2-yl)ethylcarbamate, a potent sodium channel blocker for the treatment of neuropathic pain. Bioorg Med Chem Lett 2007; 17:1746-9. [PMID: 17234409 DOI: 10.1016/j.bmcl.2006.12.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 12/14/2006] [Accepted: 12/16/2006] [Indexed: 11/16/2022]
Abstract
A series of 4-arylimidazole carbamates was synthesized and their binding affinities to the site-2 sodium (Na+) channel were determined. SAR studies led to the identification of compound 10, a potent Na+ channel blocker which was efficacious in pain models in vivo.
Collapse
Affiliation(s)
- Anne-Marie Liberatore
- Ipsen Research Laboratories, Institut Henri Beaufour, 5 avenue du Canada, 91966 Les Ulis Cedex, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Aoki M, Tsuji M, Takeda H, Harada Y, Nohara J, Matsumiya T, Chiba H. Antidepressants enhance the antinociceptive effects of carbamazepine in the acetic acid-induced writhing test in mice. Eur J Pharmacol 2006; 550:78-83. [PMID: 17027750 DOI: 10.1016/j.ejphar.2006.08.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 08/25/2006] [Accepted: 08/28/2006] [Indexed: 10/24/2022]
Abstract
Some antidepressants, as well as antiepileptics, are effective for treating pain of varying etiology. The present study was designed to characterize the antinociceptive effects of imipramine, a tricyclic antidepressant, fluvoxamine, a selective serotonin reuptake inhibitor, milnacipran, a serotonin noradrenaline reuptake inhibitor, and carbamazepine, an antiepileptic drug, using the acetic acid-induced writhing test in mice. Imipramine (1.25-10 mg/kg, i.p.), fluvoxamine (5-40 mg/kg, i.p.) and milnacipran (2.5-20 mg/kg, i.p.) all dose-dependently and significantly reduced the number of writhes induced by the injection of acetic acid (0.8% (v/v)), although the maximal effect of milnacipran was weaker than those of imipramine and fluvoxamine. Similarly, carbamazepine (5-20 mg/kg, i.p.) also showed a dose-dependent and significant antinociceptive effect. In combination studies, the co-administration of a sub-effective dose of carbamazepine (5 mg/kg, i.p.) with imipramine (1.25 and 2.5 mg/kg, i.p.), fluvoxamine (10 mg/kg, i.p.) or milnacipran (1.25 and 2.5 mg/kg, i.p.) significantly reduced the number of writhes. Additionally, the hole-board test revealed that the medications with significant antinociceptive effects barely produced changes in motor activity that could possibly affect writhing behavior. Thus, the present study demonstrated that the antinociceptive effect of carbamazepine is enhanced by combination with imipramine, fluvoxamine and milnacipran. Therefore, the combined therapy using antidepressants and carbamazepine may be useful clinically for the control of pain.
Collapse
Affiliation(s)
- Mieko Aoki
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Cardenas CA, Cardenas CG, de Armendi AJ, Scroggs RS. Carbamazepine interacts with a slow inactivation state of NaV1.8-like sodium channels. Neurosci Lett 2006; 408:129-34. [PMID: 16978779 DOI: 10.1016/j.neulet.2006.08.070] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 08/10/2006] [Accepted: 08/29/2006] [Indexed: 10/24/2022]
Abstract
Carbamazepine was tested on high-threshold TTX-resistant Na+ currents (TTX-R-currents), evoked from acutely isolated rat dorsal root ganglion (DRG) cells. Under control conditions, the TTX-R-currents recorded from different DRG cells varied greatly regarding use-dependent inactivation (TTX-R-current UDI), measured as the percent decrease in current amplitude induced by changing the current activation rate from 0.1 Hz to 1.0 Hz. Also, when TTX-R-currents were evoked at 0.1 Hz from a holding potential (hp) of -60 mV, a larger fraction of TTX-R-channels resided tonically in a slow inactivation state in DRG cells with more TTX-R-current UDI versus those with less TTX-R-current UDI. The block of TTX-R-currents evoked from hp -60 mV by 100-microM carbamazepine and the EC50 for carbamazepine block was positively correlated with TTX-R-current UDI. The slope factors estimated for the concentration-response curves averaged 0.68, suggesting the presence of low and high affinity sites. Fitting the data with a two-site binding isotherm gave estimates of 30 microM and 760 microM for the EC50s of the high and low affinity sites, respectively. The fraction of the total fit attributed to the high affinity site was positively correlated with TTX-R-current UDI. Carbamazepine increased the fast and slow time constants for recovery from inactivation and the fraction of the fit attributed to the slow time constant. These data suggest that carbamazepine interacts with a slow inactivation state of TTX-R-channels. This particular mechanism might be exploited in future research aimed at developing pain medications that selectively block Na(V)1.8 channels or Na+ channels in general.
Collapse
Affiliation(s)
- Carlos A Cardenas
- Division of Anesthesiology, St. Jude Children's Research Hospital, Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
26
|
Joshi SK, Mikusa JP, Hernandez G, Baker S, Shieh CC, Neelands T, Zhang XF, Niforatos W, Kage K, Han P, Krafte D, Faltynek C, Sullivan JP, Jarvis MF, Honore P. Involvement of the TTX-resistant sodium channel Nav 1.8 in inflammatory and neuropathic, but not post-operative, pain states. Pain 2006; 123:75-82. [PMID: 16545521 DOI: 10.1016/j.pain.2006.02.011] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 01/05/2006] [Accepted: 02/06/2006] [Indexed: 10/24/2022]
Abstract
Antisense (AS) oligodeoxynucleotides (ODNs) targeting the Nav 1.8 sodium channel have been reported to decrease inflammatory hyperalgesia and L5/L6 spinal nerve ligation-induced mechanical allodynia in rats. The present studies were conducted to further characterize Nav 1.8 AS antinociceptive profile in rats to better understand the role of Nav 1.8 in different pain states. Consistent with earlier reports, chronic intrathecal Nav 1.8 AS, but not mismatch (MM), ODN decreased TTX-resistant sodium current density (by 60.5+/-10.2% relative to MM; p<0.05) in neurons from L4 to L5 dorsal root ganglia and significantly attenuated mechanical allodynia following intraplantar complete Freund's adjuvant. In addition, 10 days following chronic constriction injury of the sciatic nerve, Nav 1.8 AS, but not MM, ODN also attenuated mechanical allodynia (54.3+/-8.2% effect, p<0.05 vs. MM) 2 days after initiation of ODN treatment. The anti-allodynic effects remained for the duration of the AS treatment, and CCI rats returned to an allodynic state 4 days after discontinuing AS. In contrast, Nav 1.8 AS ODN failed to reduce mechanical allodynia in the vincristine chemotherapy-induced neuropathic pain model or a skin-incision model of post-operative pain. Finally, Nav 1.8 AS, but not MM, ODN treatment produced a small but significant attenuation of acute noxious mechanical sensitivity in naïve animals (17.6+/-6.2% effect, p<0.05 vs. MM). These data demonstrate a greater involvement of Nav 1.8 in frank nerve injury and inflammatory pain as compared to acute, post-operative or chemotherapy-induced neuropathic pain states.
Collapse
MESH Headings
- Animals
- Behavior, Animal
- Drug Evaluation, Preclinical
- Freund's Adjuvant/toxicity
- Hyperalgesia/drug therapy
- Hyperalgesia/etiology
- Hyperalgesia/physiopathology
- Inflammation/physiopathology
- Injections, Spinal
- Ion Transport
- Ligation
- Male
- NAV1.8 Voltage-Gated Sodium Channel
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/drug effects
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Neuralgia/chemically induced
- Neuralgia/physiopathology
- Neurons, Afferent/drug effects
- Neurons, Afferent/physiology
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Oligodeoxyribonucleotides, Antisense/therapeutic use
- Pain, Postoperative/physiopathology
- Patch-Clamp Techniques
- Pressure/adverse effects
- Rats
- Rats, Sprague-Dawley
- Sciatic Nerve/injuries
- Sodium/physiology
- Sodium Channels/drug effects
- Sodium Channels/genetics
- Sodium Channels/physiology
- Spinal Nerves/injuries
- Stress, Mechanical
- Tetrodotoxin/pharmacology
- Vincristine/toxicity
Collapse
Affiliation(s)
- S K Joshi
- Abbott Laboratories, Neuroscience Research, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Novel Sodium Channel Blockers for the Treatment of Neuropathic Pain. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2006. [DOI: 10.1016/s0065-7743(06)41004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|