1
|
Watling SE, Jagasar S, McCluskey T, Warsh J, Rhind SG, Truong P, Chavez S, Houle S, Tong J, Kish SJ, Boileau I. Imaging oxidative stress in brains of chronic methamphetamine users: A combined 1H-magnetic resonance spectroscopy and peripheral blood biomarker study. Front Psychiatry 2023; 13:1070456. [PMID: 36704729 PMCID: PMC9871559 DOI: 10.3389/fpsyt.2022.1070456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Preclinical data suggest methamphetamine (MA), a widely used stimulant drug, can harm the brain by causing oxidative stress and inflammation, but only limited information is available in humans. We tested the hypothesis that levels of glutathione (GSH), a major antioxidant, would be lower in the brains of chronic human MA preferring polysubstance users. We also explored if concentrations of peripheral immunoinflammatory blood biomarkers were related with brain GSH concentrations. Methods 20 healthy controls (HC) (33 years; 11 M) and 14 MA users (40 years; 9 M) completed a magnetic resonance spectroscopy (MRS) scan, with GSH spectra obtained by the interleaved J-difference editing MEGA-PRESS method in anterior cingulate cortex (ACC) and left dorsolateral prefrontal cortex (DLPFC). Peripheral blood samples were drawn for measurements of immunoinflammatory biomarkers. Independent samples t-tests evaluated MA vs. HC differences in GSH. Results GSH levels did not differ between HC and MA users (ACC p = 0.30; DLPFC p = 0.85). A total of 17 of 25 immunoinflammatory biomarkers were significantly elevated in MA users and matrix metalloproteinase (MMP)-2 (r = 0.577, p = 0.039), myeloperoxidase (MPO) (r = -0.556, p = 0.049), and MMP-9 (r = 0.660, p = 0.038) were correlated with brain levels of GSH. Conclusion Normal brain GSH in living brain of chronic MA users is consistent with our previous postmortem brain finding and suggests that any oxidative stress caused by MA, at the doses used by our participants, might not be sufficient to cause either a compensatory increase in, or substantial overutilization of, this antioxidant. Additionally, more research is required to understand how oxidative stress and inflammatory processes are related and potentially dysregulated in MA use.
Collapse
Affiliation(s)
- Sarah E. Watling
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Samantha Jagasar
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Tina McCluskey
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jerry Warsh
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Shawn G. Rhind
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Peter Truong
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Sofia Chavez
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Sylvain Houle
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Junchao Tong
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Stephen J. Kish
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Isabelle Boileau
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Machado da Silva MC, Iglesias LP, Candelario-Jalil E, Khoshbouei H, Moreira FA, de Oliveira ACP. Role of Microglia in Psychostimulant Addiction. Curr Neuropharmacol 2023; 21:235-259. [PMID: 36503452 PMCID: PMC10190137 DOI: 10.2174/1570159x21666221208142151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022] Open
Abstract
The use of psychostimulant drugs can modify brain function by inducing changes in the reward system, mainly due to alterations in dopaminergic and glutamatergic transmissions in the mesocorticolimbic pathway. However, the etiopathogenesis of addiction is a much more complex process. Previous data have suggested that microglia and other immune cells are involved in events associated with neuroplasticity and memory, which are phenomena that also occur in addiction. Nevertheless, how dependent is the development of addiction on the activity of these cells? Although the mechanisms are not known, some pathways may be involved. Recent data have shown psychoactive substances may act directly on immune cells, alter their functions and induce various inflammatory mediators that modulate synaptic activity. These could, in turn, be involved in the pathological alterations that occur in substance use disorder. Here, we extensively review the studies demonstrating how cocaine and amphetamines modulate microglial number, morphology, and function. We also describe the effect of these substances in the production of inflammatory mediators and a possible involvement of some molecular signaling pathways, such as the toll-like receptor 4. Although the literature in this field is scarce, this review compiles the knowledge on the neuroimmune axis that is involved in the pathogenesis of addiction, and suggests some pharmacological targets for the development of pharmacotherapy.
Collapse
Affiliation(s)
- Maria Carolina Machado da Silva
- Department of Pharmacology, Neuropharmacology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil;
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lia Parada Iglesias
- Department of Pharmacology, Neuropsychopharmacology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Habibeh Khoshbouei
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Fabrício Araujo Moreira
- Department of Pharmacology, Neuropsychopharmacology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
3
|
Masai K, Kuroda K, Isooka N, Kikuoka R, Murakami S, Kamimai S, Wang D, Liu K, Miyazaki I, Nishibori M, Asanuma M. Neuroprotective Effects of Anti-high Mobility Group Box-1 Monoclonal Antibody Against Methamphetamine-Induced Dopaminergic Neurotoxicity. Neurotox Res 2021; 39:1511-1523. [PMID: 34417986 DOI: 10.1007/s12640-021-00402-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/08/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
High mobility group box-1 (HMGB1) is a ubiquitous non-histone nuclear protein that plays a key role as a transcriptional activator, with its extracellular release provoking inflammation. Inflammatory responses are essential in methamphetamine (METH)-induced acute dopaminergic neurotoxicity. In the present study, we examined the effects of neutralizing anti-HMGB1 monoclonal antibody (mAb) on METH-induced dopaminergic neurotoxicity in mice. BALB/c mice received a single intravenous administration of anti-HMGB1 mAb prior to intraperitoneal injections of METH (4 mg/kg × 2, at 2-h intervals). METH injections induced hyperthermia, an increase in plasma HMGB1 concentration, degeneration of dopaminergic nerve terminals, accumulation of microglia, and extracellular release of neuronal HMGB1 in the striatum. These METH-induced changes were significantly inhibited by intravenous administration of anti-HMGB1 mAb. In contrast, blood-brain barrier disruption occurred by METH injections was not suppressed. Our findings demonstrated the neuroprotective effects of anti-HMGB1 mAb against METH-induced dopaminergic neurotoxicity, suggesting that HMGB1 could play an initially important role in METH toxicity.
Collapse
Affiliation(s)
- Kaori Masai
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, 700-8558, Okayama, Japan
| | - Keita Kuroda
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, 700-8558, Okayama, Japan
| | - Nami Isooka
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, 700-8558, Okayama, Japan
| | - Ryo Kikuoka
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, 700-8558, Okayama, Japan
| | - Shinki Murakami
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, 700-8558, Okayama, Japan
| | - Sunao Kamimai
- Department of Medical Neurobiology, Okayama University Medical School, 700-8558, Okayama, Japan
| | - Dengli Wang
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 700-8558, Okayama, Japan
| | - Keyue Liu
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 700-8558, Okayama, Japan
| | - Ikuko Miyazaki
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, 700-8558, Okayama, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 700-8558, Okayama, Japan
| | - Masato Asanuma
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, 700-8558, Okayama, Japan.
| |
Collapse
|
4
|
Tanaka T, Ago Y, Umehara C, Imoto E, Hasebe S, Hashimoto H, Takuma K, Matsuda T. Role of Prefrontal Serotonergic and Dopaminergic Systems in Encounter-Induced Hyperactivity in Methamphetamine-Sensitized Mice. Int J Neuropsychopharmacol 2016; 20:410-421. [PMID: 28034961 PMCID: PMC5417057 DOI: 10.1093/ijnp/pyw115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/20/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Isolation-reared mice show social encounter-induced hyperactivity with activation of prefrontal serotonergic and dopaminergic systems, but it is not known whether this stress response is observed in other pathological conditions. Here we examined whether the social encounter stimulation induces abnormal behavior during withdrawal in chronic methamphetamine-treated mice. METHODS To induce methamphetamine-induced behavioral sensitization, male mice were injected with methamphetamine (1 mg/kg) once daily for 7 days. RESULTS The encounter with an intruder elicited hyperactivity 24 h after the last injection of methamphetamine in methamphetamine-sensitized mice. This response was observed even as long as 2 weeks after withdrawal of methamphetamine. The encounter increased c-Fos expression in the prefrontal cortex, dorsal raphe nucleus and ventral tegmental area in methamphetamine-sensitized mice, while it did not in control mice. Furthermore, the encounter increased extracellular serotonin (5-HT) and dopamine, but not noradrenaline, levels in the prefrontal cortex in methamphetamine-sensitized mice. Local injection of 5,7-dihydroxytryptamine and 6-hydroxydopamine into the prefrontal cortex attenuated encounter-induced hyperactivity in methamphetamine-sensitized mice and it markedly decreased prefrontal 5-HT and dopamine levels, respectively. Pharmacological analysis showed that the encounter-induced hyperactivity is mediated by dopamine D1 receptors and 5-HT2A receptors and attenuated by anxiolytics and antidepressants such as diazepam, osemozotan and selective 5-HT reuptake inhibitors. The effect of paroxetine was blocked by the 5-HT3 receptor antagonist azasetron. CONCLUSIONS The present study shows that psychological stress elicits hyperactivity with activation of prefrontal 5-HT and dopamine systems in methamphetamine-dependent mice and suggests that the abnormal behavior is associated with anxiety and depression.
Collapse
Affiliation(s)
- Tatsunori Tanaka
- Laboratory of Molecular Neuropharmacology (Mr Tanaka, Dr Ago, Ms Umehara, and Dr Hashimoto), and Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka, Japan (Mr Hasebe and Dr Takuma); United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan (Drs Hashimoto and Takuma); Division of Bioscience, Institute for Datability Science (Dr Hashimoto), and Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences (Ms Imoto and Dr Matsuda), Osaka University, Osaka, Japan
| | - Yukio Ago
- Laboratory of Molecular Neuropharmacology (Mr Tanaka, Dr Ago, Ms Umehara, and Dr Hashimoto), and Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka, Japan (Mr Hasebe and Dr Takuma); United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan (Drs Hashimoto and Takuma); Division of Bioscience, Institute for Datability Science (Dr Hashimoto), and Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences (Ms Imoto and Dr Matsuda), Osaka University, Osaka, Japan
| | - Chiaki Umehara
- Laboratory of Molecular Neuropharmacology (Mr Tanaka, Dr Ago, Ms Umehara, and Dr Hashimoto), and Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka, Japan (Mr Hasebe and Dr Takuma); United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan (Drs Hashimoto and Takuma); Division of Bioscience, Institute for Datability Science (Dr Hashimoto), and Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences (Ms Imoto and Dr Matsuda), Osaka University, Osaka, Japan
| | - Emina Imoto
- Laboratory of Molecular Neuropharmacology (Mr Tanaka, Dr Ago, Ms Umehara, and Dr Hashimoto), and Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka, Japan (Mr Hasebe and Dr Takuma); United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan (Drs Hashimoto and Takuma); Division of Bioscience, Institute for Datability Science (Dr Hashimoto), and Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences (Ms Imoto and Dr Matsuda), Osaka University, Osaka, Japan
| | - Shigeru Hasebe
- Laboratory of Molecular Neuropharmacology (Mr Tanaka, Dr Ago, Ms Umehara, and Dr Hashimoto), and Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka, Japan (Mr Hasebe and Dr Takuma); United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan (Drs Hashimoto and Takuma); Division of Bioscience, Institute for Datability Science (Dr Hashimoto), and Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences (Ms Imoto and Dr Matsuda), Osaka University, Osaka, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology (Mr Tanaka, Dr Ago, Ms Umehara, and Dr Hashimoto), and Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka, Japan (Mr Hasebe and Dr Takuma); United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan (Drs Hashimoto and Takuma); Division of Bioscience, Institute for Datability Science (Dr Hashimoto), and Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences (Ms Imoto and Dr Matsuda), Osaka University, Osaka, Japan
| | - Kazuhiro Takuma
- Laboratory of Molecular Neuropharmacology (Mr Tanaka, Dr Ago, Ms Umehara, and Dr Hashimoto), and Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka, Japan (Mr Hasebe and Dr Takuma); United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan (Drs Hashimoto and Takuma); Division of Bioscience, Institute for Datability Science (Dr Hashimoto), and Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences (Ms Imoto and Dr Matsuda), Osaka University, Osaka, Japan
| | - Toshio Matsuda
- Laboratory of Molecular Neuropharmacology (Mr Tanaka, Dr Ago, Ms Umehara, and Dr Hashimoto), and Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka, Japan (Mr Hasebe and Dr Takuma); United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan (Drs Hashimoto and Takuma); Division of Bioscience, Institute for Datability Science (Dr Hashimoto), and Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences (Ms Imoto and Dr Matsuda), Osaka University, Osaka, Japan
| |
Collapse
|
5
|
Nagano T, Mizuno M, Morita K, Nawa H. Pathological Implications of Oxidative Stress in Patients and Animal Models with Schizophrenia: The Role of Epidermal Growth Factor Receptor Signaling. Curr Top Behav Neurosci 2016; 29:429-446. [PMID: 26475158 DOI: 10.1007/7854_2015_399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Proinflammatory cytokines perturb brain development and neurotransmission and are implicated in various psychiatric diseases, such as schizophrenia and depression. These cytokines often induce the production of reactive oxygen species (ROS) and regulate not only cell survival and proliferation but also inflammatory process and neurotransmission. Under physiological conditions, ROS are moderately produced in mitochondria but are rapidly scavenged by reducing agents in cells. However, brain injury, ischemia, infection, or seizure-like neural activities induce inflammatory cytokines and trigger the production of excessive amounts of ROS, leading to abnormal brain functions and psychiatric symptoms. Protein phosphatases, which are involved in the basal silencing of cytokine receptor activation, are the major targets of ROS. Consistent with this, several ROS scavengers, such as polyphenols and unsaturated fatty acids, attenuate both cytokine signaling and psychiatric abnormalities. In this review, we list the inducers, producers, targets, and scavengers of ROS in the brain and discuss the interaction between ROS and cytokine signaling implicated in schizophrenia and its animal models. In particular, we present an animal model of schizophrenia established by perinatal exposure to epidermal growth factor and illustrate the pathological role of ROS and antipsychotic actions of ROS scavengers, such as emodin and edaravone.
Collapse
Affiliation(s)
- Tadasato Nagano
- Faculty of Human Life Studies, University of Niigata Prefecture, 471 Ebigase, Higashi-ku, Niigata, 950-8680, Japan
| | - Makoto Mizuno
- Aichi Human Service Center, Institute for Developmental Research, Kasugai, Aichi, 480-0392, Japan
| | - Keisuke Morita
- Department of Molecular Biology, Brain Research Institute, Niigata University, Asahimachi-Dori 1-757, Niigata, 951-8585, Japan
| | - Hiroyuki Nawa
- Department of Molecular Biology, Brain Research Institute, Niigata University, Asahimachi-Dori 1-757, Niigata, 951-8585, Japan.
| |
Collapse
|
6
|
Characterization of binge-dosed methamphetamine-induced neurotoxicity and neuroinflammation. Neurotoxicology 2015; 50:131-41. [PMID: 26283213 DOI: 10.1016/j.neuro.2015.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 08/05/2015] [Accepted: 08/09/2015] [Indexed: 11/21/2022]
Abstract
Methamphetamine (MA) is a potent, highly addictive psychostimulant abused by millions of people worldwide. MA induces neurotoxicity, damaging striatal dopaminergic terminals, and neuroinflammation, with striatal glial activation leading to pro-inflammatory cytokine and reactive oxygen species production. It is unclear whether MA-induced neuroinflammation contributes to MA-induced neurotoxicity. In the current study, we examined the linkage between the time course and dose response of MA-induced neurotoxicity and neuroinflammation. Adult male mice underwent a binge dosing regimen of four injections given every 2h with doses of 2, 4, 6, or 8 mg/kg MA per injection, and were sacrificed after 1, 3, 7, or 14 days. Binge MA treatment dose-dependently caused hyperthermia and induced hypoactivity after one day, though activity returned to control levels within one week. Striatal dopamine (DA) was diminished one day after treatment with at least 4 mg/kg MA, while DA turnover rates peaked after seven days. Although striatal tyrosine hydroxylase and DA transporter levels were also decreased one day after treatment with at least 4 mg/kg MA, they trended toward recovery by day 14. All doses of MA activated striatal glia within one day. While astrocyte activation persisted, microglial activation was attenuated over the two weeks of the study. These findings help clarify the relationship between MA-induced neuroinflammation and neurotoxicity, particularly regarding their temporal and dose-specific dynamics.
Collapse
|
7
|
Ota Y, Ago Y, Tanaka T, Hasebe S, Toratani Y, Onaka Y, Hashimoto H, Takuma K, Matsuda T. Anxiolytic-like effects of restraint during the dark cycle in adolescent mice. Behav Brain Res 2015; 284:103-11. [DOI: 10.1016/j.bbr.2015.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/01/2015] [Accepted: 02/05/2015] [Indexed: 01/16/2023]
|
8
|
Gou H, Wen D, Ma C, Li M, Li Y, Zhang W, Liu L, Cong B. Protective effects of cholecystokinin-8 on methamphetamine-induced behavioral changes and dopaminergic neurodegeneration in mice. Behav Brain Res 2015; 283:87-96. [PMID: 25629941 DOI: 10.1016/j.bbr.2015.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 01/15/2023]
Abstract
We investigated whether pretreatment with the neuropeptide cholecystokinin-8 affected methamphetamine (METH)-induced behavioral changes and dopaminergic neurodegeneration in male C57/BL6 mice. CCK-8 pretreatment alone had no effect on locomotion and stereotypic behavior and could not induce behavioral sensitization; however, it attenuated, in a dose-dependent manner, hyperlocomotion and behavioral sensitization induced by a low dose of METH (1mg/kg). CCK-8 attenuated METH-induced stereotypic behavior at a dose of 3mg/kg but not at 10mg/kg. CCK-8 pretreatment attenuated METH (10mg/kg)-induced hyperthermia, the decrease of tyrosine hydroxylase (TH) and dopamine transporter (DAT) in the striatum, and TH in the substantia nigra. CCK-8 alone had no effect on rectal temperature, TH and DAT expression in the nigrostriatal region. In conclusion, our study demonstrated that pretreatment with CCK-8 inhibited changes typically induced by repeated exposure to METH, such as hyperlocomotion, behavioral sensitization, stereotypic behavior, and dopaminergic neurotoxicity. These findings make CCK-8 a potential therapeutic agent for the treatment of multiple symptoms associated with METH abuse.
Collapse
Affiliation(s)
- Hongyan Gou
- Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China
| | - Di Wen
- Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China
| | - Chunling Ma
- Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China.
| | - Ming Li
- Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China
| | - Yingmin Li
- Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China
| | - Wenfang Zhang
- The 8th Brigade of General Division of Criminal Investigation, Beijing Municipal Public Security Bureau, Beijing 100006, China
| | - Li Liu
- The 8th Brigade of General Division of Criminal Investigation, Beijing Municipal Public Security Bureau, Beijing 100006, China
| | - Bin Cong
- Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China.
| |
Collapse
|
9
|
The role of Pak-interacting exchange factor-β phosphorylation at serines 340 and 583 by PKCγ in dopamine release. J Neurosci 2014; 34:9268-80. [PMID: 25009260 DOI: 10.1523/jneurosci.4278-13.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Protein kinase C (PKC) has been implicated in the control of neurotransmitter release. The AS/AGU rat, which has a nonsense mutation in PKCγ, shows symptoms of parkinsonian syndrome, including dopamine release impairments in the striatum. Here, we found that the AS/AGU rat is PKCγ-knock-out (KO) and that PKCγ-KO mice showed parkinsonian syndrome. However, the PKCγ substrates responsible for the regulated exocytosis of dopamine in vivo have not yet been elucidated. To identify the PKCγ substrates involved in dopamine release, we used PKCγ-KO mice and a phosphoproteome analysis. We found 10 candidate phosphoproteins that had decreased phosphorylation levels in the striatum of PKCγ-KO mice. We focused on Pak-interacting exchange factor-β (βPIX), a Cdc42/Rac1 guanine nucleotide exchange factor, and found that PKCγ directly phosphorylates βPIX at Ser583 and indirectly at Ser340 in cells. Furthermore, we found that PKC phosphorylated βPIX in vivo. Classical PKC inhibitors and βPIX knock-down (KD) significantly suppressed Ca(2+)-evoked dopamine release in PC12 cells. Wild-type βPIX, and not the βPIX mutants Ser340 Ala or Ser583 Ala, fully rescued the decreased dopamine release by βPIX KD. Double KD of Cdc42 and Rac1 decreased dopamine release from PC12 cells. These findings indicate that the phosphorylation of βPIX at Ser340 and Ser583 has pivotal roles in Ca(2+)-evoked dopamine release in the striatum. Therefore, we propose that PKCγ positively modulates dopamine release through β2PIX phosphorylation. The PKCγ-βPIX-Cdc42/Rac1 phosphorylation axis may provide a new therapeutic target for the treatment of parkinsonian syndrome.
Collapse
|
10
|
Methamphetamine-induced toxicity: an updated review on issues related to hyperthermia. Pharmacol Ther 2014; 144:28-40. [PMID: 24836729 DOI: 10.1016/j.pharmthera.2014.05.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 01/30/2023]
Abstract
Reports of methamphetamine-related emergency room visits suggest that elevated body temperature is a universal presenting symptom, with lethal overdoses generally associated with extreme hyperthermia. This review summarizes the available information on methamphetamine toxicity as it pertains to elevations in body temperature. First, a brief overview of thermoregulatory mechanisms is presented. Next, central and peripheral targets that have been considered for potential involvement in methamphetamine hyperthermia are discussed. Finally, future areas of investigation are proposed, as further studies are needed to provide greater insight into the mechanisms that mediate the alterations in body temperature elicited by methamphetamine.
Collapse
|
11
|
Kita T, Asanuma M, Miyazaki I, Takeshima M. Protective effects of phytochemical antioxidants against neurotoxin-induced degeneration of dopaminergic neurons. J Pharmacol Sci 2014; 124:313-9. [PMID: 24599140 DOI: 10.1254/jphs.13r19cp] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The specific toxicity to dopaminergic neurons of psychostimulants and neurotoxins has been extensively studied in vivo and in vitro, and findings have been used to establish animal models of amphetamine psychosis or Parkinson's disease. The multiple mechanisms of neurotoxicity operating in these disorders are known to involve oxidative stress or neuroinflammation, producing the characteristic behavioral and neuropathlogical changes arising from injured dopaminergic neurons and glial cells. A number of studies have shown that glia-targeting antioxidants play important roles in protecting against the neurotoxicity caused by psychostimulants or neurotoxins. Phytochemicals, which are non-nutritive plant chemicals, protect dopaminergic neurons and glial cells from damage caused by psychostimulants or neurotoxins. The objective of this review was to evaluate the involvement of glial cells in dopaminergic neuron-specific toxicity and to explore the neuroprotective activity of phytochemicals in terms of anti-inflammatory and antioxidant action.
Collapse
Affiliation(s)
- Taizo Kita
- Laboratory of Pharmacology, Kyushu Nutrition Welfare University, School of Health Science, Japan
| | | | | | | |
Collapse
|
12
|
The JNK inhibitor, SP600125, potentiates the glial response and cell death induced by methamphetamine in the mouse striatum. Int J Neuropsychopharmacol 2014; 17:235-46. [PMID: 24103647 DOI: 10.1017/s1461145713000850] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study investigates the effect of the selective Jun NH2-terminal kinase 1/2 (JNK1/2) inhibitor, (SP600125) on the striatal dopamine nerve terminal loss and on the increased interleukin-15 (IL-15) expression and glial response induced by methamphetamine (METH). Mice were given repeated low doses of METH (4 mg/kg, i.p., three times separated by 3 h) and killed 24 h or 7 d after the last dose. SP600125 (30 mg/kg, i.p) was administered 30 min before the last METH injection. Results indicate that METH produced dopaminergic axonal neurotoxicity reflected as a marked decrease in the striatal density of tyrosine hydroxylase-immunoreactive (TH-ir) fibres and dopamine transporter-immunoreactivity (DAT-ir) 24 h after dosing. These effects were not modified by SP600125. This compound also failed to prevent the long-term loss of dopamine levels and DAT observed 7 d following METH injection. Nevertheless, SP600125 potentiated METH-induced striatal cell loss reflected by an increase in Fluoro-Jade immunostaining, cleaved capase-3 immunoreactivity and the number of terminal deoxyncleotidyl transferase-mediated dUTP nick end labelling (TUNEL) positive cells. In line with a deleterious effect of JNK1/2 inhibition, SP600125 increased the astroglial and microglial response induced by METH and interfered with drug-induced IL-15 expression. Together these data indicate that, not only does SP600125 fail to protect against the dopaminergic damage induced by METH but also, in fact, it potentiates the glial response and the non-dopaminergic striatal cell loss caused by the drug.
Collapse
|
13
|
Zong L, Yu QH, Du YX, Deng XM. Edaravone protects endotoxin-induced liver injury by inhibiting apoptosis and reducing proinflammatory cytokines. ACTA ACUST UNITED AC 2014; 47:231-6. [PMID: 24554039 PMCID: PMC3982944 DOI: 10.1590/1414-431x20133186] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 10/22/2013] [Indexed: 11/25/2022]
Abstract
Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN) and lipopolysaccharide (LPS) in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis.
Collapse
Affiliation(s)
- L Zong
- Department of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Q H Yu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Y X Du
- Department of Anesthesiology, No. 82 Hospital of People's Liberation Army, Jiangsu, China
| | - X M Deng
- Department of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
14
|
Shin EJ, Shin SW, Nguyen TTL, Park DH, Wie MB, Jang CG, Nah SY, Yang BW, Ko SK, Nabeshima T, Kim HC. Ginsenoside Re rescues methamphetamine-induced oxidative damage, mitochondrial dysfunction, microglial activation, and dopaminergic degeneration by inhibiting the protein kinase Cδ gene. Mol Neurobiol 2014; 49:1400-21. [PMID: 24430743 DOI: 10.1007/s12035-013-8617-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 12/09/2013] [Indexed: 11/26/2022]
Abstract
Ginsenoside Re, one of the main constituents of Panax ginseng, possesses novel antioxidant and anti-inflammatory properties. However, the pharmacological mechanism of ginsenoside Re in dopaminergic degeneration remains elusive. We suggested that protein kinase C (PKC) δ mediates methamphetamine (MA)-induced dopaminergic toxicity. Treatment with ginsenoside Re significantly attenuated methamphetamine-induced dopaminergic degeneration in vivo by inhibiting impaired enzymatic antioxidant systems, mitochondrial oxidative stress, mitochondrial translocation of protein kinase Cδ, mitochondrial dysfunction, pro-inflammatory microglial activation, and apoptosis. These protective effects were comparable to those observed with genetic inhibition of PKCδ in PKCδ knockout (-/-) mice and with PKCδ antisense oligonucleotides, and ginsenoside Re did not provide any additional protective effects in the presence of PKCδ inhibition. Our results suggest that PKCδ is a critical target for ginsenoside Re-mediated protective activity in response to dopaminergic degeneration induced by MA.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Horiguchi N, Ago Y, Hasebe S, Higashino K, Asada K, Kita Y, Takuma K, Matsuda T. Isolation rearing reduces mechanical allodynia in a mouse model of chronic inflammatory pain. Pharmacol Biochem Behav 2013; 113:46-52. [PMID: 24161684 DOI: 10.1016/j.pbb.2013.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/02/2013] [Accepted: 10/16/2013] [Indexed: 10/26/2022]
Abstract
Social isolation rearing in mice after weaning reduces pain sensitivity to acute pain, and this hypoalgesia is mediated by the descending serotonergic pain inhibitory system in which the spinal serotonin (5-HT)1A receptor is involved. However, it is not known whether isolation rearing affects pain sensitivity to neuropathic or inflammatory chronic pain. In this study, we examined the effects of isolation rearing on chronic pain induced by Freund's complete adjuvant (FCA) and partial sciatic nerve ligation using the von Frey test (to assess mechanical allodynia) and the plantar test (to assess thermal hyperalgesia). In the FCA model, isolation rearing reduced mechanical allodynia, but not thermal hyperalgesia. In contrast, isolation rearing had no effect on allodynia or hyperalgesia in the sciatic nerve ligation model. The isolation rearing-induced inhibition of allodynia was alleviated by intrathecal injection of WAY100635, a selective 5-HT1A receptor antagonist. FCA increased 5-HT turnover and decreased 5-HT1A receptor expression in the spinal cord of group-reared mice, while it did not have these effects in isolation-reared mice. These results suggest that FCA suppresses the serotonergic pain inhibitory system selectively in group-reared mice. Moreover, systemic administration of osemozotan, a selective 5-HT1A receptor agonist, inhibited FCA-induced mechanical allodynia in group-reared mice, and this effect of the drug was suppressed by intrathecal injection of WAY100635. Collectively, these findings suggest that isolation rearing selectively reduces FCA-induced mechanical allodynia in mice and that this effect is mediated by the activation of spinal 5-HT1A receptors.
Collapse
Affiliation(s)
- Naotaka Horiguchi
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Li B, Yu D, Xu Z. Edaravone prevents neurotoxicity of mutant L166P DJ-1 in Parkinson's disease. J Mol Neurosci 2013; 51:539-49. [PMID: 23657982 DOI: 10.1007/s12031-013-0022-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/22/2013] [Indexed: 11/30/2022]
Abstract
Parkinson's disease (PD), which is estimated to affect approximately 1 % of the population over the age of 65, is the second most common neurodegenerative disorder after Alzheimer's disease. It was reported that pathogenic mutations in DJ-1 lead to autosomal recessive early-onset familial Parkinsonism. The L166P mutant of DJ-1 is the most commonly studied loss-of-function mutation in early onset familial PD, but the underlying mechanisms are still unknown. Edaravone is a powerful free radical scavenger used in clinical treatment for cerebral ischemic stroke. In the present study, we investigated the effects of edaravone on the neurotoxicity in PD-induced isoforms of DJ-1 containing the mutation L166P. Our results indicated that edaravone was able to significantly attenuate oxidative stress and improve mitochondrial function. Furthermore, edaravone was found to reduce apoptosis in Neuro2a cells through modulation of mitochondria-dependent apoptosis pathways. Interestingly, our result also demonstrated that edaravone was able to up-regulate VMAT2 expression in N2a cells in a dose-dependent manner. Our findings enhance the understanding of the neuro-protective effects of edaravone in cell models and suggest that edaravone offers significant protection in a PD-related in vitro model.
Collapse
Affiliation(s)
- Bing Li
- Department of Neurology, Yantai Yuhuangding Hospital of Medical College of Qingdao University, Yantai, Shandong, 264000, People's Republic of China,
| | | | | |
Collapse
|
17
|
Afanador L, Mexhitaj I, Diaz C, Ordonez D, Baker L, Angulo JA. The role of the neuropeptide somatostatin on methamphetamine and glutamate-induced neurotoxicity in the striatum of mice. Brain Res 2013; 1510:38-47. [PMID: 23524190 DOI: 10.1016/j.brainres.2013.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 01/23/2013] [Accepted: 03/06/2013] [Indexed: 12/12/2022]
Abstract
A large body of evidence shows that methamphetamine (METH) causes sustained damage to the brain in animal models and human METH users. In chronic users there are indications of cognitive and motor deficits. Striatal neuropeptides are in a position to modulate the neurochemical effects of METH and consequently striatal neural damage. Somatostatin (SST) is an intrinsic striatal neuropeptide that has been shown to inhibit glutamate transmission; glutamate is integral to METH toxicity and contributes to nitric oxide (NO) synthesis. We hypothesize that SST will protect from METH by inhibition of NO synthesis and thus reducing oxidative stress. To this end, the SST analogue octreotide (OCT) was microinjected into the striatum prior to a systemic injection of METH (30mg/kg). We then assessed 3-nitrotyrosine (3-NT), an indirect index of NO production, tyrosine hydroxylase (TH) protein levels (dopamine terminal marker) and Fluoro-Jade C positive cells (degenerating cells). The SST agonist OCT dose dependently attenuated the METH-induced accumulation of striatal 3-NT. Moreover, pretreatment with OCT effectively mitigated cell death but failed to protect dopamine terminals. Next we co-infused OCT and NMDA and measured 3-NT and Fluoro-Jade C staining. Treatment with OCT had no effect on these parameters. The data demonstrate that SST attenuates the METH-induced production of NO protecting the striatum from the METH-induced cell loss. However, SST failed to prevent the toxicity of the dopamine terminals suggesting that pre- and post-synaptic striatal damage occur via independent mechanisms.
Collapse
Affiliation(s)
- Lauriaselle Afanador
- Department of Biological Sciences, Hunter College of the City University of New York, 695 Park Avenue, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
18
|
Zhang X, Tobwala S, Ercal N. N-Acetylcysteine amide protects against methamphetamine-induced tissue damage in CD-1 mice. Hum Exp Toxicol 2012; 31:931-44. [DOI: 10.1177/0960327112438287] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Methamphetamine (METH), a highly addictive drug used worldwide, induces oxidative stress in various animal organs, especially the brain. This study evaluated oxidative damage caused by METH to tissues in CD-1 mice and identified a therapeutic drug that could protect against METH-induced toxicity. Male CD-1 mice were pretreated with a novel thiol antioxidant, N-acetylcysteine amide (NACA, 250 mg/kg body weight) or saline. Following this, METH (10 mg/kg body weight) or saline intraperitoneal injections were administered every 2 h over an 8-h period. Animals were killed 24 h after the last exposure. NACA-treated animals exposed to METH experienced significantly lower oxidative stress in their kidneys, livers, and brains than the untreated group, as indicated by their levels of glutathione, malondialdehyde, and protein carbonyl and their catalase and glutathione peroxidase activity. This suggests that METH induces oxidative stress in various organs and that a combination of NACA as a neuro- or tissue-protective agent, in conjunction with current treatment, might effectively treat METH abusers.
Collapse
Affiliation(s)
- X Zhang
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, USA
| | - S Tobwala
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, USA
| | - N Ercal
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, USA
| |
Collapse
|
19
|
Coller JK, Hutchinson MR. Implications of central immune signaling caused by drugs of abuse: mechanisms, mediators and new therapeutic approaches for prediction and treatment of drug dependence. Pharmacol Ther 2012; 134:219-45. [PMID: 22316499 DOI: 10.1016/j.pharmthera.2012.01.008] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 01/12/2023]
Abstract
In the past two decades a trickle of manuscripts examining the non-neuronal central nervous system immune consequences of the drugs of abuse has now swollen to a significant body of work. Initially, these studies reported associative evidence of central nervous system proinflammation resulting from exposure to the drugs of abuse demonstrating key implications for neurotoxicity and disease progression associated with, for example, HIV infection. However, more recently this drug-induced activation of central immune signaling is now understood to contribute substantially to the pharmacodynamic actions of the drugs of abuse, by enhancing the engagement of classical mesolimbic dopamine reward pathways and withdrawal centers. This review will highlight the key in vivo animal, human, biological and molecular evidence of these central immune signaling actions of opioids, alcohol, cocaine, methamphetamine, and 3,4-methylenedioxymethamphetamine (MDMA). Excitingly, this new appreciation of central immune signaling activity of drugs of abuse provides novel therapeutic interventions and opportunities to identify 'at risk' individuals through the use of immunogenetics. Discussion will also cover the evidence of modulation of this signaling by existing clinical and pre-clinical drug candidates, and novel pharmacological targets. Finally, following examination of the breadth of central immune signaling actions of the drugs of abuse highlighted here, the current known common immune signaling components will be outlined and their impact on established addiction neurocircuitry discussed, thereby synthesizing a common neuroimmune hypothesis of addiction.
Collapse
Affiliation(s)
- Janet K Coller
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, South Australia 5005, Australia.
| | | |
Collapse
|
20
|
Kikuchi K, Takeshige N, Miura N, Morimoto Y, Ito T, Tancharoen S, Miyata K, Kikuchi C, Iida N, Uchikado H, Miyagi N, Shiomi N, Kuramoto T, Maruyama I, Morioka M, Kawahara KI. Beyond free radical scavenging: Beneficial effects of edaravone (Radicut) in various diseases (Review). Exp Ther Med 2011; 3:3-8. [PMID: 22969835 DOI: 10.3892/etm.2011.352] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 09/13/2011] [Indexed: 12/19/2022] Open
Abstract
Free radicals play an important role in the pathogenesis of a variety of diseases; thus, they are an attractive target for therapeutic intervention in these diseases. Compounds capable of scavenging free radicals have been developed for this purpose and some, developed for the treatment of cerebral ischemic stroke, have progressed to clinical trials. One such scavenger, edaravone, is used to treat patients within 24 h of stroke. Edaravone, which can diffuse into many disease-affected organs, also shows protective effects in the heart, lung, intestine, liver, pancreas, kidney, bladder and testis. As well as scavenging free radicals, edaravone has anti-apoptotic, anti-necrotic and anti-cytokine effects in various diseases. Here, we critically review the literature on its clinical efficacy and examine whether edaravone should be considered a candidate for worldwide development, focusing on its effects on diseases other than cerebral infarction. Edaravone has been safely used as a free radical scavenger for more than 10 years; we propose that edaravone may offer a novel treatment option for several diseases.
Collapse
Affiliation(s)
- Kiyoshi Kikuchi
- Department of Neurosurgery, Yame Public General Hospital, Yame 834-0034
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ago Y, Kawasaki T, Nashida T, Ota Y, Cong Y, Kitamoto M, Takahashi T, Takuma K, Matsuda T. SEA0400, a specific Na+/Ca2+ exchange inhibitor, prevents dopaminergic neurotoxicity in an MPTP mouse model of Parkinson's disease. Neuropharmacology 2011; 61:1441-51. [PMID: 21903118 DOI: 10.1016/j.neuropharm.2011.08.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 08/24/2011] [Accepted: 08/26/2011] [Indexed: 12/14/2022]
Abstract
We have recently shown that the Na(+)/Ca(2+) exchanger (NCX) is involved in nitric oxide (NO)-induced cytotoxicity in cultured astrocytes and neurons. However, there is no in vivo evidence suggesting the role of NCX in neurodegenerative disorders associated with NO. NO is implicated in the pathogenesis of neurodegenerative disorders such as Parkinson's disease. This study examined the effect of SEA0400, the specific NCX inhibitor, on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity, a model of Parkinson's disease, in C57BL/6J mice. MPTP treatment (10 mg/kg, four times at 2-h intervals) decreased dopamine levels in the midbrain and impaired motor coordination, and these effects were counteracted by S-methylthiocitrulline, a selective neuronal NO synthase inhibitor. SEA0400 protected against the dopaminergic neurotoxicity (determined by dopamine levels in the midbrain and striatum, tyrosine hydroxylase immunoreactivity in the substantia nigra and striatum, striatal dopamine release, and motor deficits) in MPTP-treated mice. SEA0400 had no radical-scavenging activity. SEA0400 did not affect MPTP metabolism and MPTP-induced NO production and microglial activation, while it attenuated MPTP-induced increases in extracellular signal-regulated kinase (ERK) phosphorylation and lipid peroxidation product, thiobarbituric acid reactive substance. These findings suggest that SEA0400 protects against MPTP-induced neurotoxicity probably by blocking ERK phosphorylation and lipid peroxidation which are downstream of NCX-mediated Ca(2+) influx.
Collapse
Affiliation(s)
- Yukio Ago
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Koda K, Ago Y, Yano K, Nishimura M, Kobayashi H, Fukada A, Takuma K, Matsuda T. Involvement of decreased muscarinic receptor function in prepulse inhibition deficits in mice reared in social isolation. Br J Pharmacol 2011; 162:763-72. [PMID: 20958289 DOI: 10.1111/j.1476-5381.2010.01080.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE We have previously reported that galantamine, a weak acetylcholinesterase inhibitor, improves prepulse inhibition (PPI) deficits in mice reared in social isolation. ACh receptors are involved in the underlying mechanism of PPI, but whether rearing in social isolation causes dysfunction of the cholinergic system is unknown. In this study, we examined the involvement of muscarinic receptors in the improvement of PPI deficits induced by galantamine, and whether the cholinergic system is altered in mice reared in isolation. EXPERIMENTAL APPROACH Three-week-old male ddY mice were housed in isolated cages for 6 weeks before the initiation of experiments to create PPI deficits. Cholinergic functions were determined by measuring the behavioural and neurochemical responses to nicotinic and muscarinic receptor agonists. KEY RESULTS The improvement by galantamine of social isolation-induced PPI deficits was blocked by scopolamine, a non-selective muscarinic antagonist, and telenzepine, a preferential M₁ receptor antagonist. Activation of M₁ receptors improved social isolation-induced PPI deficits. Social isolation did not affect choline acetyltransferase and acetylcholinesterase activities in the prefrontal cortex and hippocampus, but it reduced the locomotor-suppressive response to muscarinic agonist oxotremorine, but not to nicotine. The isolation also attenuated the M₁ receptor agonist N-desmethylclozapine-induced increase in prefrontal dopamine release. CONCLUSIONS AND IMPLICATIONS Galantamine improves PPI deficits of mice reared in social isolation via activation of M₁ receptors. Social isolation reduces the muscarinic, especially M₁, receptor function and this is involved in PPI deficits.
Collapse
Affiliation(s)
- K Koda
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka, Suita, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Yamamoto BK, Moszczynska A, Gudelsky GA. Amphetamine toxicities: classical and emerging mechanisms. Ann N Y Acad Sci 2010; 1187:101-21. [PMID: 20201848 DOI: 10.1111/j.1749-6632.2009.05141.x] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The drugs of abuse, methamphetamine and MDMA, produce long-term decreases in markers of biogenic amine neurotransmission. These decreases have been traditionally linked to nerve terminals and are evident in a variety of species, including rodents, nonhuman primates, and humans. Recent studies indicate that the damage produced by these drugs may be more widespread than originally believed. Changes indicative of damage to cell bodies of biogenic and nonbiogenic amine-containing neurons in several brain areas and endothelial cells that make up the blood-brain barrier have been reported. The processes that mediate this damage involve not only oxidative stress but also include excitotoxic mechanisms, neuroinflammation, the ubiquitin proteasome system, as well as mitochondrial and neurotrophic factor dysfunction. These mechanisms also underlie the toxicity associated with chronic stress and human immunodeficiency virus (HIV) infection, both of which have been shown to augment the toxicity to methamphetamine. Overall, multiple mechanisms are involved and interact to promote neurotoxicity to methamphetamine and MDMA. Moreover, the high coincidence of substituted amphetamine abuse by humans with HIV and/or chronic stress exposure suggests a potential enhanced vulnerability of these individuals to the neurotoxic actions of the amphetamines.
Collapse
Affiliation(s)
- Bryan K Yamamoto
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, Ohio 43614, USA.
| | | | | |
Collapse
|
24
|
Krasnova IN, Cadet JL. Methamphetamine toxicity and messengers of death. ACTA ACUST UNITED AC 2009; 60:379-407. [PMID: 19328213 DOI: 10.1016/j.brainresrev.2009.03.002] [Citation(s) in RCA: 431] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 03/16/2009] [Indexed: 12/11/2022]
Abstract
Methamphetamine (METH) is an illicit psychostimulant that is widely abused in the world. Several lines of evidence suggest that chronic METH abuse leads to neurodegenerative changes in the human brain. These include damage to dopamine and serotonin axons, loss of gray matter accompanied by hypertrophy of the white matter and microgliosis in different brain areas. In the present review, we summarize data on the animal models of METH neurotoxicity which include degeneration of monoaminergic terminals and neuronal apoptosis. In addition, we discuss molecular and cellular bases of METH-induced neuropathologies. The accumulated evidence indicates that multiple events, including oxidative stress, excitotoxicity, hyperthermia, neuroinflammatory responses, mitochondrial dysfunction, and endoplasmic reticulum stress converge to mediate METH-induced terminal degeneration and neuronal apoptosis. When taken together, these findings suggest that pharmacological strategies geared towards the prevention and treatment of the deleterious effects of this drug will need to attack the various pathways that form the substrates of METH toxicity.
Collapse
Affiliation(s)
- Irina N Krasnova
- Molecular Neuropsychiatry Research Branch, Intramural Research Program, NIDA/NIH/DHHS, Baltimore, MD 21224, USA
| | | |
Collapse
|
25
|
Cadet JL, Krasnova IN. Molecular bases of methamphetamine-induced neurodegeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 88:101-19. [PMID: 19897076 DOI: 10.1016/s0074-7742(09)88005-7] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant drug, whose abuse has reached epidemic proportions worldwide. The addiction to METH is a major public concern because its chronic abuse is associated with serious health complications including deficits in attention, memory, and executive functions in humans. These neuropsychiatric complications might, in part, be related to drug-induced neurotoxic effects, which include damage to dopaminergic and serotonergic terminals, neuronal apoptosis, as well as activated astroglial and microglial cells in the brain. Thus, the purpose of the present paper is to review cellular and molecular mechanisms that might be responsible for METH neurotoxicity. These include oxidative stress, activation of transcription factors, DNA damage, excitotoxicity, blood-brain barrier breakdown, microglial activation, and various apoptotic pathways. Several approaches that allow protection against METH-induced neurotoxic effects are also discussed. Better understanding of the cellular and molecular mechanisms involved in METH toxicity should help to generate modern therapeutic approaches to prevent or attenuate the long-term consequences of psychostimulant use disorders in humans.
Collapse
Affiliation(s)
- Jean Lud Cadet
- Molecular Neuropsychiatry Branch, NIDA-Intramural Research Program, NIH/DHHS, Baltimore, Maryland 21224, USA
| | | |
Collapse
|
26
|
Kita T, Miyazaki I, Asanuma M, Takeshima M, Wagner GC. Dopamine-Induced Behavioral Changes and Oxidative Stress in Methamphetamine-Induced Neurotoxicity. NEW CONCEPTS OF PSYCHOSTIMULANT INDUCED NEUROTOXICITY 2009; 88:43-64. [DOI: 10.1016/s0074-7742(09)88003-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Boger HA, Middaugh LD, Granholm AC, McGinty JF. Minocycline restores striatal tyrosine hydroxylase in GDNF heterozygous mice but not in methamphetamine-treated mice. Neurobiol Dis 2008; 33:459-66. [PMID: 19110059 DOI: 10.1016/j.nbd.2008.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 11/12/2008] [Accepted: 11/27/2008] [Indexed: 12/13/2022] Open
Abstract
Inflammation, phospho-p38 MAPK activation, and a reduction in glial cell line-derived neurotrophic factor (GDNF) occur in Parkinson's disease. Microglial activation in the substantia nigra and a tyrosine hydroxylase deficit in the striatum of 3-month-old GDNF heterozygous (GDNF(+/-)) mice were previously reported and both were exacerbated by a toxic methamphetamine binge. The current study assessed the effects of minocycline on these methamphetamine-induced effects. Minocycline (45 mg/kg, i.p.x 14 days post-methamphetamine or saline injections) reduced microglial activation and phospho-p38 MAPK in the substantia nigra of saline-treated GDNF(+/-) mice and in methamphetamine-treated wildtype and GDNF(+/-) mice. Although minocycline increased tyrosine hydroxylase-immunoreactivity in GDNF(+/-) mice, it did not attenuate the methamphetamine-induced reduction of tyrosine hydroxylase. The results suggest that neuroinflammation is deleterious to the dopamine system of GDNF(+/-) mice but is not the primary cause of methamphetamine-induced damage to the dopamine system in either GDNF(+/-) or wildtype mice.
Collapse
Affiliation(s)
- Heather A Boger
- Department of Neurosciences and Center on Aging, Medical University of South Carolina 173 Ashley Avenue BSB 403, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
28
|
Kawasaki T, Ago Y, Kitao T, Nashida T, Takagi A, Takuma K, Matsuda T. A neuroprotective agent, T-817MA (1-{3-[2-(1-benzothiophen-5-yl)ethoxy]propyl} azetidin-3-ol maleate), prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in mice. Neuropharmacology 2008; 55:654-60. [DOI: 10.1016/j.neuropharm.2008.05.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 05/12/2008] [Accepted: 05/27/2008] [Indexed: 01/09/2023]
|
29
|
Yuan WJ, Yasuhara T, Shingo T, Muraoka K, Agari T, Kameda M, Uozumi T, Tajiri N, Morimoto T, Jing M, Baba T, Wang F, Leung H, Matsui T, Miyoshi Y, Date I. Neuroprotective effects of edaravone-administration on 6-OHDA-treated dopaminergic neurons. BMC Neurosci 2008; 9:75. [PMID: 18671880 PMCID: PMC2533664 DOI: 10.1186/1471-2202-9-75] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 08/01/2008] [Indexed: 11/10/2022] Open
Abstract
Background Parkinson's disease (PD) is a neurological disorder characterized by the degeneration of nigrostriatal dopaminergic systems. Free radicals induced by oxidative stress are involved in the mechanisms of cell death in PD. This study clarifies the neuroprotective effects of edaravone (MCI-186, 3-methyl-1-phenyl-2-pyrazolin-5-one), which has already been used for the treatment of cerebral ischemia in Japan, on TH-positive dopaminergic neurons using PD model both in vitro and in vivo. 6-hydroxydopamine (6-OHDA), a neurotoxin for dopaminergic neurons, was added to cultured dopaminergic neurons derived from murine embryonal ventral mesencephalon with subsequet administration of edaravone or saline. The number of surviving TH-positive neurons and the degree of cell damage induced by free radicals were analyzed. In parallel, edaravone or saline was intravenously administered for PD model of rats receiving intrastriatal 6-OHDA lesion with subsequent behavioral and histological analyses. Results In vitro study showed that edaravone significantly ameliorated the survival of TH-positive neurons in a dose-responsive manner. The number of apoptotic cells and HEt-positive cells significantly decreased, thus indicating that the neuroprotective effects of edaravone might be mediated by anti-apoptotic effects through the suppression of free radicals by edaravone. In vivo study demonstrated that edaravone-administration at 30 minutes after 6-OHDA lesion reduced the number of amphetamine-induced rotations significantly than edaravone-administration at 24 hours. Tyrosine hydroxylase (TH) staining of the striatum and substantia nigra pars compacta revealed that edaravone might exert neuroprotective effects on nigrostriatal dopaminergic systems. The neuroprotective effects were prominent when edaravone was administered early and in high concentration. TUNEL, HEt and Iba-1 staining in vivo might demonstrate the involvement of anti-apoptotic, anti-oxidative and anti-inflammatory effects of edaravone-administration. Conclusion Edaravone exerts neuroprotective effects on PD model both in vitro and in vivo. The underlying mechanisms might be involved in the anti-apoptotic effects, anti-oxidative effects, and/or anti-inflammatory effects of edaravone. Edaravone might be a hopeful therapeutic option for PD, although the high therapeutic dosage remains to be solved for the clinical application.
Collapse
Affiliation(s)
- Wen Ji Yuan
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chen H, Wang S, Ding JH, Hu G. Edaravone protects against MPP+ -induced cytotoxicity in rat primary cultured astrocytes via inhibition of mitochondrial apoptotic pathway. J Neurochem 2008; 106:2345-52. [PMID: 18643790 DOI: 10.1111/j.1471-4159.2008.05573.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Edaravone (Eda) is a potent scavenger of hydroxyl radicals and has been demonstrated to be beneficial for patients with acute ischemic stroke. This study was set out to investigate whether Eda protect against MPP(+)-induced cytotoxicity in rat primary cultured astrocytes. The results showed that pre-treatment with Eda inhibited astrocytic apoptosis and lactate dehydrogenase release induced by MPP(+) (200 microM). Further study revealed that Eda prevented GSH depletion, down-regulated mRNA expressions of NADPH oxidase membrane subunit gp91 and membrane-translocated subunit p47, and prevented the decreases of state 3 respiration respiration and respiratory control ratio induced by MPP(+), and thereby inhibited reactive oxygen species production evoked by MPP(+). Moreover, Eda could ameliorate mitochondrial respiratory function, restrain, and prevent mitochondrial membrane potential loss induced by MPP(+). Consequently, Eda inhibited releases of cytochrome c and apoptosis-inducing factor induced by MPP(+). Taken together, these findings reveal for the first time that Eda protects against MPP(+)-induced astrocytic apoptosis via decreasing intracellular reactive oxygen species level and subsequently inhibiting mitochondrial apoptotic pathway. The antiapoptosis effects of Eda on astrocytes may provide a new perspective on neuroprotective therapy.
Collapse
Affiliation(s)
- Hui Chen
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | | |
Collapse
|
31
|
Cadet JL, Krasnova IN. Interactions of HIV and methamphetamine: cellular and molecular mechanisms of toxicity potentiation. Neurotox Res 2008; 12:181-204. [PMID: 17967742 DOI: 10.1007/bf03033915] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant drug, whose abuse has reached epidemic proportions worldwide. METH use is disproportionally represented among populations at high risks for developing HIV infection or who are already infected with the virus. Psychostimulant abuse has been reported to exacerbate the cognitive deficits and neurodegenerative abnormalities observed in HIV-positive patients. Thus, the purpose of the present paper is to review the clinical and basic observations that METH potentiates the adverse effects of HIV infection. An additional purpose is to provide a synthesis of the cellular and molecular mechanisms that might be responsible for the increased toxicity observed in co-morbid patients. The reviewed data indicate that METH and HIV proteins, including gp120, gp41, Tat, Vpr and Nef, converge on various caspase-dependent death pathways to cause neuronal apoptosis. The role of reactive microgliosis in METH- and in HIV-induced toxicity is also discussed.
Collapse
Affiliation(s)
- J L Cadet
- Molecular Neuropsychiatry Branch, NIH/NIDA Intramural Research Program, Baltimore, MD 21224, USA.
| | | |
Collapse
|
32
|
Fukudome D, Matsuda M, Kawasaki T, Ago Y, Matsuda T. The radical scavenger edaravone counteracts diabetes in multiple low-dose streptozotocin-treated mice. Eur J Pharmacol 2008; 583:164-9. [PMID: 18291360 DOI: 10.1016/j.ejphar.2008.01.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 01/08/2008] [Accepted: 01/24/2008] [Indexed: 11/17/2022]
Abstract
Edaravone is a potent scavenger of hydroxyl radicals and attenuates oxidative damage-related neurodegenerative diseases. Previous studies suggest that oxidative stress plays a key role in the pathogenesis of diabetes. The present study examined the effect of edaravone on diabetes in multiple low-dose streptozotocin-treated mice. Mice treated with low-doses of streptozotocin for five consecutive days showed progressive hyperglycemia and an increased incidence of diabetes. Daily treatment with edaravone during the streptozotocin injections counteracted the multiple low-dose streptozotocin-induced hyperglycemia in a dose-dependent manner. Edaravone protected against the multiple low-dose streptozotocin-induced reduction in pancreatic insulin. The suppressive effects of edaravone were also observed when it was administered after the last injection of streptozotocin. Histochemical examination showed that multiple low-dose streptozotocin treatment caused mononuclear cell infiltration in pancreatic islets, followed by hyperglycemia, and that edaravone significantly inhibited the multiple low-dose streptozotocin-induced insulitis. Multiple low-dose streptozotocin treatment also increased the lipid peroxidation product thiobarbituric acid reactive substance in pancreatic tissues of mice, and this effect was completely inhibited by edaravone. These findings suggest that edaravone, even after streptozotocin treatment, counteracts the development of multiple low-dose streptozotocin-induced diabetes by scavenging free radicals, which are possible mediators of the immune destruction of islet beta cells.
Collapse
Affiliation(s)
- Daisuke Fukudome
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
33
|
Kawasaki T, Ishihara K, Ago Y, Baba A, Matsuda T. Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a radical scavenger, prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in the substantia nigra but not the striatum. J Pharmacol Exp Ther 2007; 322:274-81. [PMID: 17429058 DOI: 10.1124/jpet.106.119206] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes nigrostriatal dopaminergic neurotoxicity and behavioral impairment in rodents, and previous studies suggest that nitric oxide and reactive oxygen species are involved in MPTP-induced neurotoxicity. The present study examines the effect of edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a radical scavenger, on MPTP-induced neurotoxicity in the striatum and substantia nigra pars compacta (SNc) of C57BL/6J mice. MPTP treatment (10 mg/kg s.c. x 4 with 2-h intervals) decreased dopamine levels and tyrosine hydroxylase immunostaining in the striatum and SNc. Pretreatment with edaravone (1 and 3 mg/kg i.p.) significantly reduced the neurotoxicity in the SNc but not striatum. An immunohistochemical study showed that MPTP caused microglial activation both in the striatum and SNc, whereas it increased 3-nitrotyrosine immunoreactivity, an in vivo biomarker of peroxynitrite production, in the SNc but not the striatum. Furthermore, MPTP increased lipid peroxidation product thiobarbituric acid reactive substance in the midbrain, but not the striatum. Edaravone inhibited activation of the microglia and the increased 3-nitrotyrosine immunoreactivity in the SNc but not the striatum, and it also inhibited thiobarbituric acid reactive substance levels in the midbrain. Behavioral analyses showed that edaravone improved MPTP-induced impairment of locomotion and Rotorod performance. These results suggest that edaravone protects against MPTP-induced neurotoxicity in the SNc by blocking the production of reactive oxygen species or peroxynitrite and imply that dopaminergic degeneration in the SNc may play an important role in MPTP-induced motor dysfunction of mice.
Collapse
Affiliation(s)
- Toshiyuki Kawasaki
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|