1
|
Wessler I, Kirkpatrick CJ. Cholinergic signaling controls immune functions and promotes homeostasis. Int Immunopharmacol 2020; 83:106345. [PMID: 32203906 DOI: 10.1016/j.intimp.2020.106345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/06/2020] [Accepted: 02/23/2020] [Indexed: 12/15/2022]
Abstract
Acetylcholine (ACh) was created by nature as one of the first signaling molecules, expressed already in procaryotes. Based on the positively charged nitrogen, ACh could initially mediate signaling in the absence of receptors. When evolution established more and more complex organisms the new emerging organs systems, like the smooth and skeletal muscle systems, energy-generating systems, sexual reproductive system, immune system and the nervous system have further optimized the cholinergic signaling machinery. Thus, it is not surprising that ACh and the cholinergic system are expressed in the vast majority of cells. Consequently, multiple common interfaces exist, for example, between the nervous and the immune system. Research of the last 20 years has unmasked these multiple regulating mechanisms mediated by cholinergic signaling and thus, the biological role of ACh has been revised. The present article summarizes new findings and describes the role of both non-neuronal and neuronal ACh in protecting the organism from external and internal health threats, in providing energy for the whole organism and for the individual cell, controling immune functions to prevent inflammatory dysbalance, and finally, the involvement in critical brain functions, such as learning and memory. All these capacities of ACh enable the organism to attain and maintain homeostasis under changing external conditions. However, the existence of identical interfaces between all these different organ systems complicates the research for new therapeutic interventions, making it essential that every effort should be undertaken to find out more specific targets to modulate cholinergic signaling in different diseases.
Collapse
Affiliation(s)
- Ignaz Wessler
- Institute of Pathology, University Medical Center, Johannes Gutenberg University, D-55101 Mainz, Germany.
| | - Charles James Kirkpatrick
- Institute of Pathology, University Medical Center, Johannes Gutenberg University, D-55101 Mainz, Germany
| |
Collapse
|
2
|
Blokhina AS, Khaertdinov NN, Zefirov AL, Sitdikova GF. Interaction between Hydrogen Sulfide and Muscarinic Receptors in the Regulation of Contractility of the Mouse Atrium. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418040025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Vyas FS, Nelson CP, Dickenson JM. Role of transglutaminase 2 in A 1 adenosine receptor- and β 2-adrenoceptor-mediated pharmacological pre- and post-conditioning against hypoxia-reoxygenation-induced cell death in H9c2 cells. Eur J Pharmacol 2017; 819:144-160. [PMID: 29208472 DOI: 10.1016/j.ejphar.2017.11.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/20/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023]
Abstract
Pharmacologically-induced pre- and post-conditioning represent attractive therapeutic strategies to reduce ischaemia/reperfusion injury during cardiac surgery and following myocardial infarction. We have previously reported that transglutaminase 2 (TG2) activity is modulated by the A1 adenosine receptor and β2-adrenoceptor in H9c2 cardiomyoblasts. The primary aim of this study was to determine the role of TG2 in A1 adenosine receptor and β2-adrenoceptor-induced pharmacological pre- and post-conditioning in the H9c2 cells. H9c2 cells were exposed to 8h hypoxia (1% O2) followed by 18h reoxygenation, after which cell viability was assessed by monitoring mitochondrial reduction of MTT, lactate dehydrogenase release and caspase-3 activation. N6-cyclopentyladenosine (CPA; A1 adenosine receptor agonist), formoterol (β2-adrenoceptor agonist) or isoprenaline (non-selective β-adrenoceptor agonist) were added before hypoxia/reoxygenation (pre-conditioning) or at the start of reoxygenation following hypoxia (post-conditioning). Pharmacological pre- and post-conditioning with CPA and isoprenaline significantly reduced hypoxia/reoxygenation-induced cell death. In contrast, formoterol did not elicit protection. Pre-treatment with pertussis toxin (Gi/o-protein inhibitor), DPCPX (A1 adenosine receptor antagonist) or TG2 inhibitors (Z-DON and R283) attenuated the A1 adenosine receptor-induced pharmacological pre- and post-conditioning. Similarly, pertussis toxin, ICI 118,551 (β2-adrenoceptor antagonist) or TG2 inhibition attenuated the isoprenaline-induced cell survival. Knockdown of TG2 using small interfering RNA (siRNA) attenuated CPA and isoprenaline-induced pharmacological pre- and post-conditioning. Finally, proteomic analysis following isoprenaline treatment identified known (e.g. protein S100-A6) and novel (e.g. adenine phosphoribosyltransferase) protein substrates for TG2. These results have shown that A1 adenosine receptor and β2-adrenoceptor-induced protection against simulated hypoxia/reoxygenation occurs in a TG2 and Gi/o-protein dependent manner in H9c2 cardiomyoblasts.
Collapse
Affiliation(s)
- Falguni S Vyas
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Carl P Nelson
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - John M Dickenson
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
| |
Collapse
|
4
|
Randhawa PK, Jaggi AS. Unraveling the role of adenosine in remote ischemic preconditioning-induced cardioprotection. Life Sci 2016; 155:140-6. [PMID: 27157518 DOI: 10.1016/j.lfs.2016.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/25/2022]
Abstract
Remote ischemic preconditioning (RIPC) induced by alternate cycles of preconditioning ischemia and reperfusion protects the heart against sustained ischemia-reperfusion-induced injury. This technique has been translated to clinical levels in patients undergoing various surgical interventions including coronary artery bypass graft surgery, abdominal aortic aneurysm repair, percutaneous coronary intervention and heart valve surgery. Adenosine is a master regulator of energy metabolism and reduces myocardial ischemia-reperfusion-induced injury. Furthermore, adenosine is a critical trigger as well as a mediator in RIPC-induced cardioprotection and scientists have demonstrated the role of adenosine by showing an increase in its levels in the systemic circulation during RIPC delivery. Furthermore, the blockade of cardioprotective effects of RIPC in the presence of specific adenosine receptor blockers and transgenic animals with targeted ablation of A1 receptors has also demonstrated its critical role in RIPC. The studies have shown that adenosine may elicit cardioprotection via activation of neurogenic pathway. The present review describes the possible role and mechanism of adenosine in mediating RIPC-induced cardioprotection.
Collapse
Affiliation(s)
- Puneet Kaur Randhawa
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, 147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, 147002, India.
| |
Collapse
|
5
|
He X, Zhao M, Bi X, Sun L, Yu X, Zhao M, Zang W. Novel strategies and underlying protective mechanisms of modulation of vagal activity in cardiovascular diseases. Br J Pharmacol 2015; 172:5489-500. [PMID: 25378088 PMCID: PMC4667861 DOI: 10.1111/bph.13010] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/21/2014] [Accepted: 10/31/2014] [Indexed: 01/14/2023] Open
Abstract
Cardiovascular disease remains a major cause of disability and death worldwide. Autonomic imbalance, characterized by suppressed vagal (parasympathetic) activity and increased sympathetic activity, correlates with various pathological conditions, including heart failure, arrhythmia, ischaemia/reperfusion injury and hypertension. Conventionally, pharmacological interventions, such as β-blocker treatment, have primarily targeted suppressing sympathetic over-activation, while vagal modulation has always been neglected. Emerging evidence has documented the improvement of cardiac and vascular function mediated by the vagal nerve. Many investigators have tried to explore the effective ways to enhance vagal tone and normalize the autonomic nervous system. In this review, we attempt to give an overview of these therapeutic strategies, including direct vagal activation (electrical vagal stimulation, ACh administration and ACh receptor activation), pharmacological modulation (adenosine, cholinesterase inhibitors, statins) and exercise training. This overview provides valuable information for combination therapy, contributing to establishment of a comprehensive system on vagal modulation from the aspects of clinical application and lifestyle improvement. In addition, the mechanisms contributing to the benefits of enhancing vagal tone are diverse and have not yet been fully defined. We endeavour to outline the recent findings that advance our knowledge regarding the many favourable effects exerted by vagal activation: anti-inflammatory pathways, modulation of NOS and NO signalling, regulation of redox state, improvement of mitochondrial biogenesis and function, and potential calcium regulation. This review may help to develop novel therapeutic strategies targeting enhancing vagal activity for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Xi He
- Department of PharmacologyXi'an Jiaotong University Health Science CenterXi'anChina
| | - Ming Zhao
- Department of PharmacologyXi'an Jiaotong University Health Science CenterXi'anChina
| | - Xueyuan Bi
- Department of PharmacologyXi'an Jiaotong University Health Science CenterXi'anChina
| | - Lei Sun
- Department of PharmacologyXi'an Jiaotong University Health Science CenterXi'anChina
| | - Xiaojiang Yu
- Department of PharmacologyXi'an Jiaotong University Health Science CenterXi'anChina
| | - Mei Zhao
- Department of PharmacologyXi'an Jiaotong University Health Science CenterXi'anChina
| | - Weijin Zang
- Department of PharmacologyXi'an Jiaotong University Health Science CenterXi'anChina
| |
Collapse
|
6
|
Maslov LN, Headrick JP, Mechoulam R, Krylatov AV, Lishmanov AY, Barzakh EI, Naryzhnaya NV, Zhang Y. The Role of Receptor Transactivation in the Cardioprotective Effects of Preconditioning and Postconditioning. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11055-013-9844-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Sun L, Zhao M, Yu XJ, Wang H, He X, Liu JK, Zang WJ. Cardioprotection by acetylcholine: a novel mechanism via mitochondrial biogenesis and function involving the PGC-1α pathway. J Cell Physiol 2013; 228:1238-48. [PMID: 23139024 DOI: 10.1002/jcp.24277] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 10/29/2012] [Indexed: 11/10/2022]
Abstract
Mitochondrial biogenesis disorders appear to play an essential role in cardiac dysfunction. Acetylcholine as a potential pharmacologic agent exerts cardioprotective effects. However, its direct action on mitochondria biogenesis in acute cardiac damage due to ischemia/reperfusion remains unclear. The present study determined the involvement of mitochondrial biogenesis and function in the cardiopotection of acetylcholine in H9c2 cells subjected to hypoxia/reoxygenation (H/R). Our findings demonstrated that acetylcholine treatment on the beginning of reoxygenation improved cell viability in a concentration-dependent way. Consequently, acetylcholine inhibited the mitochondrial morphological abnormalities and caused a significant increase in mitochondrial density, mass, and mitochondrial DNA (mtDNA) copy number. Accordingly, acetylcholine enhanced ATP synthesis, membrane potentials, and activities of mitochondrial complexes in contrast to H/R alone. Furthermore, acetylcholine stimulated the transcriptional activation and protein expression of peroxisome proliferator-activated receptor co-activator 1 alpha (PGC-1α, the central factor for mitochondrial biogenesis) and its downstream targets including nuclear respiration factors and mitochondrial transcription factor A. In addition, acetylcholine activated phosphorylation of AMP-activated protein kinase (AMPK), which was located upstream of PGC-1α. Atropine (muscarinic receptor antagonist) abolished the favorable effects of acetylcholine on mitochondria. Knockdown of PGC-1α or AMPK by siRNA blocked acetylcholine-induced stimulating effects on mtDNA copy number and against cell injury. In conclusion, we suggested, acetylcholine as a mitochondrial nutrient, protected against the deficient mitochondrial biogenesis and function induced by H/R injury in a cellular model through muscarinic receptor-mediated, AMPK/PGC-1α-associated regulatory program, which may be of significance in elucidating a novel mechanism underlying acetylcholine-induced cardioprotection.
Collapse
Affiliation(s)
- Lei Sun
- Department of Pharmacology, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | | | | | | | | | | | | |
Collapse
|
8
|
Effects of bone marrow mesenchymal stem cells in a rat model of myocardial infarction. Resuscitation 2012; 83:1391-6. [DOI: 10.1016/j.resuscitation.2012.02.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 02/15/2012] [Accepted: 02/21/2012] [Indexed: 01/14/2023]
|
9
|
Zhao M, Sun L, Liu JJ, Wang H, Miao Y, Zang WJ. Vagal nerve modulation: A promising new therapeutic approach for cardiovascular diseases. Clin Exp Pharmacol Physiol 2012; 39:701-5. [DOI: 10.1111/j.1440-1681.2011.05644.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Wu Y, Gu EW, Zhu Y, Zhang L, Liu XQ, Fang WP. Sufentanil limits the myocardial infarct size by preservation of the phosphorylated connexin 43. Int Immunopharmacol 2012; 13:341-6. [PMID: 22561119 DOI: 10.1016/j.intimp.2012.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/10/2012] [Accepted: 04/18/2012] [Indexed: 11/18/2022]
Abstract
Sufentanil, with a potent analgesia effect, has been wildly used in anesthesia and analgesia, especially for the cardiovascular surgeries. The aim of the study was to evaluate whether sufentanil provides cardioprotection and the effect of connexin 43 on the cardiac infarct size reduction. Sufentanil post-conditioning (bolus injection at 0.1, 0.3, 1, 3, 10 μg/kg) or ischemic post-conditioning (3 cycles of a 10s reperfusion alternating with a 10s ischemia) was induced in an intact rat heart model of ischemia-reperfusion injury. Both ischemic and sufentanil post-conditioning reduced the myocardial infarct size compared with control group. The infarct size limitation of sufentanil was dose-dependent, 1 μg/kg has the optimal effect and increasing dosage could not afford further cardioprotection. Connexin 43 underwent dephosphorylation in response to ischemia-reperfusion measured by Western blot at the anterior myocardium tissues of left ventricle while sufentanil preserved the phosphorylation of connexin 43. The results demonstrated that sufentanil limits myocardial infarct size which is similar with ischemic post-conditioning at the dosage of 1 μg/kg. Preservation of phosphorylation of connexin 43 plays an important role in the cardioprotection of ischemic and sufentanil post-conditioning.
Collapse
Affiliation(s)
- Yun Wu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | | | | | | | | | | |
Collapse
|
11
|
Fretwell L, Dickenson JM. Role of large-conductance Ca²+-activated K+ channels in adenosine A₁ receptor-mediated pharmacological postconditioning in H9c2 cells. Can J Physiol Pharmacol 2011; 89:24-30. [PMID: 21186374 DOI: 10.1139/y10-106] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ischaemic postconditioning is a phenomenon whereby short periods of ischaemia applied during the start of reperfusion protect the myocardium from the damaging consequences of reperfusion. As such, pharmacological-induced postconditioning represents an attractive therapeutic strategy for reducing reperfusion injury during cardiac surgery and following myocardial infarction. The primary aim of this study was to determine the role of large-conductance Ca²(+)-activated potassium channels (BK(Ca) channels) in adenosine A₁ receptor-induced pharmacological postconditioning in the rat embryonic cardiomyoblast-derived cell line H9c2. H9c2 cells were exposed to 6 h hypoxia (0.5% O₂) followed by 18 h reoxygenation (H/R) after which cell viability was assessed by monitoring lactate dehydrogenase (LDH) release and caspase-3 activation. The adenosine A₁ receptor agonist N⁶-cyclopentyladenosine (CPA; 100 nmol/L) or the BK(Ca) channel opener NS1619 (10 µmol/L) were added for 30 min at the start of reoxygenation following 6 h hypoxic exposure. Where appropriate, cells were treated (15 min) before pharmacological postconditioning with the BK(Ca) channel blockers paxilline (1 µmol/L) or iberiotoxin (100 nmol/L). Pharmacological postconditioning with CPA or NS1619 significantly reduced H/R-induced LDH release. Treatment with paxilline or iberiotoxin attenuated adenosine A₁ receptor and NS1619-induced pharmacological postconditioning. These results have shown for the first time that BK(Ca) channels are involved in adenosine A₁ receptor-induced pharmacological postconditioning in a cell model system.
Collapse
|
12
|
Li DL, Liu JJ, Liu BH, Hu H, Sun L, Miao Y, Xu HF, Yu XJ, Ma X, Ren J, Zang WJ. Acetylcholine inhibits hypoxia-induced tumor necrosis factor-α production via regulation of MAPKs phosphorylation in cardiomyocytes. J Cell Physiol 2011; 226:1052-9. [PMID: 20857413 DOI: 10.1002/jcp.22424] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Recent findings have reported that up-regulation of tumor necrosis factor-alpha (TNF-α) induced by myocardial hypoxia aggravates cardiomyocyte injury. Acetylcholine (ACh), the principle vagal neurotransmitter, protects cardiomyocytes against hypoxia by inhibiting apoptosis. However, it is still unclear whether ACh regulates TNF-α production in cardiomyocytes after hypoxia. The concentration of extracellular TNF-α was increased in a time-dependent manner during hypoxia. Furthermore, ACh treatment also inhibited hypoxia-induced TNF-α mRNA and protein expression, caspase-3 activation, cell death and the production of reactive oxygen species (ROS) in cardiomyocytes. ACh treatment prevented the hypoxia-induced increase in p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) phosphorylation, and increased extracellular signal-regulated kinase (ERK) phosphorylation. Co-treatment with atropine, a non-selective muscarinic acetylcholine receptor antagonist, or methoctramine, a selective type-2 muscarinic acetylcholine (M(2) ) receptor antagonist, abrogated the effects of ACh treatment in hypoxic cardiomyocytes. Co-treatment with hexamethonium, a non-selective nicotinic receptor antagonist, and methyllycaconitine, a selective alpha7-nicotinic acetylcholine receptor antagonist, had no effect on ACh-treated hypoxic cardiomyocytes. In conclusion, these results demonstrate that ACh activates the M(2) receptor, leading to regulation of MAPKs phosphorylation and, subsequently, down-regulation of TNF-α production. We have identified a novel pathway by which ACh mediates cardioprotection against hypoxic injury in cardiomyocytes.
Collapse
Affiliation(s)
- Dong-Ling Li
- Department of Pharmacology, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Li DL, Liu BH, Sun L, Zhao M, He X, Yu XJ, Zang WJ. Alterations of muscarinic acetylcholine receptors-2, 4 and α7-nicotinic acetylcholine receptor expression after ischaemia / reperfusion in the rat isolated heart. Clin Exp Pharmacol Physiol 2010; 37:1114-9. [DOI: 10.1111/j.1440-1681.2010.05448.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Protective effects of adenosine in rabbit sinoatrial node ischemia–reperfusion model in vivo: control of arrhythmia by hyperpolarization-activated cyclic nucleotide-gated (HCN)4 channels. Mol Biol Rep 2010; 38:1723-31. [DOI: 10.1007/s11033-010-0286-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 09/02/2010] [Indexed: 01/08/2023]
|
15
|
Lemoine S, Buléon C, Rouet R, Ivascau C, Babatasi G, Massetti M, Gérard JL, Hanouz JL. Bradykinin and adenosine receptors mediate desflurane induced postconditioning in human myocardium: role of reactive oxygen species. BMC Anesthesiol 2010; 10:12. [PMID: 20670410 PMCID: PMC2919536 DOI: 10.1186/1471-2253-10-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Accepted: 07/29/2010] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Desflurane during early reperfusion has been shown to postcondition human myocardium, in vitro. We investigated the role of adenosine and bradykinin receptors, and generation of radical oxygen species in desflurane-induced postconditioning in human myocardium. METHODS We recorded isometric contraction of human right atrial trabeculae hanged in an oxygenated Tyrode's solution (34 degrees Celsius, stimulation frequency 1 Hz). After a 30-min hypoxic period, desflurane 6% was administered during the first 5 min of reoxygenation. Desflurane was administered alone or with pretreatment of N-mercaptopropionylglycine, a reactive oxygen species scavenger, 8-(p-Sulfophenyl)theophylline, an adenosine receptor antagonist, HOE140, a selective B2 bradykinin receptor antagonist. In separate groups, adenosine and bradykinin were administered during the first minutes of reoxygenation alone or in presence of N-mercaptopropionylglycine. The force of contraction of trabeculae was recorded continuously. Developed force at the end of a 60-min reoxygenation period was compared (mean +/- standard deviation) between the groups by a variance analysis and post hoc test. RESULTS Desflurane 6% (84 +/- 6% of baseline) enhanced the recovery of force after 60-min of reoxygenation as compared to control group (51 +/- 8% of baseline, P < 0.0001). N-mercaptopropionylglycine (54 +/- 3% of baseline), 8-(p-Sulfophenyl)theophylline (62 +/- 9% of baseline), HOE140 (58 +/- 6% of baseline) abolished desflurane-induced postconditioning. Adenosine (80 +/- 9% of baseline) and bradykinin (83 +/- 4% of baseline) induced postconditioning (P < 0.0001 vs control), N-mercaptopropionylglycine abolished the beneficial effects of adenosine and bradykinin (54 +/- 8 and 58 +/- 5% of baseline, respectively). CONCLUSIONS In vitro, desflurane-induced postconditioning depends on reactive oxygen species production, activation of adenosine and bradykinin B2 receptors. And, the cardioprotective effect of adenosine and bradykinin administered at the beginning of reoxygenation, was mediated, at least in part, through ROS production.
Collapse
Affiliation(s)
- Sandrine Lemoine
- Laboratory of Experimental Anesthesiology and Cellular Physiology, IFR 146 ICORE, Université de Caen Basse Normandie, CHU Caen, Avenue de la Cote de Nacre, 14033 Caen, France.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Poloxamer 188 protects against ischemia-reperfusion injury in a murine hind-limb model. Plast Reconstr Surg 2010; 125:1651-1660. [PMID: 20517088 DOI: 10.1097/prs.0b013e3181ccdbef] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ischemia-reperfusion injury can activate pathways generating reactive oxygen species, which can injure cells by creating holes in the cell membranes. Copolymer surfactants such as poloxamer 188 are capable of sealing defects in cell membranes. The authors postulated that a single-dose administration of poloxamer 188 would decrease skeletal myocyte injury and mortality following ischemia-reperfusion injury. METHODS Mice underwent normothermic hind-limb ischemia for 2 hours. Animals were treated with 150 microl of poloxamer 188 or dextran at three time points: (1) 10 minutes before ischemia; (2) 10 minutes before reperfusion; and (3) 2 or 4 hours after reperfusion. After 24 hours of reperfusion, tissues were analyzed for myocyte injury (histology) and metabolic dysfunction (muscle adenosine 5'-triphosphate). Additional groups of mice were followed for 7 days to assess mortality. RESULTS When poloxamer 188 treatment was administered 10 minutes before ischemia, injury was reduced by 84 percent, from 50 percent injury in the dextran group to 8 percent injury in the poloxamer 188 group (p < 0.001). When administered 10 minutes before reperfusion, poloxamer 188 animals demonstrated a 60 percent reduction in injury compared with dextran controls (12 percent versus 29 percent). Treatment at 2 hours, but not at 4 hours, postinjury prevented substantial myocyte injury. Preservation of muscle adenosine 5'-triphosphate paralleled the decrease in myocyte injury in poloxamer 188-treated animals. Poloxamer 188 treatment significantly reduced mortality following injury (10 minutes before, 75 percent versus 25 percent survival, p = 0.0077; 2 hours after, 50 percent versus 8 percent survival, p = 0.032). CONCLUSION Poloxamer 188 administered to animals decreased myocyte injury, preserved tissue adenosine 5'-triphosphate levels, and improved survival following hind-limb ischemia-reperfusion injury.
Collapse
|
17
|
Lemoine S, Puddu PE, Durand C, Lepage O, Babatasi G, Ivascau C, Massetti M, Gérard JL, Hanouz JL. Signaling pathways involved in postconditioning-induced cardioprotection of human myocardium, in vitro. Exp Biol Med (Maywood) 2010; 235:768-76. [PMID: 20511681 DOI: 10.1258/ebm.2010.009342] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We examined the respective role and relationship between protein kinase C (PKC), mitochondrial adenosine triphosphate-sensitive potassium (mitoK(ATP)) channel and p38 mitogen-activated protein kinase (MAPK) in postconditioning of human myocardium, in vitro. Isometrically contracting, isolated human right atrial trabeculae were exposed to 30 min hypoxia and 60 min reoxygenation. Phorbol 12-myristate 13-acetate (a PKC activator), diazoxide (a mitoK(ATP) opener) and anisomycin (a p38 MAPK activator) were superfused in early reoxygenation alone and with calphostin C (a PKC inhibitor), 5-hydroxy-decanoate (5-HD, a mitoK(ATP) channel inhibitor) and SB 202190 (a p38 MAPK inhibitor). Developed force at the end of the 60 min reoxygenation (FoC(60)) period was compared between groups (mean +/- SD). Phorbol 12-myristate 13-acetate (91 +/- 4% of baseline), diazoxide (85 +/- 5% of baseline) and anisomycin (90 +/- 4% of baseline) enhanced the FoC(60) as compared with the control group (53 +/- 7% of baseline, P < 0.0001). The enhanced FoC(60) induced by phorbol 12-myristate 13-acetate was abolished by calphostin C (52 +/- 5% of baseline) and 5-HD (56 +/- 3% of baseline), but not by SB 202190 (90 +/- 8%). The diazoxide-induced recovery of FoC(60) was attenuated by 5-HD (55 +/- 6% of baseline), but was not modified by calphostin C (87 +/- 5% of baseline) and SB 202190 (90 +/- 8% of baseline). The anisomycin-induced recovery of FoC(60) was abolished by calphostin C (61 +/- 9% of baseline) and SB 202190 (52 +/- 8% of baseline), but not by 5-HD (88 +/- 6% of baseline). In conclusion, PKC activation, opening of mitoK(ATP) channels and p38 MAPK activation in early reoxygenation induced the postconditioning of human myocardium, in vitro. Furthermore, PKC activation was upstream of the opening of mitoK(ATP) channels; p38 MAPK acted on PKC. Therefore, mitoK(ATP) and p38 MAPK seemed to be involved in two independent pathways.
Collapse
Affiliation(s)
- Sandrine Lemoine
- Laboratory of Experimental Anesthesiology and Cellular Physiology EA3212, Institut Fédératif de Recherche ICORE146 Université de Caen Basse Normandie, CHU de Caen, 14033 Caen Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Abstract
Preconditioning, a well established phenomenon had been used since 1980s to attenuate ischaemia-reperfusion induced injury. However, inability to predict the onset of ischaemia in clinical settings led to the discovery of a new concept of postconditioning (PoCo), in 2000s whereby brief repetitive cycles of ischaemia with intermittent reperfusion followed by prolonged ischaemia-elicited tissue protection. There is an impressive array of molecular mechanisms contributing to PoCo-mediated tissue-protection, which include triggers like adenosine (ADO), opioid, erythropoietin (EPO), endogenous nitric-oxide, reactive oxygen species, acetylcholine, tissue factors, pro-inflammatory cytokines and bradykinin; mediators like reperfusion injury salvage kinase pathways including phosphoinositide-3-kinase, extra-cellular signal regulated kinase(1/2) pathway, protein kinase G and protein kinase C; end-effectors like mitochondrial permeability transition pore and mitochondrial potassium ATP channel. The clinical applicability of PoCo has been extended with the use of PoCo mimetic agents like insulin, glucagon like peptide, EPO, statins and ADO before reperfusion in patients with ischaemia reperfusion injury. Remote PoCo has also emerged as a new concept; however, considerable research is required for understanding its molecular mechanisms. In this review, an exhaustive attempt has been made to unearth some molecular aspects of PoCo.
Collapse
Affiliation(s)
- Shaminder Kaur
- Department of Pharmaceutical Sciences & Drug Research, Punjabi University, Patiala, Punjab, India
| | | | | |
Collapse
|
20
|
Mockford K, Girn H, Homer-Vanniasinkam S. Postconditioning: Current Controversies and Clinical Implications. Eur J Vasc Endovasc Surg 2009; 37:437-42. [DOI: 10.1016/j.ejvs.2008.12.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 12/24/2008] [Indexed: 10/21/2022]
|
21
|
Yong QC, Lee SW, Foo CS, Neo KL, Chen X, Bian JS. Endogenous hydrogen sulphide mediates the cardioprotection induced by ischemic postconditioning. Am J Physiol Heart Circ Physiol 2008; 295:H1330-H1340. [PMID: 18660450 DOI: 10.1152/ajpheart.00244.2008] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The present study aimed to investigate the role of hydrogen sulphide (H2S) in the cardioprotection induced by ischemic postconditioning and to examine the underlying mechanisms. Cardiodynamics and myocardial infarction were measured in isolated rat hearts. Postconditioning with six episodes of 10-s ischemia (IPostC) significantly improved cardiodynamic function, which was attenuated by the blockade of endogenous H2S production with d-l-propargylglycine. Moreover, IPostC significantly stimulated H2S synthesis enzyme activity during the early period of reperfusion. However, d-l-propargylglycine only attenuated the IPostC-induced activation of PKC-alpha and PKC-epsilon but not that of PKC-delta, Akt, and endothelial nitric oxide synthase (eNOS). These data suggest that endogenous H2S contributes partially to the cardioprotection of IPostC via stimulating PKC-alpha and PKC-epsilon. Postconditioning with six episodes of a 10-s infusion of NaHS (SPostC) or 2 min continuous NaHS infusion (SPostC2) stimulated activities of Akt and PKC, improved the cardiodynamic performances, and reduced myocardial infarct size. The blockade of Akt with LY-294002 (15 microM) or PKC with chelerythrine (10 microM) abolished the cardioprotection induced by H2S postconditioning. SPostC2, but not SPostC, also additionally stimulated eNOS. We conclude that endogenous H2S contributes to IPostC-induced cardioprotection. H2S postconditioning confers the protective effects against ischemia-reperfusion injury through the activation of Akt, PKC, and eNOS pathways.
Collapse
Affiliation(s)
- Qian Chen Yong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | | | | | | | | | | |
Collapse
|
22
|
O'Brien JD, Ferguson JH, Howlett SE. Effects of ischemia and reperfusion on isolated ventricular myocytes from young adult and aged Fischer 344 rat hearts. Am J Physiol Heart Circ Physiol 2008; 294:H2174-83. [DOI: 10.1152/ajpheart.00058.2008] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined the impact of age on contractile function, Ca2+homeostasis, and cell viability in isolated myocytes exposed to simulated ischemia and reperfusion. Ventricular myocytes were isolated from anesthetized young adult (3 mo) and aged (24 mo) male Fischer 344 rats. Cells were field-stimulated at 4 Hz (37°C), exposed to simulated ischemia, and reperfused with Tyrode solution. Cell shortening and intracellular Ca2+were measured simultaneously with an edge detector and fura-2. Cell viability was assessed by Trypan blue exclusion. Ischemia (20–45 min) depressed amplitudes of contraction equally in isolated myocytes from young adult and aged animals. The degree of postischemic contractile depression (stunning) was comparable in both groups. Ca2+transient amplitudes were depressed in early reperfusion in young adult and aged cells and then recovered to preischemic levels in both groups. Cell viability also declined equally in reperfusion in both groups. In short, some cellular responses to simulated ischemia and reperfusion were similar in both groups. Even so, aged myocytes exhibited a much greater and more prolonged accumulation of diastolic Ca2+in ischemia and in early reperfusion compared with myocytes from younger animals. In addition, the degree of mechanical alternans in ischemia increased significantly with age. The observation that there is an age-related increase in accumulation of diastolic Ca2+in ischemia and early reperfusion may account for the increased sensitivity to ischemia and reperfusion injury in the aging heart. The occurrence of mechanical alternans in ischemia may contribute to contractile dysfunction in ischemia in the aging heart.
Collapse
|
23
|
Ji Y, Pang QF, Xu G, Wang L, Wang JK, Zeng YM. Exogenous hydrogen sulfide postconditioning protects isolated rat hearts against ischemia-reperfusion injury. Eur J Pharmacol 2008; 587:1-7. [PMID: 18468595 DOI: 10.1016/j.ejphar.2008.03.044] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 02/24/2008] [Accepted: 03/10/2008] [Indexed: 01/22/2023]
Abstract
Hydrogen sul fi de (H2S) is an endogenous gaseous mediator, produced by cystanthionine-gamma-lysase (CSE) in the cardiovascular system. Hydrogen sulfide given before ischemia can decrease myocardial ischemia and reperfusion injury. The present study investigated: (1) if hydrogen sulfide given at early reperfusion could decrease myocardial ischemia and reperfusion injury; (2) if the protective effects of hydrogen sulfide were related to mitochondrial ATP-sensitive K+ (KATP) channels opening. In isolated rat heart model, treatment of heart with NaHS (H2S donor) at the onset of reperfusion resulted in a concentration-dependent limitation of infarct size and creatine kinase release. The optimal NaHS concentration for cardioprotection is 1 microM. The cardioprotective effects of NaHS (1, 10 microM) were comparable to those of ischemic postconditioning. The KATP channels blocker, Glibenclamide or 5-hydroxydecanoate, reversed the cardioprotective effects of NaHS. The datum provided further evidence that exogenous H2S postconditioning protected rat heart against ischemia and reperfusion injury. Mitochondrial KATP channel opening is implicated in the postconditioning of H2S.
Collapse
Affiliation(s)
- Yong Ji
- Department of Anesthesiology, the First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning Province, China
| | | | | | | | | | | |
Collapse
|
24
|
Ye Y, Abu Said GH, Lin Y, Manickavasagam S, Hughes MG, McAdoo DJ, Perez-Polo RJ, Birnbaum Y. Caffeinated Coffee Blunts the Myocardial Protective Effects of Statins against Ischemia–Reperfusion Injury in the Rat. Cardiovasc Drugs Ther 2008; 22:275-82. [DOI: 10.1007/s10557-008-6105-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 02/21/2008] [Indexed: 11/24/2022]
|
25
|
MacDonald AC, Howlett SE. Differential effects of the sodium calcium exchange inhibitor, KB-R7943, on ischemia and reperfusion injury in isolated guinea pig ventricular myocytes. Eur J Pharmacol 2008; 580:214-23. [DOI: 10.1016/j.ejphar.2007.10.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 10/17/2007] [Accepted: 10/22/2007] [Indexed: 10/22/2022]
|
26
|
Lee YC, Jang YH, Kim JM, Kim AR, Lee SR, Kim YN, Hong JH. Ischemic Postconditioning Inhibits Mitochondrial Permeability Transition Pore via Opioid Receptor Activation in Intact Rat Heart. Korean J Anesthesiol 2008. [DOI: 10.4097/kjae.2008.54.3.320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Yong Cheol Lee
- Department of Anesthesiology and Pain Medicine, School of Medicine, Keimyung University, Daegu, Korea
| | - Young Ho Jang
- Department of Anesthesiology and Pain Medicine, School of Medicine, Keimyung University, Daegu, Korea
| | - Jin Mo Kim
- Department of Anesthesiology and Pain Medicine, School of Medicine, Keimyung University, Daegu, Korea
| | - Ae Ra Kim
- Department of Anesthesiology and Pain Medicine, School of Medicine, Keimyung University, Daegu, Korea
| | - Seung Ryong Lee
- Department of Pharmacology, School of Medicine, Keimyung University, Daegu, Korea
| | - Yoon Nyun Kim
- Department of Internal Medicine, School of Medicine, Keimyung University, Daegu, Korea
| | - Ji Hee Hong
- Department of Anesthesiology and Pain Medicine, School of Medicine, Keimyung University, Daegu, Korea
| |
Collapse
|
27
|
Merla R, Ye Y, Lin Y, Manickavasagam S, Huang MH, Perez-Polo RJ, Uretsky BF, Birnbaum Y. The central role of adenosine in statin-induced ERK1/2, Akt, and eNOS phosphorylation. Am J Physiol Heart Circ Physiol 2007; 293:H1918-28. [PMID: 17616749 DOI: 10.1152/ajpheart.00416.2007] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Statins activate phosphatidylinositol-3-kinase, which activates ecto-5′-nucleotidase and phosphorylates 3-phosphoinositide-dependent kinase-1 (PDK-1). Phosphorylated (P-)PDK-1 phosphorylates Akt, which phosphorylates endothelial nitric oxide synthase (eNOS). We asked if the blockade of adenosine receptors (A1, A2A, A2B, or A3 receptors) could attenuate the induction of Akt and eNOS by atorvastatin (ATV) and whether ERK1/2 is involved in the ATV regulation of Akt and eNOS. In protocol 1, mice received intraperitoneal ATV, theophylline (TH), ATV + TH, or vehicle. In protocol 2, mice received intraperitoneal injections of ATV, U0126 (an ERK1/2 inhibitor), ATV + U0126, or vehicle; 8 h later, hearts were assessed by immunoblot analysis. In protocol 3, mice received intraperitoneal ATV alone or with 8-sulfophenyltheophylline (SPT); 1, 3, and 6 h after injection, hearts were assessed by immunoblot analysis. In protocol 4, mice received intraperitoneal ATV alone or with SPT, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine (CSC), alloxazine, or MRS-1523; 3 h after injection, hearts were assessed by immunoblot analysis. ATV increased P-ERK, P-PDK-1, Ser473 P-Akt, Thr308 P-Akt, and P-eNOS levels. TH blocked ATV-induced increases in P-ERK, Ser473 P-Akt, Thr308 P-Akt, and P-eNOS levels without affecting the induction of P-PDK-1 by ATV. U0126 blocked the ATV induction of Ser473 P-Akt and Thr308 P-Akt while attenuating the induction of P-eNOS. A detectable increase in P-ERK, Ser473 P-Akt and P-eNOS was seen 3 and 6 h after injection but not at 1 h. DPCPX, CSC, and alloxazine partially blocked the ATV induction of P-ERK, Ser473 P-Akt, and P-eNOS. In conclusion, blockade of adenosine A1, A2A, and A2B receptors but not A3 receptors inhibited the induction of Akt and eNOS by statins. Adenosine was required for ERK1/2 activation by statins, which resulted in Akt and eNOS phosphorylation.
Collapse
Affiliation(s)
- Ramanna Merla
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555-0553, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Peart JN, Headrick JP. Adenosinergic cardioprotection: Multiple receptors, multiple pathways. Pharmacol Ther 2007; 114:208-21. [PMID: 17408751 DOI: 10.1016/j.pharmthera.2007.02.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 02/08/2007] [Indexed: 11/18/2022]
Abstract
Adenosine, formed primarily via hydrolysis of 5'-AMP, has been historically dubbed a "retaliatory" metabolite due to enhanced local release and beneficial actions during cellular/metabolic stress. From a cardiovascular perspective, evidence indicates the adenosinergic system is essential in mediation of intrinsic protection (e.g., pre- and postconditioning) and determining myocardial resistance to insult. Modulation of adenosine and its receptors thus remains a promising, though as yet not well-realized, approach to amelioration of injury in ischemic-reperfused myocardium. Adenosine exerts effects through A(1), A(2A), A(2B), and A(3) adenosine receptor subtypes (A(1)AR, A(2A)AR, A(2B)AR, and A(3)AR), which are all expressed in myocardial and vascular cells, and couple to G proteins to trigger a range of responses (generally, but not always, beneficial). Adenosine can also enhance tolerance to injurious stimuli via receptor-independent metabolic effects. Given adenosines contribution to preconditioning, it is no surprise that postreceptor signaling typically mimics that associated with preconditioning. This involves activation/translocation of PKC, PI3 kinase, and MAPKs, with ultimate effects at the level of mitochondrial targets-the mitochondrial K(ATP) channel and/or the mitochondrial permeability transition pore (mPTP). Nonetheless, differences in cytoprotective signaling and actions of the different adenosine receptor subtypes have been recently revealed. Our understanding of adenosinergic cytoprotection continues to evolve, with roles for the A(2) subtypes emerging, together with evidence of essential receptor "cross-talk" in mediation of protection. This review focuses on current research into adenosine-mediated cardioprotection, highlighting recent findings which, together with a wealth of prior knowledge, may ultimately facilitate adenosinergic approaches to clinical cardiac protection.
Collapse
Affiliation(s)
- Jason N Peart
- Heart Foundation Research Center, Griffith University, PMB 50 Gold Coast Mail Center, QLD, 4217, Australia.
| | | |
Collapse
|