1
|
Liu H, Wang L, Liu J, Yuan H, Zhang K, Qiu Y, Zhu F. Efficient Generation of Megakaryocyte Progenitors and Platelets From HSPCs via JAK2/STAT3 Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500612. [PMID: 40298863 DOI: 10.1002/advs.202500612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Indexed: 04/30/2025]
Abstract
The supply of platelets for clinical transfusion is often insufficient to meet growing demand. Platelet regeneration from stem cells offers a potential solution to reduce reliance on donor-based transfusions. However, the current differentiation efficiency is suboptimal. A novel approach is presented that significantly enhances platelet yield from hematopoietic stem and progenitor cells (HSPCs) by increasing the production of megakaryocyte progenitors (MkPs) and mature megakaryocytes (MKs). This method employs the overexpression of HES7 combined with the HDAC inhibitor and GABA agonist (collectively termed the VGM cocktail). The VGM cocktail induces MkP production with an efficiency of up to 90%, validated across HSPCs from various donors. These MkPs exhibit extended proliferative capacity, remaining viable for up to 51 days in prolonged culture, and show enhanced maturation into MKs. This differentiation system effectively replicates in vivo thrombocytopoiesis, as evidenced by polyploidization, long protrusions, and proplatelet formation. Transfusion of VGM-induced MkPs into thrombocytopenic mice results in the release of platelets into circulation. Mechanistic investigation identifies the JAK2/STAT3 signaling pathway as critical in promoting megakaryopoiesis within this system. Therefore, this study demonstrates that the VGM cocktail facilitates enhanced platelet production by promoting MkP generation, offering a promising strategy for in vitro platelet regeneration for clinical applications.
Collapse
Affiliation(s)
- Huicong Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Lingna Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jiaqing Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Haitao Yuan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Kaiqing Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yun Qiu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Fangfang Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| |
Collapse
|
2
|
Kim B, Huh KY, Yu KS, Lee S. Pharmacokinetics, pharmacodynamics and safety of oral formulation (CG-750) of ivaltinostat, a histone deacetylase inhibitor, compared to IV formulation (CG-745). Br J Clin Pharmacol 2024. [PMID: 38263733 DOI: 10.1111/bcp.15997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/25/2024] Open
Abstract
AIMS CG-750 is an oral formulation of ivaltinostat, a newly developing histone deacetylase (HDAC) inhibitor. This study aimed to evaluate the pharmacokinetics (PK), pharmacodynamics (PD) and safety of an oral formulation (CG-750) of ivaltinostat compared to an intravenous (IV) formulation (CG-745). METHODS A randomized, double-blind, placebo-controlled study was conducted in three cohorts. Subjects received either CG-745 (Cohorts 1 and 3: 125 mg; Cohort 2: 250 mg) or placebo followed by CG-750 (Cohort 1: 125 mg; Cohort 2: 375 mg; Cohort 3: 750 mg) or placebo. Blood samples for PK and PD assessment were collected up to 72 h post-dose. Histone H3 acetylation at sites K9, K9/K14 and K27 was assessed for area under the % acetylation induction versus time curve (AUEC). RESULTS A total of 25 subjects were randomized, and 23 subjects completed the study (Cohort 1, n = 6; Cohort 2, n = 6; Cohort 3, n = 6; placebo, n = 5). The mean bioavailability of CG-750 was 10.6% (range: 4.18%-21.33%) and displayed linear PK in the dose range of 125-750 mg. The comparison of AUEC between formulations and the evaluation of the dose-AUEC relationship were inconclusive, due to the small sample sizes and significant variability observed in PD markers. All adverse events (AEs) were transient and of mild or moderate intensity. CONCLUSIONS The oral formulation of ivaltinostat (CG-750) was generally well tolerated after a single dose. CG-750 displayed a mean bioavailability of 10.6%.
Collapse
Affiliation(s)
- Byungwook Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Ki Young Huh
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - SeungHwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| |
Collapse
|
3
|
Perales SG, Rajasingh S, Zhou Z, Rajasingh J. Therapy of infectious diseases using epigenetic approaches. EPIGENETICS IN HUMAN DISEASE 2024:853-882. [DOI: 10.1016/b978-0-443-21863-7.00007-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
4
|
Schreiber AR, Kagihara JA, Corr BR, Davis SL, Lieu C, Kim SS, Jimeno A, Camidge DR, Williams J, Heim AM, Martin A, DeMattei JA, Holay N, Triplett TA, Eckhardt SG, Litwiler K, Winkler J, Piscopio AD, Diamond JR. First-in-Human Dose-Escalation Study of the Novel Oral Depsipeptide Class I-Targeting HDAC Inhibitor Bocodepsin (OKI-179) in Patients with Advanced Solid Tumors. Cancers (Basel) 2023; 16:91. [PMID: 38201519 PMCID: PMC10778198 DOI: 10.3390/cancers16010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
(1) Background: Histone deacetylases (HDACs) play a critical role in epigenetic signaling in cancer; however, available HDAC inhibitors have limited therapeutic windows and suboptimal pharmacokinetics (PK). This first-in-human phase I dose escalation study evaluated the safety, PK, pharmacodynamics (PDx), and efficacy of the oral Class I-targeting HDAC inhibitor bocodepsin (OKI-179). (2) Patients and Methods: Patients (n = 34) with advanced solid tumors were treated with OKI-179 orally once daily in three schedules: 4 days on 3 days off (4:3), 5 days on 2 days off (5:2), or continuous in 21-day cycles until disease progression or unacceptable toxicity. Single-patient escalation cohorts followed a standard 3 + 3 design. (3) Results: The mean duration of treatment was 81.2 (range 11-447) days. The most frequent adverse events in all patients were nausea (70.6%), fatigue (47.1%), and thrombocytopenia (41.2%). The maximum tolerated dose (MTD) of OKI-179 was 450 mg with 4:3 and 200 mg with continuous dosing. Dose-limiting toxicities included decreased platelet count and nausea. Prolonged disease control was observed, including two patients with platinum-resistant ovarian cancer. Systemic exposure to the active metabolite exceeded the preclinical efficacy threshold at doses lower than the MTD and was temporally associated with increased histone acetylation in circulating T cells. (4) Conclusions: OKI-179 has a manageable safety profile at the recommended phase 2 dose (RP2D) of 300 mg daily on a 4:3 schedule with prophylactic oral antiemetics. OKI-179 is currently being investigated with the MEK inhibitor binimetinib in patients with NRAS-mutated melanoma in the phase 2 Nautilus trial.
Collapse
Affiliation(s)
- Anna R. Schreiber
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| | - Jodi A. Kagihara
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
- Division of Medical Oncology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Bradley R. Corr
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| | - S. Lindsey Davis
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| | - Christopher Lieu
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| | - Sunnie S. Kim
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| | - Antonio Jimeno
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| | - D. Ross Camidge
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| | | | | | - Anne Martin
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| | | | - Nisha Holay
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Todd A. Triplett
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - S. Gail Eckhardt
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77054, USA
| | | | | | | | - Jennifer R. Diamond
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| |
Collapse
|
5
|
Huang L, Xu J, Zhang H, Wang M, Zhang Y, Lin Q. Application and investigation of thrombopoiesis-stimulating agents in the treatment of thrombocytopenia. Ther Adv Hematol 2023; 14:20406207231152746. [PMID: 36865986 PMCID: PMC9972067 DOI: 10.1177/20406207231152746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/06/2023] [Indexed: 03/02/2023] Open
Abstract
Platelets, derived from a certain subpopulation of megakaryocytes, are closely related to hemostasis, coagulation, metastasis, inflammation, and cancer progression. Thrombopoiesis is a dynamic process regulated by various signaling pathways in which thrombopoietin (THPO)-MPL is dominant. Thrombopoiesis-stimulating agents could promote platelet production, showing therapeutic effects in different kinds of thrombocytopenia. Some thrombopoiesis-stimulating agents are currently used in clinical practices to treat thrombocytopenia. The others are not in clinical investigations to deal with thrombocytopenia but have potential in thrombopoiesis. Their potential values in thrombocytopenia treatment should be highly regarded. Novel drug screening models and drug repurposing research have found many new agents and yielded promising outcomes in preclinical or clinical studies. This review will briefly introduce thrombopoiesis-stimulating agents currently or potentially valuable in thrombocytopenia treatment and summarize the possible mechanisms and therapeutic effects, which may enrich the pharmacological armamentarium for the medical treatment of thrombocytopenia.
Collapse
Affiliation(s)
- Lejun Huang
- Division of Cell, Developmental and Integrative
Biology, School of Medicine, South China University of Technology,
Guangzhou, P.R. China
| | - Jianxuan Xu
- Division of Cell, Developmental and Integrative
Biology, School of Medicine, South China University of Technology,
Guangzhou, P.R. China
| | - Huaying Zhang
- Division of Cell, Developmental and Integrative
Biology, School of Medicine, South China University of Technology,
Guangzhou, P.R. China
| | - Mengfan Wang
- Division of Cell, Developmental and Integrative
Biology, School of Medicine, South China University of Technology,
Guangzhou, P.R. China
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative
Biology, School of Medicine, South China University of Technology,
Guangzhou, P.R. China
| | | |
Collapse
|
6
|
Yoshimitsu M, Ando K, Ishida T, Yoshida S, Choi I, Hidaka M, Takamatsu Y, Gillings M, Lee GT, Onogi H, Tobinai K. Oral histone deacetylase inhibitor HBI-8000 (tucidinostat) in Japanese patients with relapsed or refractory non-Hodgkin's lymphoma: phase I safety and efficacy. Jpn J Clin Oncol 2022; 52:1014-1020. [PMID: 35649345 PMCID: PMC9486889 DOI: 10.1093/jjco/hyac086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/10/2022] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE HBI-8000 (tucidinostat) is a novel, oral histone deacetylase inhibitor that selectivity inhibits Class I (histone deacetylase 1, 2, 3) and Class II (histone deacetylase 10) with direct anti-tumor activity through various mechanisms of action, including epigenetic reprogramming and immunomodulation. It has been approved in China for the treatment of relapsed or refractory peripheral T-cell lymphoma. METHODS This multicenter, prospective phase I dose-escalation trial evaluating the safety of twice weekly HBI-8000 was conducted in Japan. Eligible patients had non-Hodgkin's lymphoma and no available standard therapy. The primary endpoint was maximum tolerated dose; secondary endpoints included anti-tumor activity, safety and pharmacokinetics. RESULTS Fourteen patients were enrolled in the study. Twelve patients were assessed for dose-limiting toxicity: six patients in the 30 mg BIW cohort had no dose-limiting toxicitys; two of six patients in the 40 mg BIW cohort had asymptomatic dose-limiting toxicitys. Treatment was well tolerated; adverse events were predominantly mild to moderate hematologic toxicities and were managed with dose modification and supportive care. Thirteen patients were included in the efficacy analysis. Objective response was seen in five of seven patients in the 40 mg BIW cohort; three partial responders had adult T-cell leukemia-lymphoma. In the 30 mg BIW cohort, three of six patients had stable disease after the first cycle. CONCLUSIONS Treatment with HBI-8000 30 and 40 mg BIW were well-tolerated and safe, with hematological toxicities as expected from other studies of histone deacetylase inhibitor. The maximum tolerated dose and recommended dosage for phase II studies of HBI-8000 is 40 mg BIW. Preliminary efficacy results are encouraging.
Collapse
Affiliation(s)
- Makoto Yoshimitsu
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Kiyoshi Ando
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Takashi Ishida
- Department of Hematology and Oncology, Nagoya City University Hospital, Nagoya, Japan
| | - Shinichiro Yoshida
- Department of Hematology, National Hospital Organization Nagasaki Medical Center, Omura, Japan
| | - Ilseung Choi
- Department of Hematology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Michihiro Hidaka
- Department of Hematology, National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan
| | - Yasushi Takamatsu
- Medical Oncology/Hematology/Infectious Diseases, Fukuoka University Hospital, Fukuoka, Japan
| | | | | | | | - Kensei Tobinai
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
7
|
Boison D, Jarvis MF. Adenosine kinase: A key regulator of purinergic physiology. Biochem Pharmacol 2020; 187:114321. [PMID: 33161022 DOI: 10.1016/j.bcp.2020.114321] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/23/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
Adenosine (ADO) is an essential biomolecule for life that provides critical regulation of energy utilization and homeostasis. Adenosine kinase (ADK) is an evolutionary ancient ribokinase derived from bacterial sugar kinases that is widely expressed in all forms of life, tissues and organ systems that tightly regulates intracellular and extracellular ADO concentrations. The facile ability of ADK to alter ADO availability provides a "site and event" specificity to the endogenous protective effects of ADO in situations of cellular stress. In addition to modulating the ability of ADO to activate its cognate receptors (P1 receptors), nuclear ADK isoform activity has been linked to epigenetic mechanisms based on transmethylation pathways. Previous drug discovery research has targeted ADK inhibition as a therapeutic approach to manage epilepsy, pain, and inflammation. These efforts generated multiple classes of highly potent and selective inhibitors. However, clinical development of early ADK inhibitors was stopped due to apparent mechanistic toxicity and the lack of suitable translational markers. New insights regarding the potential role of the nuclear ADK isoform (ADK-Long) in the epigenetic modulation of maladaptive DNA methylation offers the possibility of identifying novel ADK-isoform selective inhibitors and new interventional strategies that are independent of ADO receptor activation.
Collapse
Affiliation(s)
- Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, United States.
| | | |
Collapse
|
8
|
Fisher MH, Kirkpatrick GD, Stevens B, Jones C, Callaghan M, Rajpurkar M, Fulbright J, Cooper MA, Rowley J, Porter CC, Gutierrez-Hartmann A, Jones K, Jordan C, Pietras EM, Di Paola J. ETV6 germline mutations cause HDAC3/NCOR2 mislocalization and upregulation of interferon response genes. JCI Insight 2020; 5:140332. [PMID: 32841218 PMCID: PMC7526537 DOI: 10.1172/jci.insight.140332] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
ETV6 is an ETS family transcription factor that plays a key role in hematopoiesis and megakaryocyte development. Our group and others have identified germline mutations in ETV6 resulting in autosomal dominant thrombocytopenia and predisposition to malignancy; however, molecular mechanisms defining the role of ETV6 in megakaryocyte development have not been well established. Using a combination of molecular, biochemical, and sequencing approaches in patient-derived PBMCs, we demonstrate abnormal cytoplasmic localization of ETV6 and the HDAC3/NCOR2 repressor complex that led to overexpression of HDAC3-regulated interferon response genes. This transcriptional dysregulation was also reflected in patient-derived platelet transcripts and drove aberrant proplatelet formation in megakaryocytes. Our results suggest that aberrant transcription may predispose patients with ETV6 mutations to bone marrow inflammation, dysplasia, and megakaryocyte dysfunction.
Collapse
Affiliation(s)
- Marlie H. Fisher
- Molecular Biology Graduate Program
- Medical Scientist Training Program, and
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Gregory D. Kirkpatrick
- Medical Scientist Training Program, and
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Brett Stevens
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Courtney Jones
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michael Callaghan
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, Michigan, USA
| | - Madhvi Rajpurkar
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, Michigan, USA
| | - Joy Fulbright
- Department of Pediatrics, Children’s Mercy Hospital, Kansas City, Missouri, USA
| | - Megan A. Cooper
- Department of Pediatrics, Washington University at St. Louis, St. Louis, Missouri, USA
| | - Jesse Rowley
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Christopher C. Porter
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Arthur Gutierrez-Hartmann
- Molecular Biology Graduate Program
- Department of Internal Medicine and
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kenneth Jones
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Craig Jordan
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eric M. Pietras
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jorge Di Paola
- Department of Pediatrics, Washington University at St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Compounds targeting class II histone deacetylases do not cause panHDACI-associated impairment of megakaryocyte differentiation. Exp Hematol 2019; 72:36-46. [PMID: 30611870 DOI: 10.1016/j.exphem.2018.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 12/25/2022]
Abstract
Histone deacetylase inhibitors (HDACIs) have demonstrated effectiveness against lymphomas and myelomas in clinical practice. However, common to all currently approved broad-acting HDACIs (panHDACIs) is dose-limiting thrombocytopenia, which has prevented wider use in cancer therapy. Using CD34+ hematopoietic stem cells (HSCs), we show that megakaryocyte (MK) cell maturation and differentiation are impaired by panHDACIs, correlating to clinical thrombocytopenia. Importantly, we demonstrate that inhibitors of class II histone deacetylases (HDACs), including LMK235 and tubacin at clinically relevant concentrations, do not affect MK maturation. Furthermore, we show that HDACI-induced impairment of MK differentiation is associated with reduction of protein levels of the transcription factor GATA-1, but not tubulin hyperacetylation. Finally, we report that panHDACIs trigger a rapid loss of GATA-1 protein via a proteasome-dependent pathway. Our data support the notion that specifically targeting class II HDACs in cancer treatment is a potential strategy that would offer a safer alternative than current panHDACIs.
Collapse
|
10
|
|
11
|
Zhang Q, Dai Y, Cai Z, Mou L. HDAC Inhibitors: Novel Immunosuppressants for Allo- and Xeno- Transplantation. ChemistrySelect 2018. [DOI: 10.1002/slct.201702295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qing Zhang
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine, Shenzhen Second People's Hospital; Sungang Road 3002, Futian District, Shenzhen Guangdong China
| | - Yifan Dai
- Department Jiangsu Key Laboratory of Xenotransplantation; Nanjing Medical University; Nanjing, Jiangsu 210029 China
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine, Shenzhen Second People's Hospital; Sungang Road 3002, Futian District, Shenzhen Guangdong China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine, Shenzhen Second People's Hospital; Sungang Road 3002, Futian District, Shenzhen Guangdong China
| |
Collapse
|
12
|
Zhou Z, Rajasingh S, Barani B, Samanta S, Dawn B, Wang R, Rajasingh J. Therapy of Infectious Diseases Using Epigenetic Approaches. EPIGENETICS IN HUMAN DISEASE 2018:689-715. [DOI: 10.1016/b978-0-12-812215-0.00022-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
13
|
Enhanced anticancer efficacy of histone deacetyl inhibitor, suberoylanilide hydroxamic acid, in combination with a phosphodiesterase inhibitor, pentoxifylline, in human cancer cell lines and in-vivo tumor xenografts. Anticancer Drugs 2017; 28:1002-1017. [DOI: 10.1097/cad.0000000000000544] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Zibelman M, Wong YN, Devarajan K, Malizzia L, Corrigan A, Olszanski AJ, Denlinger CS, Roethke SK, Tetzlaff CH, Plimack ER. Phase I study of the mTOR inhibitor ridaforolimus and the HDAC inhibitor vorinostat in advanced renal cell carcinoma and other solid tumors. Invest New Drugs 2015; 33:1040-7. [PMID: 26091915 DOI: 10.1007/s10637-015-0261-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/08/2015] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Drugs inhibiting the mammalian target of rapamycin (mTOR) are approved in the treatment of renal cell carcinoma (RCC), but resistance inevitably emerges. Proposed escape pathways include increased phosphorylation of Akt, which can be down regulated by histone deacetylase (HDAC) inhibitors. We hypothesized that co-treatment with the mTOR inhibitor ridaforolimus and the HDAC inhibitor vorinostat may abrogate resistance in RCC. METHODS This phase 1 study evaluated the co-administration of ridaforolimus and vorinostat in patients with advanced solid tumors. The primary objective was to determine the maximum tolerated dose (MTD) in RCC patients. Although all solid tumors were allowed, prior cytotoxic chemotherapy was limited to 1 regimen. Using a modified 3 + 3 dose escalation design, various dose combinations were tested concurrently in separate cohorts. Efficacy was a secondary endpoint. RESULTS Fifteen patients were treated at one of three dose levels, thirteen with RCC (10 clear cell, 3 papillary). Dosing was limited by thrombocytopenia. The MTD was determined to be ridaforolimus 20 mg daily days 1-5 with vorinostat 100 mg BID days 1-3 weekly, however late onset thrombocytopenia led to a lower recommended phase II dose: ridaforolimus 20 mg daily days 1-5 with vorinostat 100 mg daily days 1-3 weekly. Two patients, both with papillary RCC, maintained disease control for 54 and 80 weeks, respectively. CONCLUSIONS The combination of ridaforolimus and vorinostat was tolerable at the recommended phase II dose. Two patients with papillary RCC experienced prolonged disease stabilization, thus further study of combined HDAC and mTOR inhibition in this population is warranted.
Collapse
Affiliation(s)
- Matthew Zibelman
- Department of Hematology/Oncology, Fox Chase Cancer Center, Temple Health, 333 Cottman Avenue, Philadelphia, PA, 19111-2497, USA
| | - Yu-Ning Wong
- Department of Hematology/Oncology, Fox Chase Cancer Center, Temple Health, 333 Cottman Avenue, Philadelphia, PA, 19111-2497, USA
| | - Karthik Devarajan
- Department of Hematology/Oncology, Fox Chase Cancer Center, Temple Health, 333 Cottman Avenue, Philadelphia, PA, 19111-2497, USA
| | - Lois Malizzia
- Department of Hematology/Oncology, Fox Chase Cancer Center, Temple Health, 333 Cottman Avenue, Philadelphia, PA, 19111-2497, USA
| | - Alycia Corrigan
- Department of Hematology/Oncology, Fox Chase Cancer Center, Temple Health, 333 Cottman Avenue, Philadelphia, PA, 19111-2497, USA
| | - Anthony J Olszanski
- Department of Hematology/Oncology, Fox Chase Cancer Center, Temple Health, 333 Cottman Avenue, Philadelphia, PA, 19111-2497, USA
| | - Crystal S Denlinger
- Department of Hematology/Oncology, Fox Chase Cancer Center, Temple Health, 333 Cottman Avenue, Philadelphia, PA, 19111-2497, USA
| | - Susan K Roethke
- Department of Hematology/Oncology, Fox Chase Cancer Center, Temple Health, 333 Cottman Avenue, Philadelphia, PA, 19111-2497, USA
| | - Colleen H Tetzlaff
- Department of Hematology/Oncology, Fox Chase Cancer Center, Temple Health, 333 Cottman Avenue, Philadelphia, PA, 19111-2497, USA
| | - Elizabeth R Plimack
- Department of Hematology/Oncology, Fox Chase Cancer Center, Temple Health, 333 Cottman Avenue, Philadelphia, PA, 19111-2497, USA.
| |
Collapse
|
15
|
Abstract
Thrombocytopenia is a frequent complication of cancer and its treatment. The causes of thrombocytopenia in cancer patients can be diverse and multifactorial. Systemic chemotherapy is the most frequent cause of thrombocytopenia. The degree and duration thrombocytopenia depends upon whether the chemotherapeutic treatment is myeloablative, as used in stem cell transplants, or non-myeloablative, as typically used in solid non-hematologic malignancies. Additional causes of significant thrombocytopenia include tumor involvement of bone marrow and spleen; microangiopathic disorders such as disseminated intravascular coagulation, thrombotic thrombocytopenic purpura or hemolytic uremia syndrome. Lymphoproliferative malignancies can also be associated with secondary immune thrombocytopenia. Due to the broad differential diagnosis associated with cancer related thrombocytopenia, a careful diagnostic evaluation is indicated. The goal of treatment should be to maintain a safe platelet count to allow effective treatment of the underlying malignancy, prevent bleeding complications and to minimize the use of platelet product transfusion.
Collapse
|
16
|
Chalret du Rieu Q, Fouliard S, White-Koning M, Kloos I, Chatelut E, Chenel M. Pharmacokinetic/Pharmacodynamic modeling of abexinostat-induced thrombocytopenia across different patient populations: application for the determination of the maximum tolerated doses in both lymphoma and solid tumour patients. Invest New Drugs 2014; 32:985-94. [PMID: 24875134 DOI: 10.1007/s10637-014-0118-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/20/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND In the clinical development of oncology drugs, the recommended dose is usually determined using a 3 + 3 dose-escalation study design. However, this phase I design does not always adequately describe dose-toxicity relationships. METHODS 125 patients, with either solid tumours or lymphoma, were included in the study and 1217 platelet counts were available over three treatment cycles. The data was used to build a population pharmacokinetic/pharmacodynamic (PKPD) model using a sequential modeling approach. Model-derived Recommended Doses (MDRD) of abexinostat (a Histone Deacetylase Inhibitor) were determined from simulations of different administration schedules, and the higher bound for the probability of reaching these MDRD with a 3 + 3 design were obtained. RESULTS The PKPD model developed adequately described platelet kinetics in both patient populations with the inclusion of two platelet baseline counts and a disease progression component for patients with lymphoma. Simulation results demonstrated that abexinostat administration during the first 4 days of each week in a 3-week cycle led to a higher MDRD compared to the other administration schedules tested, with a maximum probability of 40 % of reaching these MDRDs using a 3 + 3 design. CONCLUSIONS The PKPD model was able to predict thrombocytopenia following abexinostat administration in both patient populations. A model-based approach to determine the recommended dose in phase I trials is preferable due to the imprecision of the 3 + 3 design.
Collapse
Affiliation(s)
- Quentin Chalret du Rieu
- Clinical Pharmacokinetics Department, Institut de Recherches Internationales Servier, Suresnes, France
| | | | | | | | | | | |
Collapse
|
17
|
Zain J, Kaminetzky D, O’Connor OA. Emerging role of epigenetic therapies in cutaneous T-cell lymphomas. Expert Rev Hematol 2014; 3:187-203. [DOI: 10.1586/ehm.10.9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
18
|
Fouliard S, Robert R, Jacquet-Bescond A, du Rieu QC, Balasubramanian S, Loury D, Loriot Y, Hollebecque A, Kloos I, Soria JC, Chenel M, Depil S. Pharmacokinetic/pharmacodynamic modelling-based optimisation of administration schedule for the histone deacetylase inhibitor abexinostat (S78454/PCI-24781) in phase I. Eur J Cancer 2013; 49:2791-7. [DOI: 10.1016/j.ejca.2013.05.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/02/2013] [Accepted: 05/12/2013] [Indexed: 11/25/2022]
|
19
|
Ali A, Bluteau O, Messaoudi K, Palazzo A, Boukour S, Lordier L, Lecluse Y, Rameau P, Kraus-Berthier L, Jacquet-Bescond A, Lelièvre H, Depil S, Dessen P, Solary E, Raslova H, Vainchenker W, Plo I, Debili N. Thrombocytopenia induced by the histone deacetylase inhibitor abexinostat involves p53-dependent and -independent mechanisms. Cell Death Dis 2013; 4:e738. [PMID: 23887629 PMCID: PMC3730430 DOI: 10.1038/cddis.2013.260] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 06/12/2013] [Accepted: 06/17/2013] [Indexed: 12/02/2022]
Abstract
Abexinostat is a pan histone deacetylase inhibitor (HDACi) that demonstrates efficacy in malignancy treatment. Like other HDACi, this drug induces a profound thrombocytopenia whose mechanism is only partially understood. We have analyzed its effect at doses reached in patient plasma on in vitro megakaryopoiesis derived from human CD34+ cells. When added at day 0 in culture, abexinostat inhibited CFU-MK growth, megakaryocyte (MK) proliferation and differentiation. These effects required only a short incubation period. Decreased proliferation was due to induction of apoptosis and was not related to a defect in TPO/MPL/JAK2/STAT signaling. When added later (day 8), the compound induced a dose-dependent decrease (up to 10-fold) in proplatelet (PPT) formation. Gene profiling from MK revealed a silencing in the expression of DNA repair genes with a marked RAD51 decrease at protein level. DNA double-strand breaks were increased as attested by elevated γH2AX phosphorylation level. Moreover, ATM was phosphorylated leading to p53 stabilization and increased BAX and p21 expression. The use of a p53 shRNA rescued apoptosis, and only partially the defect in PPT formation. These results suggest that HDACi induces a thrombocytopenia by a p53-dependent mechanism along MK differentiation and a p53-dependent and -independent mechanism for PPT formation.
Collapse
Affiliation(s)
- A Ali
- Institut National de la Santé et de la Recherche Médicale, UMR 1009, Equipe labellisée Ligue Contre le Cancer, Laboratoire d'Excellence GR-Ex.114 rue Edouard Vaillant, 94805 Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Dy GK, Adjei AA. Understanding, recognizing, and managing toxicities of targeted anticancer therapies. CA Cancer J Clin 2013; 63:249-79. [PMID: 23716430 DOI: 10.3322/caac.21184] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/21/2013] [Accepted: 02/25/2013] [Indexed: 12/11/2022] Open
Abstract
Answer questions and earn CME/CNE Advances in genomics and molecular biology have identified aberrant proteins in cancer cells that are attractive targets for cancer therapy. Because these proteins are overexpressed or dysregulated in cancer cells compared with normal cells, it was assumed that their inhibitors will be narrowly targeted and relatively nontoxic. However, this hope has not been achieved. Current targeted agents exhibit the same frequency and severity of toxicities as traditional cytotoxic agents, with the main difference being the nature of the toxic effects. Thus, the classical chemotherapy toxicities of alopecia, myelosuppression, mucositis, nausea, and vomiting have been generally replaced by vascular, dermatologic, endocrine, coagulation, immunologic, ocular, and pulmonary toxicities. These toxicities need to be recognized, prevented, and optimally managed.
Collapse
Affiliation(s)
- Grace K Dy
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA
| | | |
Collapse
|
21
|
Chalret du Rieu Q, Fouliard S, Jacquet-Bescond A, Robert R, Kloos I, Depil S, Chatelut E, Chenel M. Application of hematological toxicity modeling in clinical development of abexinostat (S-78454, PCI-24781), a new histone deacetylase inhibitor. Pharm Res 2013; 30:2640-53. [PMID: 23737346 DOI: 10.1007/s11095-013-1089-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/19/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE A population pharmacokinetic/pharmacodynamic (PK/PD) model was developed to describe the thrombocytopenia (dose-limiting toxicity) of abexinostat, a new histone deacetylase inhibitor. An optimal administration schedule of the drug was determined using a simulation-based approach. METHODS Early PK and PK/PD data were analysed using a sequential population modeling approach (NONMEM 7), allowing for the description of a PK profile and platelet-count decrease after abexinostat administration with various administration schedules. Simulations of platelet count with several administration schedules over 3-week treatment cycles (ASC) and over a day (ASD) were computed to define the optimal schedule that limits the depth of thrombocytopenia. RESULTS An intermediate PK/PD model accurately described the data. The administration of abexinostat during the first 4 days of each week in a 3-week cycle resulted in fewer adverse events (with no influence of ASD on platelet count profiles), and corresponded to the optimal treatment schedule. This administration schedule was clinically evaluated in a phase I clinical trial and allowed for the definition of a new maximum tolerated dose (MTD), leading to a nearly 30% higher dose-intensity than that of another previously tested schedule. Lastly, a final model was built using all of the available data. CONCLUSIONS The final model, characterizing the dose-effect and the dose-toxicity relationships, provides a useful modeling tool for clinical drug development.
Collapse
Affiliation(s)
- Quentin Chalret du Rieu
- Clinical Pharmacokinetics Department, Institut de Recherches Internationales Servier, 50 rue Carnot, 92284, Suresnes Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Aster RH. Drug-Induced Thrombocytopenia. Platelets 2013. [DOI: 10.1016/b978-0-12-387837-3.00041-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Kitamura T, Inoue D. HDACI-induced thrombocytopenia is caused by its unexpected target. Exp Hematol 2012; 40:695-7. [DOI: 10.1016/j.exphem.2012.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 07/22/2012] [Indexed: 11/28/2022]
|
24
|
Role of Histone Deacetylase Inhibitors in the Treatment of Lymphomas and Multiple Myeloma. Hematol Oncol Clin North Am 2012; 26:671-704, ix. [DOI: 10.1016/j.hoc.2012.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
AS1387392, a novel immunosuppressive cyclic tetrapeptide compound with inhibitory activity against mammalian histone deacetylase. J Antibiot (Tokyo) 2012. [DOI: 10.1038/ja.2012.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Priestley CC, Anderton M, Doherty AT, Duffy P, Mellor HR, Powell H, Roberts R. Epigenetics – relevance to drug safety science. Toxicol Res (Camb) 2012. [DOI: 10.1039/c2tx00003b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abstract
Epigenetics describes the study of heritable changes in gene expression that occur in the absence of a change to the DNA sequence. Specific patterns of epigenetic signatures can be stably transmitted through mitosis and cell division and form the molecular basis for developmental stage- and cell type-specific gene expression. Associations have been observed that endogenous and exogenous stimuli can change the epigenetic control of both somatic and stem cell differentiation and thus influence phenotypic behaviours and/or disease progression. In relation to drug safety, DNA methylation changes have been identified in many stages of tumour development following exposure to non-genotoxic carcinogens. However, it is not clear whether DNA methylation changes cause cancer, or arise as a consequence of the transformed state. Toxic agents could act at different levels, by directly modifying the epigenome or indirectly by altering signalling pathways. These alterations in chromatin structure may or may not be heritable but are probably reversible. That said, there is currently insufficient data to support inclusion of epigenetic profiling into pre-clinical evaluation studies. Several international collaborations aim to generate data to determine whether epigenetic modifications are causal links in disease and/or tumour progression. It will only be when an understanding of chemical mode-of-action is required that evaluation of epigenetic changes might be considered. The current toxicological testing battery is expected to identify any potential adverse effects regardless of the mechanism, epigenetic or otherwise. It is recommended that toxicologists keep a close watch of new developments in this field, in particular identification of early epigenetic markers for non-genotoxic carcinogenicity. Scientific collaborations between academia and industry will help to understand inter-individual variations in response to drug and toxin exposure to be able to distinguish between adverse and non-adverse epigenetic changes.
Collapse
Affiliation(s)
- Catherine C. Priestley
- Safety Assessment, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK. Fax: +44 1625 231281; Tel: +44 1625 232435
| | - Mark Anderton
- Safety Assessment, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK. Fax: +44 1625 231281; Tel: +44 1625 232435
| | - Ann T. Doherty
- Safety Assessment, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK. Fax: +44 1625 231281; Tel: +44 1625 232435
| | - Paul Duffy
- Safety Assessment, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK. Fax: +44 1625 231281; Tel: +44 1625 232435
| | - Howard R. Mellor
- Safety Assessment, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK. Fax: +44 1625 231281; Tel: +44 1625 232435
| | - Helen Powell
- Safety Assessment, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK. Fax: +44 1625 231281; Tel: +44 1625 232435
| | - Ruth Roberts
- Safety Assessment, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK. Fax: +44 1625 231281; Tel: +44 1625 232435
| |
Collapse
|
27
|
Panobinostat (LBH589)-induced acetylation of tubulin impairs megakaryocyte maturation and platelet formation. Exp Hematol 2012; 40:564-74. [PMID: 22381681 DOI: 10.1016/j.exphem.2012.02.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 01/13/2023]
Abstract
Drug-induced thrombocytopenia often results from dysregulation of normal megakaryocytopoiesis. In this study, we investigated the mechanisms responsible for thrombocytopenia associated with the use of Panobinostat (LBH589), a histone deacetylase inhibitor with promising anti-cancer activities. The effects of LBH589 were tested on the cellular and molecular aspects of megakaryocytopoiesis by utilizing an ex vivo system in which mature megakaryocytes (MK) and platelets were generated from human primary CD34(+) cells. We demonstrated that LBH589 did not affect MK proliferation or lineage commitment but inhibited MK maturation and platelet formation. Although LBH589 treatment of primary MK resulted in hyperacetylation of histones, it did not interfere with the expression of genes that play important roles during megakaryocytopoiesis. Instead, we found that LBH589 induced post-translational modifications of tubulin, a nonhistone protein that is the major component of the microtubule cytoskeleton. We then demonstrated that LBH589 treatment induced hyperacetylation of tubulin and alteration of microtubule dynamics and organization required for proper MK maturation and platelet formation. This study provides new insights into the mechanisms underlying LBH589-induced thrombocytopenia and provides a rationale for using tubulin as a target for selective histone deacetylase inhibitor therapies to treat thrombocytosis in patients with myeloproliferative neoplasms.
Collapse
|
28
|
Kaufmann KB, Gründer A, Hadlich T, Wehrle J, Gothwal M, Bogeska R, Seeger TS, Kayser S, Pham KB, Jutzi JS, Ganzenmüller L, Steinemann D, Schlegelberger B, Wagner JM, Jung M, Will B, Steidl U, Aumann K, Werner M, Günther T, Schüle R, Rambaldi A, Pahl HL. A novel murine model of myeloproliferative disorders generated by overexpression of the transcription factor NF-E2. ACTA ACUST UNITED AC 2012; 209:35-50. [PMID: 22231305 PMCID: PMC3260873 DOI: 10.1084/jem.20110540] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mice expressing a transgene encoding the transcription factor NF-E2 in hematopoietic cells exhibit features of myeloproliferative neoplasms, including thrombocytosis, Epo-independent colony formation, stem and progenitor cell overabundance, leukocytosis, and progression to acute myeloid leukemia. The molecular pathophysiology of myeloproliferative neoplasms (MPNs) remains poorly understood. Based on the observation that the transcription factor NF-E2 is often overexpressed in MPN patients, independent of the presence of other molecular aberrations, we generated mice expressing an NF-E2 transgene in hematopoietic cells. These mice exhibit many features of MPNs, including thrombocytosis, leukocytosis, Epo-independent colony formation, characteristic bone marrow histology, expansion of stem and progenitor compartments, and spontaneous transformation to acute myeloid leukemia. The MPN phenotype is transplantable to secondary recipient mice. NF-E2 can alter histone modifications, and NF-E2 transgenic mice show hypoacetylation of histone H3. Treatment of mice with the histone deacetylase inhibitor (HDAC-I) vorinostat restored physiological levels of histone H3 acetylation, decreased NF-E2 expression, and normalized platelet numbers. Similarly, MPN patients treated with an HDAC-I exhibited a decrease in NF-E2 expression. These data establish a role for NF-E2 in the pathophysiology of MPNs and provide a molecular rationale for investigating epigenetic alterations as novel targets for rationally designed MPN therapies.
Collapse
Affiliation(s)
- Kai B Kaufmann
- Department of Experimental Anaesthesiology, Center for Clinical Research, University Hospital Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Phase I dose-escalating study of panobinostat (LBH589) Administered intravenously to Japanese patients with advanced solid tumors. Invest New Drugs 2011; 30:1950-7. [DOI: 10.1007/s10637-011-9751-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 09/15/2011] [Indexed: 12/16/2022]
|
30
|
Fukutomi A, Hatake K, Matsui K, Sakajiri S, Hirashima T, Tanii H, Kobayashi K, Yamamoto N. A phase I study of oral panobinostat (LBH589) in Japanese patients with advanced solid tumors. Invest New Drugs 2011; 30:1096-106. [PMID: 21484248 DOI: 10.1007/s10637-011-9666-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 03/31/2011] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The objective was to determine the maximum tolerated dose and the dose-limiting toxicity of panobinostat (LBH589) when administered as a single agent to adult patients with advanced solid tumors or cutaneous T-cell lymphoma whose disease had progressed despite standard therapy or for whom no standard therapy existed. METHODS Panobinostat was administered orally once daily on Monday, Wednesday, and Friday of each week. A total of 13 patients were treated with one of three initial doses: 10 mg (n = 3), 15 mg (n = 4), or 20 mg (n = 6). RESULTS No dose-limiting toxicity was observed in 12 evaluable patients. The most frequently reported adverse events, regardless of whether they were related to the study drug, were diarrhea and nausea in 10 patients (76.9%). Thrombocytopenia was reported in 12 of 13 patients (92.3%). Five of 11 patients (45.4%) had stable disease. CONCLUSION Panobinostat administered orally once daily on Monday, Wednesday, and Friday of each week was well tolerated at doses up to 20 mg in Japanese patients. Dose escalation did not proceed after exploration of the 20 mg dose due to emerging global clinical data at that time.
Collapse
|
31
|
Deciphering the molecular and biologic processes that mediate histone deacetylase inhibitor–induced thrombocytopenia. Blood 2011; 117:3658-68. [DOI: 10.1182/blood-2010-11-318055] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Histone deacetylase inhibitor (HDACI)–induced thrombocytopenia (TCP) is a major dose-limiting toxicity of this new class of drugs. Using preclinical models to study the molecular and biologic events that underpin this effect of HDACI, we found that C57BL/6 mice treated with both the HDAC1/2-selective HDACI romidepsin and the pan-HDACI panobinostat developed significant TCP. HDACI-induced TCP was not due to myelosuppression or reduced platelet lifespan, but to decreased platelet release from megakaryocytes. Cultured primary murine megakaryocytes showed reductions in proplatelet extensions after HDACI exposure and a dose-dependent increase in the phosphorylation of myosin light chain 2 (MLC2). Phosphorylation of MLC to phospho-MLC (pMLC) and subsequent proplatelet formation in megakaryocytes is regulated by the Rho-GTPase proteins Rac1, CDC42, and RhoA. Primary mouse megakaryocytes and the human megakaryoblastic cell line Meg-01 showed reductions in Rac1, CDC42, and RhoA protein levels after treatment with HDACIs. We were able to overcome HDACI-induced TCP by administering the mouse-specific thrombopoietin (TPO) mimetic AMP-4, which improved platelet numbers to levels similar to untreated controls. Our report provides the first detailed account of the molecular and biologic processes involved in HDACI-mediated TCP. Moreover, our preclinical studies provide evidence that dose-limiting TCP induced by HDACIs may be circumvented using a TPO mimetic.
Collapse
|
32
|
McKinsey TA. Targeting inflammation in heart failure with histone deacetylase inhibitors. Mol Med 2011; 17:434-41. [PMID: 21267510 DOI: 10.2119/molmed.2011.00022] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 01/13/2011] [Indexed: 01/19/2023] Open
Abstract
Cardiovascular insults such as myocardial infarction and chronic hypertension can trigger the heart to undergo a remodeling process characterized by myocyte hypertrophy, myocyte death and fibrosis, often resulting in impaired cardiac function and heart failure. Pathological cardiac remodeling is associated with inflammation, and therapeutic approaches targeting inflammatory cascades have shown promise in patients with heart failure. Small molecule histone deacetylase (HDAC) inhibitors block adverse cardiac remodeling in animal models, suggesting unforeseen potential for this class of compounds for the treatment of heart failure. In addition to their beneficial effects on myocardial cells, HDAC inhibitors have potent antiinflammatory actions. This review highlights the roles of HDACs in the heart and the potential for using HDAC inhibitors as broad-based immunomodulators for the treatment of human heart failure.
Collapse
Affiliation(s)
- Timothy A McKinsey
- Department of Medicine, Division of Cardiology, University of Colorado Denver, Aurora, Colorado 80045-0508, USA.
| |
Collapse
|
33
|
Targeting histone deacetyalses in the treatment of B- and T-cell malignancies. Invest New Drugs 2010; 28 Suppl 1:S58-78. [PMID: 21132350 PMCID: PMC3003796 DOI: 10.1007/s10637-010-9591-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 10/28/2010] [Indexed: 02/06/2023]
Abstract
HDAC inhibitors (HDACI) are now emerging as one of the most promising new classes of drugs for the treatment of select forms of non-Hodgkin’s lymphoma (NHL). They are particularly active in T-cell lymphomas, possibly hodgkin’s lymphoma and indolent B cell lymphomas. Presently, two of these agents, vorinostat and romidepsin, have been approved in the US for the treatment of relapsed and refractory cutaneous T cell lymphomas (CTCL). Initially, these agents were developed with the idea that they affected transcriptional activation and thus gene expression, by modulating chromatin condensation and decondensation. It is now clear that their effects go beyond chromatin and by affecting the acetylation status of histones and other intra-cellular proteins, they modify gene expression and cellular function via multiple pathways. Gene expression profiles and functional genetic analysis has led to further understanding of the various molecular pathways that are affected by these agents including cell cycle regulation, pathways of cellular proliferation, apoptosis and angiogenesis all important in lymphomagenesis. There is also increasing data to support the effects of these agents on T cell receptor and immune function which may explain the high level of activity of these agents in T cell lymphomas and hodgkin’s lymphoma. There is ample evidence of epigenetic dysregulation in lymphomas which may underlie the mechanisms of action of these agents but how these agents work is still not clear. Current HDAC inhibitors can be divided into at least four classes based on their chemical structure. At present several of these HDAC inhibitors are in clinical trials both as single agents and in combination with chemotherapy or other biological agents. They are easy to administer and are generally well tolerated with minimal side effects. Different dosing levels and schedules and the use of isospecific HDAC inhibitors are some of the strategies that are being employed to increase the therapeutic effect of these agents in the treatment of lymphomas. There may also be class differences that translate into specific activity against different lymphoma. HDAC inhibitors will likely be incorporated into combinations of targeted therapies both in the upfront and relapsed setting for lymphomas.
Collapse
|
34
|
Giver CR, Jaye DL, Waller EK, Kaufman JL, Lonial S. Rapid recovery from panobinostat (LBH589)-induced thrombocytopenia in mice involves a rebound effect of bone marrow megakaryocytes. Leukemia 2010; 25:362-5. [DOI: 10.1038/leu.2010.262] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Targeted treatment and new agents in peripheral T-cell lymphoma. Int J Hematol 2010; 92:33-44. [DOI: 10.1007/s12185-010-0614-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 05/19/2010] [Accepted: 05/24/2010] [Indexed: 10/19/2022]
|
36
|
Abstract
Acetylation of histone and nonhistone proteins provides a key mechanism for controlling signaling and gene expression in heart and kidney. Pharmacological inhibition of protein deacetylation with histone deacetylase (HDAC) inhibitors has shown promise in preclinical models of cardiovascular and renal disease. Efficacy of HDAC inhibitors appears to be governed by pleiotropic salutary actions on a variety of cell types and pathophysiological processes, including myocyte hypertrophy, fibrosis, inflammation and epithelial-to-mesenchymal transition, and occurs at compound concentrations below the threshold required to elicit toxic side effects. We review the roles of acetylation/deacetylation in the heart and kidney and provide rationale for extending HDAC inhibitors into clinical testing for indications involving these organs.
Collapse
Affiliation(s)
- Erik W Bush
- Gilead Colorado Inc, 3333 Walnut St, Boulder, CO 80301, USA.
| | | |
Collapse
|
37
|
Isoform-specific histone deacetylase inhibitors: the next step? Cancer Lett 2009; 280:211-21. [PMID: 19289255 DOI: 10.1016/j.canlet.2009.02.013] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 02/09/2009] [Indexed: 11/23/2022]
Abstract
Histone deacetylases (HDACs) have emerged as attractive drug targets, particularly for neoplastic indications. This large family is divided into four classes, of which three consist of zinc-dependent enzymes, and inhibitors of these are the subject of this review. Currently, there are several inhibitors advancing through clinical trials, all of which inhibit multiple isoforms of these three classes. While promising, these compounds have exhibited toxicities in the clinic that might limit their potential, particularly in solid tumors. It may be possible to reduce some of the toxicity by specifically targeting only the isoform(s) involved in maintaining that particular tumor and spare other isoforms that are uninvolved or even beneficial. This review examines the selectivity and toxicity of HDAC inhibitors currently in clinic, comparing pan-HDAC inhibitors to Class I selective compounds. The rationale for isoform-specific inhibitors is examined. The current status of isoform-specific inhibitor development is analyzed, especially inhibitors of HDAC1, 2, 4 and 8 enzymes, and the potential clinical utility of these compounds is discussed.
Collapse
|
38
|
Bonfils C, Walkinshaw DR, Besterman JM, Yang XJ, Li Z. Pharmacological inhibition of histone deacetylases for the treatment of cancer, neurodegenerative disorders and inflammatory diseases. Expert Opin Drug Discov 2008; 3:1041-65. [DOI: 10.1517/17460441.3.9.1041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Matsuoka H, Fujimura T, Unami A, Yamada T, Noto T, Takata Y, Yoshizawa K, Mori H, Aramori I, Mutoh S. Novel Method for Selecting Immunosuppressive Histone Deacetylase (HDAC) Inhibitors with Minimal Thrombocytopenia. Biol Pharm Bull 2008; 31:305-8. [DOI: 10.1248/bpb.31.305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hideaki Matsuoka
- Pharmacology Research Laboratories, Astellas Pharma Inc
- Astellas Research Institute of America LLC
| | - Takao Fujimura
- Molecular Medicine Research Laboratories, Astellas Pharma Inc
| | - Akira Unami
- Drug Safety Research Laboratories, Astellas Pharma Inc
| | - Toshiko Yamada
- Pharmacology Research Laboratories, Astellas Pharma Inc
- Astellas Research Institute of America LLC
| | - Takahisa Noto
- Pharmacology Research Laboratories, Astellas Pharma Inc
| | - Yoko Takata
- Pharmacology Research Laboratories, Astellas Pharma Inc
| | | | - Hiroaki Mori
- Fermentation Research Laboratories, Astellas Pharma Inc
| | - Ichiro Aramori
- Molecular Medicine Research Laboratories, Astellas Pharma Inc
| | - Seitaro Mutoh
- Pharmacology Research Laboratories, Astellas Pharma Inc
| |
Collapse
|