1
|
Liu M, Li L, Tong H, Kong X, Wang L, Jia X, Wang T, Yu D, Li Y, Wang S. Puerarin exerts an inhibitory effect on inflammatory infiltration in the cardiac tissue of EAM mice by regulation of the TNF-α/CCL2/CCR2 signal pathway. Int Immunopharmacol 2025; 157:114721. [PMID: 40300354 DOI: 10.1016/j.intimp.2025.114721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 04/09/2025] [Accepted: 04/21/2025] [Indexed: 05/01/2025]
Abstract
Autoimmune myocarditis can result in dilated cardiomyopathy and heart failure, but effective drugs and clear therapeutic targets are still lacking. Experimental autoimmune myocarditis (EAM) serves as the primary animal model utilized for investigating human myocarditis. Puerarin (PUE), a compound derived from the root of Pueraria lobata, exhibits a broad spectrum of antioxidant and anti-inflammatory effects; nevertheless, its underlying mechanism remains elusive. The findings of this study suggested that PUE may attenuate the infiltration of inflammatory cells into the cardiac tissue by suppressing the secretion of chemokine CCL2 from endothelial cells and macrophages at the site of injury, as well as inhibiting the interaction between CCR2 and CCL2 in recruited inflammatory cells such as macrophages and Th1 cells. In this study, the focus was on investigating the impact of PUE on the chemotactic signal axis TNF-α/CCL2/CCR2. Through the utilization of Small Animal Ultrasound, Real-Time quantitative PCR, Co-Immunoprecipitation (Co-IP), and Immunofluorescence techniques on both cellular and animal models, it has been demonstrated that PUE effectively inhibits the production of CCL2 by disrupting the TNF-α/TNFR signaling pathway in macrophages and endothelial cells through its binding affinity with TNF-α. Additionally, PUE disrupts the transmission of chemotactic signals mediated by CCL2/CCR2 interaction through its binding to CCR2.This ultimately leads to a reduction in the infiltration of inflammatory cells into the heart. Moreover, the study highlights that PUE can effectively inhibit the transduction of the TNF-α/CCL2/CCR2 chemotactic signal, resulting in decreased infiltration of macrophages and Th1 cells in the heart and subsequently reducing inflammatory damage to myocardial tissue in EAM mice.
Collapse
Affiliation(s)
- Meng Liu
- Department of Biochemistry, School of Basic Medical, Qingdao University, Qingdao, China
| | - Ling Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical, Qingdao University, Qingdao, China
| | - Huimin Tong
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical, Qingdao University, Qingdao, China
| | - Xiaowen Kong
- School of Stomatology, Qingdao University, Qingdao 266071, China
| | - Li Wang
- Department of small infants, Qingdao Women and Children's Hospital, Qingdao, China
| | - Xihui Jia
- Department of Biochemistry, School of Basic Medical, Qingdao University, Qingdao, China
| | - Tiantian Wang
- School of Medicine, Qing dao Binhai University, Qingdao, China
| | - Dongyu Yu
- Department of Biochemistry, School of Basic Medical, Qingdao University, Qingdao, China
| | - Yuanyuan Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical, Qingdao University, Qingdao, China
| | - Shuang Wang
- Department of Biochemistry, School of Basic Medical, Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Wan Q, Lu Q, Luo S, Guan C, Zhang H. The beneficial health effects of puerarin in the treatment of cardiovascular diseases: from mechanisms to therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7273-7296. [PMID: 38709267 DOI: 10.1007/s00210-024-03142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death globally that seriously threaten human health. Although novel western medicines have continued to be discovered over the past few decades to inhibit the progression of CVDs, new drug research and development for treating CVDs with less side effects and adverse reactions are continuously being desired. Puerarin is a natural product found in a variety of medicinal plants belonging to the flavonoid family with potent biological and pharmacological activities. Abundant research findings in the literature have suggested that puerarin possesses a promising prospect in treating CVDs. In recent years, numerous new molecular mechanisms of puerarin have been explored in experimental and clinical studies, providing new evidence for this plant metabolite to protect against CVDs. This article systematically introduces the history of use, bioavailability, and various dosage forms of puerarin and further summarizes recently published data on the major research advances and their underlying therapeutic mechanisms in treating CVDs. It may provide references for researchers in the fields of pharmacology, natural products, and internal medicine.
Collapse
Affiliation(s)
- Qiang Wan
- Affiliated Hospital of Jiangxi University of Chinese Medicine, 445 Bayi Avenue, Nanchang, 330006, China.
- Clinical Medical College, Jiangxi University of Chinese Medicine, 445 Bayi Avenue, Nanchang, 330006, China.
| | - Qiwen Lu
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Sang Luo
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Chengyan Guan
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Hao Zhang
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| |
Collapse
|
3
|
Grujić-Milanović J, Rajković J, Milanović S, Jaćević V, Miloradović Z, Nežić L, Novaković R. Natural Substances vs. Approved Drugs in the Treatment of Main Cardiovascular Disorders-Is There a Breakthrough? Antioxidants (Basel) 2023; 12:2088. [PMID: 38136208 PMCID: PMC10740850 DOI: 10.3390/antiox12122088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Cardiovascular diseases (CVDs) are a group of diseases with a very high rate of morbidity and mortality. The clinical presentation of CVDs can vary from asymptomatic to classic symptoms such as chest pain in patients with myocardial infarction. Current therapeutics for CVDs mainly target disease symptoms. The most common CVDs are coronary artery disease, acute myocardial infarction, atrial fibrillation, chronic heart failure, arterial hypertension, and valvular heart disease. In their treatment, conventional therapies and pharmacological therapies are used. However, the use of herbal medicines in the therapy of these diseases has also been reported in the literature, resulting in a need for critical evaluation of advances related to their use. Therefore, we carried out a narrative review of pharmacological and herbal therapeutic effects reported for these diseases. Data for this comprehensive review were obtained from electronic databases such as MedLine, PubMed, Web of Science, Scopus, and Google Scholar. Conventional therapy requires an individual approach to the patients, as when patients do not respond well, this often causes allergic effects or various other unwanted effects. Nowadays, medicinal plants as therapeutics are frequently used in different parts of the world. Preclinical/clinical pharmacology studies have confirmed that some bioactive compounds may have beneficial therapeutic effects in some common CVDs. The natural products analyzed in this review are promising phytochemicals for adjuvant and complementary drug candidates in CVDs pharmacotherapy, and some of them have already been approved by the FDA. There are insufficient clinical studies to compare the effectiveness of natural products compared to approved therapeutics for the treatment of CVDs. Further long-term studies are needed to accelerate the potential of using natural products for these diseases. Despite this undoubted beneficence on CVDs, there are no strong breakthroughs supporting the implementation of natural products in clinical practice. Nevertheless, they are promising agents in the supplementation and co-therapy of CVDs.
Collapse
Affiliation(s)
- Jelica Grujić-Milanović
- Institute for Medical Research, National Institute of the Republic of Serbia, Department of Cardiovascular Research, University of Belgrade, 11 000 Belgrade, Serbia;
| | - Jovana Rajković
- Institute for Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11 000 Belgrade, Serbia
| | - Sladjan Milanović
- Institute for Medical Research, National Institute of the Republic of Serbia, Department for Biomechanics, Biomedical Engineering and Physics of Complex Systems, University of Belgrade, 11 000 Belgrade, Serbia;
| | - Vesna Jaćević
- Department for Experimental Toxicology and Pharmacology, National Poison Control Centre, Military Medical Academy, 11 000 Belgrade, Serbia;
- Medical Faculty of the Military Medical Academy, University of Defense, 11 000 Belgrade, Serbia
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 002 Hradec Kralove, Czech Republic
| | - Zoran Miloradović
- Institute for Medical Research, National Institute of the Republic of Serbia, Department of Cardiovascular Research, University of Belgrade, 11 000 Belgrade, Serbia;
| | - Lana Nežić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Radmila Novaković
- Institute of Molecular Genetics and Genetic Engineering, Center for Genome Sequencing and Bioinformatics, University of Belgrade, 11 000 Belgrade, Serbia;
| |
Collapse
|
4
|
Zhang P, Fang Z, Zhao M, Yi B, Huang Y, Yang H, Guo N, Zhao C. Ethanol extract of Pueraria lobata improve acute myocardial infarction in rats via regulating gut microbiota and bile acid metabolism. Phytother Res 2023; 37:5932-5946. [PMID: 37697496 DOI: 10.1002/ptr.8005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/15/2023] [Accepted: 08/20/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND AND AIM Acute myocardial infarction (AMI) is a multifactorial disease with high mortality rate worldwide. Ethanol extract of Pueraria lobata (EEPL) has been widely used in treating cardiovascular diseases in China. This study aimed to explore the underlying therapeutic mechanism of EEPL in AMI rats. EXPERIMENTAL PROCEDURE We first evaluated the anti-AMI efficacy of EEPL through immunohistochemistry staining and biochemical indexes. Then, UPLC-MS/MS, 16S rDNA, and shotgun metagenomic sequencing were used to analyze the alterations in bile acid metabolism and intestinal flora. Finally, the influence of EEPL on ilem bile acid metabolism, related enzymes expression, and transporter proteins expression in rats were verified by mass spectrometry image and ELISA. KEY RESULTS The results showed that EEPL can reduce cardiac impairment in AMI rats. Besides, EEPL effectively increased bile acid levels and regulated gut microbiota disturbance in AMI rats via increasing CYP7A1 expression and restoring intestinal microbiota diversity, separately. Moreover, it can increase bile acids reabsorption and fecal excretion through inhibiting FXR-FGF15 signaling pathway and increasing OST-α expression, which associated with Lachnoclostridium. CONCLUSIONS AND IMPLICATIONS Our findings demonstrated that EEPL alleviated AMI partially by remediating intestinal dysbiosis and promoting bile acid biosynthesis, which provided new targets for AMI treatment.
Collapse
Affiliation(s)
- Pin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhengyu Fang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Bojiao Yi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yihe Huang
- School of Public Health, Shenyang Medical College, Shenyang, China
| | - Hongjun Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Na Guo
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
5
|
Sun W, Shahrajabian MH. Therapeutic Potential of Phenolic Compounds in Medicinal Plants-Natural Health Products for Human Health. Molecules 2023; 28:1845. [PMID: 36838831 PMCID: PMC9960276 DOI: 10.3390/molecules28041845] [Citation(s) in RCA: 190] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Phenolic compounds and flavonoids are potential substitutes for bioactive agents in pharmaceutical and medicinal sections to promote human health and prevent and cure different diseases. The most common flavonoids found in nature are anthocyanins, flavones, flavanones, flavonols, flavanonols, isoflavones, and other sub-classes. The impacts of plant flavonoids and other phenolics on human health promoting and diseases curing and preventing are antioxidant effects, antibacterial impacts, cardioprotective effects, anticancer impacts, immune system promoting, anti-inflammatory effects, and skin protective effects from UV radiation. This work aims to provide an overview of phenolic compounds and flavonoids as potential and important sources of pharmaceutical and medical application according to recently published studies, as well as some interesting directions for future research. The keyword searches for flavonoids, phenolics, isoflavones, tannins, coumarins, lignans, quinones, xanthones, curcuminoids, stilbenes, cucurmin, phenylethanoids, and secoiridoids medicinal plant were performed by using Web of Science, Scopus, Google scholar, and PubMed. Phenolic acids contain a carboxylic acid group in addition to the basic phenolic structure and are mainly divided into hydroxybenzoic and hydroxycinnamic acids. Hydroxybenzoic acids are based on a C6-C1 skeleton and are often found bound to small organic acids, glycosyl moieties, or cell structural components. Common hydroxybenzoic acids include gallic, syringic, protocatechuic, p-hydroxybenzoic, vanillic, gentistic, and salicylic acids. Hydroxycinnamic acids are based on a C6-C3 skeleton and are also often bound to other molecules such as quinic acid and glucose. The main hydroxycinnamic acids are caffeic, p-coumaric, ferulic, and sinapic acids.
Collapse
Affiliation(s)
- Wenli Sun
- Correspondence: ; Tel.: +86-13-4260-83836
| | | |
Collapse
|
6
|
Zhu H, Wang H, Zhu X, Chen Q, Fang X, Xu X, Ping Y, Gao B, Tong G, Ding Y, Chen T, Huang J. The Importance of Integrated Regulation Mechanism of Coronary Microvascular Function for Maintaining the Stability of Coronary Microcirculation: An Easily Overlooked Perspective. Adv Ther 2023; 40:76-101. [PMID: 36279093 DOI: 10.1007/s12325-022-02343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/28/2022] [Indexed: 01/25/2023]
Abstract
Coronary microvascular dysfunction (CMD) refers to a group of disorders affecting the structure and function of coronary microcirculation and is associated with an increased risk of major adverse cardiovascular events. At present, great progress has been made in the diagnosis of CMD, but there is no specific treatment for it because of the complexity of CMD pathogenesis. Vascular dysfunction is one of the important causes of CMD, but previous reviews mostly considered microvascular dysfunction as a whole abnormality so the obtained conclusions are skewed. The coronary microvascular function is co-regulated by multiple mechanisms, and the mechanisms by which microvessels of different luminal diameters are regulated vary. The main purpose of this review is to revisit the mechanisms by which coronary microvessels at different diameters regulate coronary microcirculation through integrated sequential activation and briefly discuss the pathogenesis, diagnosis, and treatment progress of CMD from this perspective.
Collapse
Affiliation(s)
- Houyong Zhu
- Department of Cardiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Hangzhou, 310007, Zhejiang, China.
| | - Hanxin Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xinyu Zhu
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Qilan Chen
- Department of Cardiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Hangzhou, 310007, Zhejiang, China
| | - Xiaojiang Fang
- Department of Cardiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Hangzhou, 310007, Zhejiang, China
| | - Xiaoqun Xu
- Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yan Ping
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Beibei Gao
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Guoxin Tong
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Yu Ding
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Tielong Chen
- Department of Cardiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Hangzhou, 310007, Zhejiang, China.
| | - Jinyu Huang
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
7
|
Gao M, Zhang Z, Lai K, Deng Y, Zhao C, Lu Z, Geng Q. Puerarin: A protective drug against ischemia-reperfusion injury. Front Pharmacol 2022; 13:927611. [PMID: 36091830 PMCID: PMC9449408 DOI: 10.3389/fphar.2022.927611] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
Ischemia-reperfusion (I/R) is a pathological process that occurs in numerous organs throughout the human body and is frequently associated with severe cellular damage and death. Puerarin is an isoflavone compound extracted from the root of Pueraria lobata and has pharmacological effects such as dilating cerebral vessels and anti-free radical generation in cerebral ischemic tissues. With the deepening of experimental research and clinical research on puerarin, it has been found that puerarin has a protective effect on ischemia-reperfusion injury (IRI) of the heart, brain, spinal cord, lung, intestine and other organs. In summary, puerarin has a vast range of pharmacological effects and significant protective effects, and it also has obvious advantages in the clinical protection of patients with organ IRI. With the deepening of experimental pharmacological research and clinical research, it is expected to be an effective drug for IRI treatment. In this review, we summarize the current knowledge of the protective effect of puerarin on I/R organ injury and its possible underlying molecular mechanisms.
Collapse
Affiliation(s)
- Minglang Gao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ziyao Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kai Lai
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Deng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chuanbing Zhao
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zilong Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Research Progress on Natural Products’ Therapeutic Effects on Atrial Fibrillation by Regulating Ion Channels. Cardiovasc Ther 2022; 2022:4559809. [PMID: 35387267 PMCID: PMC8964196 DOI: 10.1155/2022/4559809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/28/2022] [Accepted: 03/03/2022] [Indexed: 11/18/2022] Open
Abstract
Antiarrhythmic drugs (AADs) have a therapeutic effect on atrial fibrillation (AF) by regulating the function of ion channels. However, several adverse effects and high recurrence rates after drug withdrawal seriously affect patients’ medication compliance and clinical prognosis. Thus, safer and more effective drugs are urgently needed. Active components extracted from natural products are potential choices for AF therapy. Natural products like Panax notoginseng (Burk.) F.H. Chen, Sophora flavescens Ait., Stephania tetrandra S. Moore., Pueraria lobata (Willd.) Ohwi var. thomsonii (Benth.) Vaniot der Maesen., and Coptis chinensis Franch. have a long history in the treatment of arrhythmia, myocardial infarction, stroke, and heart failure in China. Based on the classification of chemical structures, this article discussed the natural product components’ therapeutic effects on atrial fibrillation by regulating ion channels, connexins, and expression of related genes, in order to provide a reference for development of therapeutic drugs for atrial fibrillation.
Collapse
|
9
|
Zhou YX, Zhang H, Peng C. Effects of Puerarin on the Prevention and Treatment of Cardiovascular Diseases. Front Pharmacol 2021; 12:771793. [PMID: 34950032 PMCID: PMC8689134 DOI: 10.3389/fphar.2021.771793] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Puerarin, an isoflavone glycoside derived from Pueraria lobata (Willd.) Ohwi, has been identified as a pharmacologically active component with diverse benefits. A large number of experimental and clinical studies have demonstrated that puerarin is widely used in the treatment of a variety of diseases. Among them, cardiovascular diseases (CVDs) are the leading cause of death in the world, and therefore remain one of the most prominent global public health concerns. In this review, we systematically analyze the preclinical investigations of puerarin in CVDs, such as atherosclerosis, cardiac hypertrophy, heart failure, diabetic cardiovascular complications, myocardial infarction, stroke and hypertension. In addition, the potential molecular targets of puerarin are also discussed. Furthermore, we summarize the clinical trails of puerarin in the treatment of CVDs. Finally, the therapeutic effects of puerarin derivatives and its drug delivery systems are overviewed.
Collapse
Affiliation(s)
- Yan-Xi Zhou
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Library, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Zhang
- Institute of Interdisciplinary Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Peng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Grijalva-Guiza RE, Jiménez-Garduño AM, Hernández LR. Potential Benefits of Flavonoids on the Progression of Atherosclerosis by Their Effect on Vascular Smooth Muscle Excitability. Molecules 2021; 26:3557. [PMID: 34200914 PMCID: PMC8230563 DOI: 10.3390/molecules26123557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 12/26/2022] Open
Abstract
Flavonoids are a group of secondary metabolites derived from plant-based foods, and they offer many health benefits in different stages of several diseases. This review will focus on their effects on ion channels expressed in vascular smooth muscle during atherosclerosis. Since ion channels can be regulated by redox potential, it is expected that during the onset of oxidative stress-related diseases, ion channels present changes in their conductive activity, impacting the progression of the disease. A typical oxidative stress-related condition is atherosclerosis, which involves the dysfunction of vascular smooth muscle. We aim to present the state of the art on how redox potential affects vascular smooth muscle ion channel function and summarize if the benefits observed in this disease by using flavonoids involve restoring the ion channel activity.
Collapse
Affiliation(s)
- Rosa Edith Grijalva-Guiza
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, San Andrés Cholula 72810, Mexico;
| | | | - Luis Ricardo Hernández
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, San Andrés Cholula 72810, Mexico;
| |
Collapse
|
11
|
Ai X, Dong X, Guo Y, Yang P, Hou Y, Bai J, Zhang S, Wang X. Targeting P2 receptors in purinergic signaling: a new strategy of active ingredients in traditional Chinese herbals for diseases treatment. Purinergic Signal 2021; 17:229-240. [PMID: 33751327 PMCID: PMC8155138 DOI: 10.1007/s11302-021-09774-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Adenosine triphosphate (ATP) and its metabolites adenosine diphosphate, adenosine monophosphate, and adenosine in purinergic signaling pathway play important roles in many diseases. Activation of P2 receptors (P2R) channels and subsequent membrane depolarization can induce accumulation of extracellular ATP, and furtherly cause kinds of diseases, such as pain- and immune-related diseases, cardiac dysfunction, and tumorigenesis. Active ingredients of traditional Chinese herbals which exhibit superior pharmacological activities on diversified P2R channels have been considered as an alternative strategy of disease treatment. Experimental evidence of potential ingredients in Chinese herbs targeting P2R and their pharmacological activities were outlined in the study.
Collapse
Affiliation(s)
- Xiaopeng Ai
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, China
| | - Xing Dong
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Guo
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Yang
- Chengdu Fifth People's Hospital, Chengdu, China
| | - Ya Hou
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinrong Bai
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sanyin Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, China.
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
12
|
Lin YH, Ni XB, Zhang JW, Ou CW, He XQ, Dai WJ, Chen XM, Chen MS. Effect of puerarin on action potential and sodium channel activation in human hypertrophic cardiomyocytes. Biosci Rep 2020; 40:222020. [PMID: 32003781 PMCID: PMC7024842 DOI: 10.1042/bsr20193369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/13/2020] [Accepted: 01/28/2020] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE To study the effect of puerarin on electrophysiology using a hypertrophic cardiomyocyte (HC) model. MATERIALS AND METHODS Human urine epithelial cells were used to generate the HC model (hiPSC-CM). Cardiomyocyte hypertrophy was induced by applying 10 nM endothelin-1 (ET-1). Effects of puerarin pre-treatment (PPr) and post-treatment (PPo) on action potential, sodium current (INa) activation and inactivation, and recovery following INa inactivation were tested using patch clamp electrophysiology. RESULTS Depolarization to repolarization 50% time (APD50) and repolarization 30% time (APD30) were significantly prolonged in the PPo and PPr groups compared with the controls. However, there were no significant differences in the action potential depolarization amplitude (APA) or the maximum depolarization velocity (Vmax) in phase 0. The PPr group had a slightly shortened APD90, and an extended APD50 and APD30, but did not exhibit any significant changes in stage A of APA and Vmax. The PPo group did not exhibit any significant changes in INa, while 12 h of PPr improved INa. However, puerarin did not significantly affect the activation, inactivation, or recovery of the sodium channel. CONCLUSIONS Cardiomyocyte hypertrophy significantly decreased the Vmax of the action potential and the peak density of INa. PPr inhibited the decrease in Vmax and increased the peak density of INa. Thus, puerarin could be used to stabilize the electrophysiological properties of hypertrophic cardiomyocytes and reduce arrhythmias.
Collapse
Affiliation(s)
- Yu-hui Lin
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao-Bin Ni
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jian-wu Zhang
- Department of Cardiovascular Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cai-wen Ou
- Department of Cardiovascular Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-qing He
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wen-jun Dai
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xi-ming Chen
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Correspondence: Xi-ming Chen () or Min-sheng Chen ()
| | - Min-sheng Chen
- Department of Cardiovascular Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Correspondence: Xi-ming Chen () or Min-sheng Chen ()
| |
Collapse
|
13
|
Liu S, Wang M, Wang N, Li S, Sun R, Xing J, Wang Y, Yu S, Li L, Li G, Liang S. Exploring the molecular mechanism of the effect of puerarin on P2X 3. Int J Biol Macromol 2019; 142:484-491. [PMID: 31593721 DOI: 10.1016/j.ijbiomac.2019.09.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022]
Abstract
P2X3 is a ligand-gated nonselective cation channel and permeable to Na+, K+ and Ca2+. Adenosine triphosphate (ATP) activation of the P2X3 on primary sensory ganglion neurons is involved in nociceptive transmission. Puerarin is a major active ingredient extracted from the traditional Chinese medicine Ge-gen. Puerarin inhibits nociceptive signal transmission by inhibiting the P2X3 in the dorsal root ganglia (DRG) and sympathetic ganglia, but its molecular mechanism is unclear. The aim of this study was to explore the molecular mechanism of puerarin on the P2X3. Here, molecular docking results revealed that puerarin binds well to the human P2X3 protein in the vicinity of the ATP binding pocket. Protein-ligand docking showed that the V64A mutation reduced the effect of puerarin but had little effect on ATP. V64A site-directed mutagenesis of P2X3 was performed using an overlap extension PCR technique. The wild-type and V64A mutant pEGFP-C1-P2X3 recombinant plasmids were transfected into HEK 293 cells. The electrophysiology results demonstrated that puerarin exerted an obvious inhibitory effect on ATP-activated currents in HEK 293 cells transfected with the wild-type P2X3, while little inhibition was observed in HEK 293 cells transfected with the mutant P2X3. These studies suggest that puerarin inhibits the P2X3 by binding to V64A.
Collapse
Affiliation(s)
- Shuangmei Liu
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, PR China
| | - Mengke Wang
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, PR China
| | - Na Wang
- Undergraduate Student of Second Clinical Department, Medical School of Nanchang University, Nanchang, Jiangxi, PR China
| | - Shizhen Li
- Undergraduate Student of Second Clinical Department, Medical School of Nanchang University, Nanchang, Jiangxi, PR China
| | - Rui Sun
- Undergraduate Student of Anesthesiology Department, Medical School of Nanchang University, Nanchang, Jiangxi, PR China
| | - Jingming Xing
- Undergraduate Student of Basic Medical Science Department, Medical School of Nanchang University, Nanchang, Jiangxi, PR China
| | - Yueying Wang
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, PR China
| | - Shicheng Yu
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, PR China
| | - Lin Li
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, PR China
| | - Guodong Li
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, PR China
| | - Shangdong Liang
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, PR China.
| |
Collapse
|
14
|
Wang Z, Ye BN, Zhang YT, Xie JX, Li WS, Zhang HT, Liu Y, Feng NP. Exploring the Potential of Mesoporous Silica as a Carrier for Puerarin: Characterization, Physical Stability, and In Vivo Pharmacokinetics. AAPS PharmSciTech 2019; 20:289. [PMID: 31414349 DOI: 10.1208/s12249-019-1502-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to evaluate the use of a novel porous silica carrier, AEROPERL® 300 Pharma (AP), to improve the in vitro release and oral bioavailability of puerarin (PUE) in solid dispersions (SDs). PUE-AP SD formulations with different ratios of drug to silica (RDS) were prepared by the solvent method. The scanning electron microscopy (SEM) results indicated that the dispersion of PUE improved as the concentration of AP was increased. The differential scanning calorimetry (DSC) and X-ray diffraction (XRD) results revealed that PUE mostly existed in an amorphous state in the SDs. The rate of drug dissolution from the SDs was significantly higher than that from the PUE powder (p < 0.05). The in vitro drug release percentage from the PUE-AP SDs increased as the RDS was reduced. The oral bioavailability of PUE from the SDs improved when using AP, as indicated by AUC(0-∞), which was 2.05 and 2.01 times greater than that of the PUE (API) and PVP K30 SDs, respectively (p < 0.05). The drug content, in vitro release profiles, and the amorphous state of PUE in the PUE-AP SDs showed no significant changes after being stored at room temperature for 6 months or under accelerated conditions (40 ± 2°C, 75 ± 5% relative humidity) for 3 months. AP has a high pore volume, large specific surface area, excellent flowability, and hydrophilic properties, making it capable of improving the dissolution and bioavailability of poorly water-soluble drugs.
Collapse
|
15
|
NMR studies of daidzein and puerarin: active anti-oxidants in traditional Chinese medicine. J Mol Model 2019; 25:202. [DOI: 10.1007/s00894-019-4090-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/04/2019] [Indexed: 01/11/2023]
|
16
|
Xiao C, Xia ML, Wang J, Zhou XR, Lou YY, Tang LH, Zhang FJ, Yang JT, Qian LB. Luteolin Attenuates Cardiac Ischemia/Reperfusion Injury in Diabetic Rats by Modulating Nrf2 Antioxidative Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2719252. [PMID: 31089405 PMCID: PMC6476158 DOI: 10.1155/2019/2719252] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/19/2019] [Indexed: 12/30/2022]
Abstract
Luteolin has been reported to attenuate ischemia/reperfusion (I/R) injury in the diabetic heart through endothelial nitric oxide synthase- (eNOS-) related antioxidative response. Though the nuclear factor erythroid 2-related factor 2 (Nrf2) is regarded as a key endogenous factor to reduce diabetic oxidative stress, whether luteolin reduces cardiac I/R injury in the diabetic heart via enhancing Nrf2 function needs to be clarified. We hypothesized that pretreatment with luteolin could alleviate cardiac I/R injury in the diabetic heart by affecting the eNOS/Nrf2 signaling pathway. The diabetic rat was produced by a single injection of streptozotocin (65 mg/kg, i.p.) for 6 weeks, and then, luteolin (100 mg/kg/day, i.g.), eNOS inhibitor L-NAME, or Nrf2 inhibitor brusatol was administered for the succedent 2 weeks. After that, the isolated rat heart was exposed to 30 min of global ischemia and 120 min of reperfusion to establish I/R injury. Luteolin markedly ameliorated cardiac function and myocardial viability; upregulated expressions of heme oxygenase-1, superoxide dismutase, glutathione peroxidase, and catalase; and reduced myocardial lactate dehydrogenase release, malondialdehyde, and 8-hydroxydeoxyguanosine in the diabetic I/R heart. All these ameliorating effects of luteolin were significantly reversed by L-NAME or brusatol. Luteolin also markedly reduced S-nitrosylation of Kelch-like ECH-associated protein 1 (Keap1) and upregulated Nrf2 and its transcriptional activity. This effect of luteolin on Keap1/Nrf2 signaling was attenuated by L-NAME. These data reveal that luteolin protects the diabetic heart against I/R injury by enhancing eNOS-mediated S-nitrosylation of Keap1, with subsequent upregulation of Nrf2 and the Nrf2-related antioxidative signaling pathway.
Collapse
Affiliation(s)
- Chi Xiao
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Man-Li Xia
- Institute of Physiological Function, Medical College of Jiaxing University, Jiaxing 314001, China
| | - Jue Wang
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Xin-Ru Zhou
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Yang-Yun Lou
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Li-Hui Tang
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Feng-Jiang Zhang
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jin-Ting Yang
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ling-Bo Qian
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| |
Collapse
|
17
|
Zhang XL, Cao XY, Lai RC, Xie MX, Zeng WA. Puerarin Relieves Paclitaxel-Induced Neuropathic Pain: The Role of Na v1.8 β1 Subunit of Sensory Neurons. Front Pharmacol 2019; 9:1510. [PMID: 30666203 PMCID: PMC6330330 DOI: 10.3389/fphar.2018.01510] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022] Open
Abstract
Currently there is no effective treatment available for clinical patients suffering from neuropathic pain induced by chemotherapy paclitaxel. Puerarin is a major isoflavonoid extracted from the Chinese medical herb kudzu root, which has been used for treatment of cardiovascular disorders and brain injury. Here, we found that puerarin dose-dependently alleviated paclitaxel-induced neuropathic pain. At the same time, puerarin preferentially reduced the excitability and blocked the voltage-gated sodium (Nav) channels of dorsal root ganglion (DRG) neurons from paclitaxel-induced neuropathic pain rats. Furthermore, puerarin was a more potent blocker of tetrodotoxin-resistant (TTX-R) Nav channels than of tetrodotoxin-sensitive (TTX-S) Nav channels in chronic pain rats’ DRG neurons. In addition, puerarin had a stronger blocking effect on Nav1.8 channels in DRG neurons of neuropathic pain rats and β1 subunit siRNA can abolish this selective blocking effect on Nav1.8. Together, these results suggested that puerarin may preferentially block β1 subunit of Nav1.8 in sensory neurons contributed to its anti-paclitaxel induced neuropathic pain effect.
Collapse
Affiliation(s)
- Xiao-Long Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xian-Ying Cao
- College of Food Science and Technology, Hainan University, Haikou, China.,State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, China
| | - Ren-Chun Lai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Man-Xiu Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei-An Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
18
|
Zhang S, Wang J, Zhao H, Luo Y. Effects of three flavonoids from an ancient traditional Chinese medicine Radix puerariae on geriatric diseases. Brain Circ 2018; 4:174-184. [PMID: 30693344 PMCID: PMC6329217 DOI: 10.4103/bc.bc_13_18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/12/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
As the worldwide population ages, the morbidity of neurodegenerative, cardiovascular, cerebrovascular, and endocrine diseases, such as diabetes and osteoporosis, continues to increase. The etiology of geriatric diseases is complex, involving the interaction of genes and the environment, which makes effective treatment challenging. Traditional Chinese medicine, unlike Western medicine, uses diverse bioactive ingredients to target multiple signaling pathways in geriatric diseases. Radix puerariae is one of the most widely used ancient traditional Chinese medicines and is also consumed as food. This review summarizes the evidence from in vivo and in vitro studies of the pharmacological effects of the main active components of the tuber of Radix puerariae on geriatric diseases.
Collapse
Affiliation(s)
- Sijia Zhang
- Department of Neurology, Institute of Cerebrovascular Disease Research, Xuanwu Hospital, The First Clinical Medical College of Capital Medical University, Beijing, China
| | - Jue Wang
- Department of Neurology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Haiping Zhao
- Department of Neurology, Institute of Cerebrovascular Disease Research, Xuanwu Hospital, The First Clinical Medical College of Capital Medical University, Beijing, China
| | - Yumin Luo
- Department of Neurology, Institute of Cerebrovascular Disease Research, Xuanwu Hospital, The First Clinical Medical College of Capital Medical University, Beijing, China.,Stroke Center, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| |
Collapse
|
19
|
Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E93. [PMID: 30149600 PMCID: PMC6165118 DOI: 10.3390/medicines5030093] [Citation(s) in RCA: 746] [Impact Index Per Article: 106.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022]
Abstract
Phenolic compounds as well as flavonoids are well-known as antioxidant and many other important bioactive agents that have long been interested due to their benefits for human health, curing and preventing many diseases. This review attempts to demonstrate an overview of flavonoids and other phenolic compounds as the interesting alternative sources for pharmaceutical and medicinal applications. The examples of these phytochemicals from several medicinal plants are also illustrated, and their potential applications in pharmaceutical and medical aspects, especially for health promoting e.g., antioxidant effects, antibacterial effect, anti-cancer effect, cardioprotective effects, immune system promoting and anti-inflammatory effects, skin protective effect from UV radiation and so forth are highlighted.
Collapse
Affiliation(s)
- Duangjai Tungmunnithum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.
- Department of Botany, Tsukuba Botanical Garden, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba 305-0005, Japan.
| | - Areeya Thongboonyou
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.
| | - Apinan Pholboon
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.
| | - Aujana Yangsabai
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
20
|
Shang Z, Xin Q, Zhao W, Wang Z, Li Q, Zhang J, Cong W. Rapid profiling and identification of puerarin metabolites in rat urine and plasma after oral administration by UHPLC-LTQ-Orbitrap mass spectrometer. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1068-1069:180-192. [DOI: 10.1016/j.jchromb.2017.10.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 12/19/2022]
|
21
|
Li W, Lu M, Zhang Y, Xia D, Chen Z, Wang L, Yin N, Wang Z. Puerarin attenuates the daunorubicin-induced apoptosis of H9c2 cells by activating the PI3K/Akt signaling pathway via the inhibition of Ca2+ influx. Int J Mol Med 2017; 40:1889-1894. [PMID: 29039532 DOI: 10.3892/ijmm.2017.3186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 09/20/2017] [Indexed: 11/06/2022] Open
Abstract
Puerarin extracted from Radix Puerariae is well known for its pharmacological effects, including antioxidant, anti‑inflammatory, neuroprotective and cardioprotective properties. In this study, we aimed to investigate the effects of puerarin on the daunorubicin (DNR)-induced apoptosis of H9c2 cells and to elucidate the potential mechanisms involved. MTT assay and flow cytometry were performed to evaluate cell cytotoxicity and apoptosis, respectively. Western blot analysis was used to assess changes in the expression levels of proteins, including caspase-3, Akt and phosphorylated Akt (p-Akt). Ratiometric imaging of intracellular calcium (Ca2+) using cells loaded with Fura-2 was also carried out. Our results revealed that puerarin pre-treatment protected the H9c2 cells against DNR-induced cytotoxicity by inhibiting cell apoptosis, which was also confirmed by the decrease in the expression of cleaved caspase-3. Additionally, p-Akt activation was associated with the suppressive effects of puerarin. Following pre-treatment with puerarin, the extracellular Ca2+ influx was restrained and this resulted in a reduction in the intracellular Ca2+ levels; these effects were abrogated by LY294002 [an inhibitor of phosphatidylinositol 3-kinase (PI3K)]. The inhibition of Ca2+ influx suggested that the PI3K/Akt signaling pathway participated in the suppressive effects of puerarin against H9c2 cell apoptosis. Taken togher, our findings demonstrate that puerarin attenuates the DNR-induced apoptosis of H9c2 cells by activating the PI3K/Akt signaling pathway via the inhibition of Ca2+ influx, suggesting that puerarin may be a potential cardioprotective agent for use in the clinical treatment of cardiomyopathy triggered by DNR.
Collapse
Affiliation(s)
- Weihua Li
- Department of Cardiology, Affiliated Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Min Lu
- Department of Human Anatomy and Embryology, Medical College of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Yanhong Zhang
- Department of Anatomy, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Danqin Xia
- Department of Cardiology, Affiliated Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Zebin Chen
- Acupuncture and Moxibustion College, Hubei University of Chinese Medicine/Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, Hubei 430065, P.R. China
| | - Linhua Wang
- Department of Traditional Chinese Medicine, Hubei Rongjun Hospital, Wuhan, Hubei 430079, P.R. China
| | - Nina Yin
- Department of Anatomy, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Zhigang Wang
- Department of Pathogen Biology, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| |
Collapse
|
22
|
Bacanli M, Anlar HG, Başaran AA, Başaran N. Assessment of Cytotoxicity Profiles of Different Phytochemicals: Comparison of Neutral Red and MTT Assays in Different Cells in Different Time Periods. Turk J Pharm Sci 2017; 14:95-107. [PMID: 32454600 DOI: 10.4274/tjps.07078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/20/2016] [Indexed: 12/01/2022]
Abstract
Objectives Phenolic compounds exhibit several health protective properties. Galangin, curcumin, pycnogenol, puerarin and ursolic acid are commonly used plant phenolics in folk medicine. The aim of our study was to evaluate the difference between neutral red uptake (NRU) and MTT assays using different plant phenolics (galangin, curcumin, pycnogenol, puerarin and ursolic acid) in healthy and cancer cells in different time periods. Materials and Methods In this study, the cytotoxic effects of these phenolic compounds were investigated by NRU and MTT assays in healthy (V79, Chinese hamster fibroblast cell line) and cancer [human cervix epithelial adenocarcinoma cell line Henrietta Lacks (HeLa) and human mammary carcinoma cell line (BT-474)] in 18, 24 and 48 h incubation periods. Results Our results demonstrated that galangin, curcumin, pycnogenol, puerarin and ursolic acid decreased cell viability of V79, HeLa and BT-474 cells in a dose-dependent manner in 18, 24 and 48 h incubation periods. However, the cell survival rate was much lower in 48 h incubation period. There was no difference between the results from NRU and MTT assays. Conclusion To decide which incubation period and which cytotoxicity study to be used, the cytotoxicity mechanism of the compound must be known.
Collapse
Affiliation(s)
- Merve Bacanli
- Hacettepe University, Faculty Of Pharmacy, Department Of Pharmaceutical Toxicology, Ankara, Turkey
| | - Hatice Gül Anlar
- Hacettepe University, Faculty Of Pharmacy, Department Of Pharmaceutical Toxicology, Ankara, Turkey
| | - A Ahmet Başaran
- Hacettepe University, Faculty Of Pharmacy, Departments Of Pharmacognosy, Ankara, Turkey
| | - Nursen Başaran
- Hacettepe University, Faculty Of Pharmacy, Department Of Pharmaceutical Toxicology, Ankara, Turkey
| |
Collapse
|
23
|
Tang H, Song X, Ling Y, Wang X, Yang P, Luo T, Chen A. Puerarin attenuates myocardial hypoxia/reoxygenation injury by inhibiting autophagy via the Akt signaling pathway. Mol Med Rep 2017; 15:3747-3754. [PMID: 28393209 DOI: 10.3892/mmr.2017.6424] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/01/2017] [Indexed: 11/06/2022] Open
Abstract
Puerarin (Pur), which is the major bioactive ingredient extracted from the root of Pueraria lobata (Willd.) Ohwi, has been demonstrated to relieve myocardial ischemia/reperfusion (I/R) injury. Macroautophagy, or autophagy, is an evolutionarily conserved cellular catabolic mechanism that is involved in myocardial I/R injury. The present study evaluated the involvement of autophagy in the protective mechanisms of Pur during myocardial hypoxia/reoxygenation (H/R). The results revealed that Pur and 3‑methyladenine pretreatment exerted a cardioprotective effect against H/R‑induced cell viability loss. Pur also decreased the ratio of light chain 3 (LC3) ‑II/LC3‑I and the degradation of p62 during H/R, which was accompanied by an increased level of phosphorylated‑protein kinase B (Akt). These findings suggested that autophagy during myocardial H/R was inhibited by Pur, and this was further confirmed by the results of transmission electron microscopy and adenovirus‑monomeric red fluorescent protein‑green fluorescent protein‑light chain 3 transfection. Furthermore, Pur inhibited the increased levels of autophagy induced by rapamycin, and the autophagy‑inhibiting effects of Pur during myocardial H/R were abolished by the Akt signaling inhibitor API‑2. Collectively, these data indicate that Pur pretreatment may attenuate myocardial H/R injury by inhibiting autophagy via the Akt signaling pathway.
Collapse
Affiliation(s)
- Huixiong Tang
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Xudong Song
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Yuanna Ling
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Xianbao Wang
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Pingzhen Yang
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Tao Luo
- Division of Cardiology, Department of Medicine, University of California Irvine Medical Center, Orange, CA 92868, USA
| | - Aihua Chen
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
24
|
Radix puerariae extracts ameliorate paraquat-induced pulmonary fibrosis by attenuating follistatin-like 1 and nuclear factor erythroid 2p45-related factor-2 signalling pathways through downregulation of miRNA-21 expression. Altern Ther Health Med 2016; 16:11. [PMID: 26758514 PMCID: PMC4711072 DOI: 10.1186/s12906-016-0991-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 01/08/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Puerarin, extracted from Radix puerariae, was reported to ameliorate airway inflammation, lung injury and lung fibrosis induced by paraquat (PQ) in mice. However, effects of Radix puerariae extracts (RPEs) on lung fibrosis or signalling pathways in PQ-induced lung injury have not been well studied. Therefore, the goals of our study were to investigate whether Radix puerariae extracts are antifibrotic in a paraquat (PQ) induced lung fibrosis model in mice and to propose possible mechanisms of action of the RPE effects. METHODS We used a long-term exposure model of PQ-induced lung fibrosis in mice to evaluate effects of antioxidant-containing RPE. We examined effects of miR-21 on follistatin-like 1 (Fstl 1) pathways and oxidative stress in the lung. Gene expression levels of miR-21, Fstl 1, transforming growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF), collagen-1 and collagen III were measured by real-time PCR. Protein expression levels of Fstl 1(FSTL1), heme oxygenase-1 (HO-1), nuclear factor erythroid 2p45-related factor-2 (Nrf2), Smad2/3, p38MAPK, nuclear factor-κB 65 (NF-κB65), and matrix metalloproteinase-9 were detected by western blotting. FSTL1 andalpha-smooth muscle actin (α-SMA) in lung tissue were detected by immunohistochemistry. Malondialdehyde, superoxide dismutase (SOD), reduced (GSH) and oxidised (GSSH) glutathione and reactive oxygen species levels, hydroxyproline and total lung collagen were also determined. RESULTS Long-term challenge with PQ enhanced miRNA-21 (miR-21), Fstl 1 pathways, oxidative stress and development of fibrotic features in the lungs. RPE reduced features of lung fibrosis by blocking Fstl 1 pathways and oxidative stress through decreased miR-21 expression. This was accompanied by suppression of CTGF, TGF-β1, vascular endothelial growth factor, collagen I, and collagen III. In addition, PQ-induced activation of NF-κB, Nrf2 and α-SMA were enhanced by puerarin. We also found that puerarin increased HO-1, SOD and GSH levels. CONCLUSIONS These findings demonstrated that RPEs blocked PQ-induced Fstl 1 pathways and oxidative stress by inhibiting miR-21 expression, leading to attenuation of PQ-induced lung fibrosis.
Collapse
|
25
|
Yang S, Wang S, Sun F, Zhang M, Wu F, Xu F, Ding Z. Protective effects of puerarin against tetrabromobisphenol a-induced apoptosis and cardiac developmental toxicity in zebrafish embryo-larvae. ENVIRONMENTAL TOXICOLOGY 2015; 30:1014-1023. [PMID: 24596333 DOI: 10.1002/tox.21975] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 02/10/2014] [Accepted: 02/23/2014] [Indexed: 06/03/2023]
Abstract
Tetrabromobisphenol A (TBBPA), a brominated flame retardant, is detected commonly in aquatic environments, where it is thought to be highly toxic to the development of aquatic life. In this study, zebrafish embryos and larvae were used to investigate the protective effects of puerarin after exposure to TBBPA. Malformation, blood flow disorders, pericardial edema, and spawn coagulation rates increased, whereas survival decreased significantly after exposure to 0.5 and 1.0 mg L(-1) TBBPA. The measured indices of morphological toxicity improved after treatment with puerarin. TBBPA also induced reactive oxygen species (ROS) production in a dose-dependent manner. Acridine orange staining results revealed that TBBPA exposure caused cardiomyocyte apoptosis and induced the expression of three proapoptotic genes: P53, Bax, and Caspase9. In contrast, the expression of the antiapoptotic gene Bcl2 was down-regulated. When genes related to cardiac development were assessed, the expression of Tbx1, Raldh2, and Bmp2b changed after exposure to the combination of TBBPA and puerarin. These results suggest that TBBPA induces cardiomyocyte apoptosis and ROS production, resulting in cardiac developmental toxicity in zebrafish embryos or larvae. Therefore, puerarin regulates the expression of cardiac developmental genes, such as Tbx1, Bmp2b, and Raldh2 by inhibiting ROS production, and subsequently modulates cardiac development after the exposure of zebrafish larvae to TBBPA.
Collapse
Affiliation(s)
- Suwen Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Shengrui Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fengchao Sun
- Department of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mengmeng Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fanfan Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhishan Ding
- Department of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
26
|
Mun SC, Mun GS. Dynamics of phytoestrogen, isoflavonoids, and its isolation from stems of Pueraria lobata (Willd.) Ohwi growing in Democratic People's Republic of Korea. J Food Drug Anal 2015; 23:538-544. [PMID: 28911713 PMCID: PMC9351794 DOI: 10.1016/j.jfda.2015.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/24/2015] [Accepted: 04/17/2015] [Indexed: 01/09/2023] Open
Abstract
Four isoflavonoids were isolated from stems of Pueraria lobata (Willd.) Ohwi growing in Democratic People’s Republic of Korea and identified as daidzein (1), genistin (2), daidzin (3), and puerarin (4), structures, which were elucidated by means of spectroscopic analysis. Isoflavonoids were isolated using silica gel chromatography and purified with organic solvents. Isoflavonoid contents in P. lobata were determined using reliable high-performance liquid chromatography. The results indicated that the contents of puerarin and genistin in the roots are higher than those in the stems (6.19% and 0.04% vs. 1.15% and 0.02%), whereas the stems have higher contents of daidzin and daidzein than the roots (3.17% and 0.06% vs. 1.72% and 0.05%). Accordingly, the root part of the plant is useful for the isolation of puerarin and the stem part for daidzin. This study suggests that the stem of P. lobata is useful as an alternative source of puerarin, daidzin, genistin, and daidzein. In addition, collection of the stem will not sacrifice the plant and thus is beneficial to the natural ecosystems.
Collapse
Affiliation(s)
- Song-Chol Mun
- Department of Pharmacy, Pyongyang Medical College, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea.
| | - Gwan-Sim Mun
- Department of Medical Plant Resources, Institute of Pharmaceutics, Academy of Medicine Sciences, Pyongyang, Democratic People's Republic of Korea
| |
Collapse
|
27
|
Yang JT, Qian LB, Zhang FJ, Wang J, Ai H, Tang LH, Wang HP. Cardioprotective effects of luteolin on ischemia/reperfusion injury in diabetic rats are modulated by eNOS and the mitochondrial permeability transition pathway. J Cardiovasc Pharmacol 2015; 65:349-356. [PMID: 25502309 DOI: 10.1097/fjc.0000000000000202] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Myocardial ischemia/reperfusion (I/R) injury in diabetes is associated with oxidative stress, endothelial nitric oxide synthase (eNOS) dysfunction, and mitochondrial collapse, whereas luteolin is known to protect the cardiovascular system against diabetes and I/R injury. Here, we investigated whether luteolin pretreatment diminishes myocardial I/R injury in diabetic rats by affecting eNOS and the mitochondrial permeability transition pore (mPTP). After diabetic rats were produced by streptozotocin treatment (65 mg/kg) for 3 weeks, luteolin (100 mg·kg·d) or L-NAME (25 mg·kg·d) was administered intragastrically for 2 weeks. Hearts were then isolated and subjected to 30 minutes of global ischemia followed by 120 minutes of reperfusion. Pretreatment with luteolin significantly improved left ventricular function and coronary flow throughout reperfusion, increased cardiac tissue viability and manganese superoxide dismutase (MnSOD) activity, and reduced coronary lactate dehydrogenase release, and the myocardial malonaldehyde level in diabetic I/R rat hearts. All these improving effects of luteolin were significantly attenuated by L-NAME. Luteolin also significantly upregulated eNOS expression in diabetic rat hearts after I/R. Ca-induced mPTP opening and mitochondrial inner membrane potential reduction were significantly inhibited in ventricular myocytes isolated from luteolin-treated diabetic rats, and this effect was attenuated by L-NAME. These findings indicate that luteolin protects the diabetic heart against I/R injury by upregulating the myocardial eNOS pathway, and downstream effects include the enhancement of MnSOD and inhibition of mPTP.
Collapse
Affiliation(s)
- Jin-Ting Yang
- *Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; †Department of Basic Medical Sciences, Zhejiang Medical College, Hangzhou, China; and ‡Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Wei SY, Chen Y, Xu XY. Progress on the pharmacological research of puerarin: a review. Chin J Nat Med 2015; 12:407-14. [PMID: 24969520 DOI: 10.1016/s1875-5364(14)60064-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Indexed: 01/29/2023]
Abstract
Contemporary pharmacological research has demonstrated that puerarin, the most important phytoestrogen extracted from Pueraria lobata(Willd.) Ohwi, has protecting functions on the cardiovascular system, nervous system, osteoporosis, liver injury, and inflammation in vivo and in vitro. Most of these research studies focused on inhibiting oxidative stress and apoptosis through regulating various bioactivators and signal pathways. Among these, superoxide dismutase (SOD), endothelial nitric oxide synthase (eNOS) and malondialdehyde (MDA), and PI3K/Akt, MAPK, and NF-κB are of great importance. The data cited in this review were mainly obtained from articles listed in PubMed and Elsevier SDOL published from 1959 to 2013, and the search term used was "puerarin".
Collapse
Affiliation(s)
- Shu-Yong Wei
- Pharmaceutical College of Southwest University & College of Chinese Medicine; Chongqing Engineering Research Center for Pharmacodynamics Evaluation, Chongqing 400716, China; Rongchang Campus of Southwest University, Rongchang 402460, China
| | - Yi Chen
- Pharmaceutical College of Southwest University & College of Chinese Medicine; Chongqing Engineering Research Center for Pharmacodynamics Evaluation, Chongqing 400716, China
| | - Xiao-Yu Xu
- Pharmaceutical College of Southwest University & College of Chinese Medicine; Chongqing Engineering Research Center for Pharmacodynamics Evaluation, Chongqing 400716, China.
| |
Collapse
|
29
|
Wu M, Liang S, Ma L, Han Y, Zhang X, Xu C. Effects of delayed puerarin treatment in long-term neurological outcomes of focal ischemic stroke in rats. Indian J Pharmacol 2014; 46:157-60. [PMID: 24741185 PMCID: PMC3987182 DOI: 10.4103/0253-7613.129305] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/15/2013] [Accepted: 01/21/2014] [Indexed: 12/18/2022] Open
Abstract
Objective: The present study aimed at investigate the therapeutic effects of delayed puerarin treatment in neurological outcomes after middle cerebral artery occlusion (MCAO) in rats. Materials and Methods: Male Wistar rats were subjected to MCAO for 120 min followed by reperfusion for 14 days. Puerarin (0, 50, 100, 200 mg/kg, intra-peritoneally) was administered at 24 h after stroke onset and repeated daily for 14 days. Neurological deficits were evaluated at 1, 4, 7, 14 days after stroke. Brain infarct volume and peri-infarct context vessel density were examined at 14 days after stroke. Results: Puerarin significantly improved neurological functions up to 14 days after stroke and decreased the infarct volume with doses of 50 mg/kg and 100 mg/kg compared with saline controls. Puerarin treatment also significantly increased peri-infarct context vessel density at 14 days after stroke. Conclusions: Delayed treatment of puerarin initiated at 24 h after stroke is beneficial with improved long-term neurological outcomes and reduced infarction volume in focal ischemic stroke in rats. Enhanced vascular remodeling by puerarin might at least partially contribute to its beneficial effects.
Collapse
Affiliation(s)
- Minghua Wu
- Department of Brain Center, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu Province 210029, China ; Department of Internal Neurology, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu Province 210029, China
| | - Sen Liang
- Department of Neurology, The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210046, China
| | - Li Ma
- Department of Neurology, The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210046, China
| | - Yang Han
- Department of Neurology, The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210046, China
| | - Xiusheng Zhang
- Department of Brain Center, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu Province 210029, China ; Department of Internal Neurology, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu Province 210029, China
| | - Chengcheng Xu
- Department of Neurology, The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210046, China
| |
Collapse
|
30
|
Wu Y, Xue B, Li X, Liu H. Puerarin prevents high glucose-induced apoptosis of Schwann cells by inhibiting oxidative stress. Neural Regen Res 2014; 7:2583-91. [PMID: 25368634 PMCID: PMC4200725 DOI: 10.3969/j.issn.1673-5374.2012.33.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 10/16/2012] [Indexed: 11/18/2022] Open
Abstract
Oxidative stress may be the unifying factor for the injury caused by hyperglycemia in diabetic peripheral neuropathy. Puerarin is the major isoflavonoid derived from Radix puerariae and has been shown to be effective in increasing superoxide dismutase activity. This study sought to investigate the neuroprotective effect of puerarin on high glucose-induced oxidative stress and Schwann cell apoptosis in vitro. Intracellular reactive oxygen radicals and mitochondrial transmembrane potential were detected by flow cytometry analysis. Apoptosis was confirmed by TUNEL and oxidative stress was monitored using an enzyme-linked immunosorbent assay for the DNA marker 8-hydroxy-2-deoxyguanosine. The expression levels of bax and bcl-2 were analyzed by quantitative real-time reverse transcriptase-PCR, while protein expression of cleaved caspase-3 and -9 were analyzed by means of western blotting. Results suggested that puerarin treatment inhibited high glucose-induced oxidative stress, mitochondrial depolarization and apoptosis in a dose-dependent manner. Furthermore, puerarin treatment downregulated Bax expression, upregulated bcl-2 expression and attenuated the activation of caspase-3 and -9. Overall, our results indicated that puerarin antagonized high glucose-induced oxidative stress and apoptosis in Schwann cells.
Collapse
Affiliation(s)
- Yingying Wu
- Institute of Stomatology, Chinese PLA General Hospital, Beijing 100853, China
| | - Bing Xue
- Department of Endocrinology, General Hospital of Shenyang Military Region, Shenyang 110016, Liaoning Province, China
| | - Xiaojin Li
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China
| | - Hongchen Liu
- Institute of Stomatology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
31
|
Testai L, Rapposelli S, Martelli A, Breschi M, Calderone V. Mitochondrial Potassium Channels as Pharmacological Target for Cardioprotective Drugs. Med Res Rev 2014; 35:520-53. [DOI: 10.1002/med.21332] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- L. Testai
- Department of Pharmacy; University of Pisa; Pisa Italy
| | - S. Rapposelli
- Department of Pharmacy; University of Pisa; Pisa Italy
| | - A. Martelli
- Department of Pharmacy; University of Pisa; Pisa Italy
| | - M.C. Breschi
- Department of Pharmacy; University of Pisa; Pisa Italy
| | - V. Calderone
- Department of Pharmacy; University of Pisa; Pisa Italy
| |
Collapse
|
32
|
Jayakumar T, Elizebeth AR, Yen TL, Sheu JR. Chinese medicines and bioactive compounds for treatment of stroke. Chin J Integr Med 2014; 21:90-101. [DOI: 10.1007/s11655-014-1782-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Indexed: 12/29/2022]
|
33
|
Maji AK, Pandit S, Banerji P, Banerjee D. Pueraria tuberosa: a review on its phytochemical and therapeutic potential. Nat Prod Res 2014; 28:2111-27. [PMID: 24980468 DOI: 10.1080/14786419.2014.928291] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Amal K. Maji
- Department of Botany and Forestry, Vidyasagar University, Midnapore 721102, India
| | - Subrata Pandit
- Ulysses Research Foundation, 125, Rash Behari Avenue, Kolkata 700029, India
| | - Pratim Banerji
- Ulysses Research Foundation, 125, Rash Behari Avenue, Kolkata 700029, India
| | - Debdulal Banerjee
- Department of Botany and Forestry, Vidyasagar University, Midnapore 721102, India
| |
Collapse
|
34
|
Liang YH, Shen YQ, Guo W, Zhu YZ. SPRC protects hypoxia and re-oxygenation injury by improving rat cardiac contractile function and intracellular calcium handling. Nitric Oxide 2014; 41:113-9. [PMID: 24887754 DOI: 10.1016/j.niox.2014.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 05/13/2014] [Accepted: 05/22/2014] [Indexed: 11/29/2022]
Abstract
S-Propargyl-L-cysteine (SPRC, also named as ZYZ-802) is a new compound synthesized in our lab. We investigated whether SPRC has exerted protective effects against cardiac hypoxia/re-oxygenation (H/R) and also explored its mechanisms. In our study, isolated ventricular myocytes were subject to a simulated hypoxia solution for 30 min to induce cell injury. Intracellular concentration of Ca(2+) ([Ca(2+)]i) was measured using specific dyes and detected by digital imaging apparatus. Apoptotic cells were evaluated by TUNEL assay. Intervention with SPRC (10 μM) 30 min before hypoxia, can significantly attenuate the apoptosis of isolated papillary muscles resulting from the H/R injury and protect morphology of the muscles. In isolated ventricular myocytes, SPRC considerably improved left ventricular functional recovery. SPRC also suppressed the increase of ([Ca(2+)]i) during hypoxia stage. By measuring the calcium transient of the cell we concluded that SPRC can preserve the RyR and SERCA activities and improve Ca(2+) handling during the H/R. Furthermore, the protective effect of SPRC can be partly blocked by CSE inhibitor PAG.
Collapse
Affiliation(s)
- Yong-Hua Liang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ya-Qi Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Guo
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Yi-Zhun Zhu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China; Department of Pharmacology, Yong Loo Lin School of Medicine, Clinical Research Centre, National University of Singapore, Singapore.
| |
Collapse
|
35
|
Puerarin alleviates aggravated sympathoexcitatory response induced by myocardial ischemia via regulating P2X3 receptor in rat superior cervical ganglia. Neurochem Int 2014; 70:39-49. [DOI: 10.1016/j.neuint.2014.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 02/28/2014] [Accepted: 03/11/2014] [Indexed: 12/19/2022]
|
36
|
Liu G, Li Z, Wang J, Wang H, Wang Z, Wang L. Puerarin protects against lead-induced cytotoxicity in cultured primary rat proximal tubular cells. Hum Exp Toxicol 2014; 33:1071-80. [PMID: 24505050 DOI: 10.1177/0960327114521048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Puerarin, a potent free radicals scavenger, has been demonstrated to have protective efficacy in oxidative damage induced by nephrotoxins. In the present study, the attenuating effect of puerarin (PU) on lead (Pb)-induced apoptosis and oxidative stress was investigated in cultured primary rat proximal tubular (rPT) cells. Results showed that exposure to 0.5 µM Pb induced a decrease in cell viability accompanied with obvious cellular morphological alterations and caused an increase in apoptotic rate and apoptotic morphological changes. Simultaneously, depletion of mitochondrial membrane potential (ΔΨ) and intracellular glutathione (GSH); elevation of caspase-3 activity, intracellular reactive oxygen species, and malondialdehyde levels; and inhibition of GSH peroxidase (GSH-Px) activity were revealed in the cells exposed to Pb alone. However, simultaneous supplementation with PU (50 and 100 µM) protected rPT cells from Pb-induced cytotoxicity through inhibiting apoptosis, attenuating lipid peroxidation, renewing mitochondrial function, and elevating the intracellular antioxidants (nonenzymatic and enzymic) levels. In conclusion, these findings suggested that PU, as a widely distributed dietary antioxidant, contributes potentially to inhibition of Pb-induced cytotoxicity in rPT cells.
Collapse
Affiliation(s)
- Gang Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Zifa Li
- Laboratory Animal Center, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Jinqiu Wang
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College of Agriculture, Beijing, People's Republic of China
| | - Hong Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Zhenyong Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, People's Republic of China
| |
Collapse
|
37
|
Changshui X, Bo FSY, Shuangmei L, Huangui X, Yun GGL, Hong X, Xiaoli T, Qicheng Z, Chaoran Z, Bing W, Lichao P, Miaomiao S, Qin W, Shangdong L. Puerarin inhibits acute nociceptive responses via the P2X3 receptor in rat dorsal root ganglia. ACTA ACUST UNITED AC 2014. [DOI: 10.5897/ajpp2013.3977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
38
|
Zhou YX, Zhang H, Peng C. Puerarin: a review of pharmacological effects. Phytother Res 2013; 28:961-75. [PMID: 24339367 DOI: 10.1002/ptr.5083] [Citation(s) in RCA: 467] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/18/2013] [Accepted: 11/03/2013] [Indexed: 12/27/2022]
Abstract
Puerarin is the major bioactive ingredient isolated from the root of the Pueraria lobata (Willd.) Ohwi, which is well known as Gegen (Chinese name) in traditional Chinese medicine. As the most abundant secondary metabolite, puerarin was isolated from Gegen in the late 1950s. Since then, its pharmacological properties have been extensively investigated. It is available in common foods and is used in alternative medicine. It has been widely used in the treatment of cardiovascular and cerebrovascular diseases, diabetes and diabetic complications, osteonecrosis, Parkinson's disease, Alzheimer's disease, endometriosis, and cancer. The beneficial effects of puerarin on the various medicinal purposes may be due to its wide spectrum of pharmacological properties such as vasodilation, cardioprotection, neuroprotection, antioxidant, anticancer, antiinflammation, alleviating pain, promoting bone formation, inhibiting alcohol intake, and attenuating insulin resistance. However, the direct molecular mechanisms and targets remain unclear. This review provides a comprehensive summary of the pharmacological effects of puerarin.
Collapse
Affiliation(s)
- Yan-Xi Zhou
- Key Laboratory of Standardization of Chinese Herbal Medicines of Ministry of Education, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, PR China; Department of Medicinal Botany, School of Pharmacy, Second Military Medical University, Shanghai, 200433, PR China
| | | | | |
Collapse
|
39
|
Maji AK, Maity N, Banerji P, Banerjee D. A validated RP-HPLC-UV method for quantitative determination of puerarin in Pueraria tuberosa DC tuber extract. Pharm Methods 2013; 3:79-83. [PMID: 23781483 PMCID: PMC3658094 DOI: 10.4103/2229-4708.103879] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Pueraria tuberosa (Fabaceae) is a well-known medicinal herbs used in Indian traditional medicines. The puerarin is one of the most important bioactive constituent found in the tubers of this plant. Quantitative estimation of bioactive molecules is essential for the purpose of quality control and dose determination of herbal medicines. The study was designed to develop a validated reversed phase high-performance liquid chromatography (RP-HPLC) method for the quantification of puerarin in the tuber extract of P. tuberosa. MATERIALS AND METHODS The RP-HPLC system with Luna C18 (2) 100 Å, 250 × 4.6 mm column was used in this study. The analysis was performed using the mobile phase: 0.1% acetic acid in acetonitrile and 0.1% acetic acid in water (90:10, v/v) under column temperature 25°C. The detection wavelength was set at 254 nm with a flow rate of 1 ml/min. The method validation was performed according to the guidelines of International Conference on Harmonization. RESULTS The puerarin content of P. tuberosa extract was found to be 9.28 ±0.09%. The calibration curve showed good linearity relationship in the range of 200-1000μg/ml (r (2)>0.99). The LOD and LOQ were 57.12 and 181.26μg/ml, respectively and the average recovery of puerarin was 99.73% ±1.02%. The evaluation of system suitability, precision, robustness and ruggedness parameters were also found to produce satisfactory results. CONCLUSIONS The developed method is very simple and rapid with excellent specificity, accuracy and precision which can be useful for the routine analysis and quantitative estimation of puerarin in plant extracts and formulations.
Collapse
Affiliation(s)
- Amal K Maji
- Department of Botany and Forestry, Vidyasagar University, Midnapore, India
| | | | | | | |
Collapse
|
40
|
Zhang Y, Chen Y, Shan Y, Wang D, Zhu C, Xu Y. Effects of puerarin on cholinergic enzymes in the brain of ovariectomized guinea pigs. Int J Neurosci 2013; 123:783-91. [DOI: 10.3109/00207454.2013.803103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Cui J, Li Z, Qian LB, Gao Q, Wang J, Xue M, Lou XE, Bruce IC, Xia Q, Wang HP. Reducing the oxidative stress mediates the cardioprotection of bicyclol against ischemia-reperfusion injury in rats. J Zhejiang Univ Sci B 2013; 14:487-495. [PMID: 23733425 PMCID: PMC3682164 DOI: 10.1631/jzus.b1200263] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/20/2012] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To investigate the beneficial effect of bicyclol on rat hearts subjected to ischemia-reperfusion (IR) injuries and its possible mechanism. METHODS Male Sprague-Dawley rats were intragastrically administered with bicyclol (25, 50 or 100 mg/(kg∙d)) for 3 d. Myocardial IR was produced by occlusion of the coronary artery for 1 h and reperfusion for 3 h. Left ventricular hemodynamics was continuously monitored. At the end of reperfusion, myocardial infarct was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining, and serum lactate dehydrogenase (LDH) level and myocardial superoxide dismutase (SOD) activity were determined by spectrophotometry. Isolated ventricular myocytes from adult rats were exposed to 60 min anoxia and 30 min reoxygenation to simulate IR injuries. After reperfusion, cell viability was determined with trypan blue; reactive oxygen species (ROS) and mitochondrial membrane potential of the cardiomyocytes were measured with the fluorescent probe. The mitochondrial permeability transition pore (mPTP) opening induced by Ca(2+) (200 μmol/L) was measured with the absorbance at 520 nm in the isolated myocardial mitochondria. RESULTS Low dose of bicyclol (25 mg/(kg∙d)) had no significant improving effect on all cardiac parameters, whereas pretreatment with high bicyclol markedly reduced the myocardial infarct and improved the left ventricular contractility in the myocardium exposed to IR (P<0.05). Medium dose of bicyclol (50 mg/(kg∙d)) markedly improved the myocardial contractility, left ventricular myocyte viability, and SOD activity, as well decreased infarct size, serum LDH level, ROS production, and mitochondrial membrane potential in rat myocardium exposed to IR. The reduction of ventricular myocyte viability in IR group was inhibited by pretreatment with 50 and 100 mg/(kg∙d) bicyclol (P<0.05 vs. IR), but not by 25 mg/(kg∙d) bicyclol. The opening of mPTP evoked by Ca(2+) was significantly inhibited by medium bicyclol. CONCLUSIONS Bicyclol exerts cardioprotection against IR injury, at least, via reducing oxidative stress and its subsequent mPTP opening.
Collapse
Affiliation(s)
- Jie Cui
- Department of Physiology, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Physiology, Xuzhou Medical College, Xuzhou 221004, China
| | - Zhi Li
- Department of Physiology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ling-bo Qian
- Department of Physiology, Zhejiang Medical College, Hangzhou 310053, China
| | - Qin Gao
- Department of Physiology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jue Wang
- Department of Physiology, Zhejiang Medical College, Hangzhou 310053, China
| | - Meng Xue
- Department of Physiology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xiao-e Lou
- Department of Physiology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Iain C. Bruce
- Department of Physiology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qiang Xia
- Department of Physiology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Hui-ping Wang
- Department of Physiology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
42
|
Zhang Z, Lam TN, Zuo Z. RadixPuerariae: An overview of Its Chemistry, Pharmacology, Pharmacokinetics, and Clinical Use. J Clin Pharmacol 2013; 53:787-811. [DOI: 10.1002/jcph.96] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/11/2013] [Indexed: 01/20/2023]
Affiliation(s)
- Zhen Zhang
- School of Pharmacy, Faculty of Medicine; The Chinese University of Hong Kong; Shatin; New Territories; Hong Kong, SAR, P.R.; China
| | - Tai-Ning Lam
- School of Pharmacy, Faculty of Medicine; The Chinese University of Hong Kong; Shatin; New Territories; Hong Kong, SAR, P.R.; China
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine; The Chinese University of Hong Kong; Shatin; New Territories; Hong Kong, SAR, P.R.; China
| |
Collapse
|
43
|
Puerarin-induced immune hemolytic anemia. Int J Hematol 2013; 98:112-3. [PMID: 23661032 DOI: 10.1007/s12185-013-1357-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 04/30/2013] [Accepted: 05/01/2013] [Indexed: 10/26/2022]
Abstract
Drug-induced immune hemolytic anemia (DIIHA) is a relatively uncommon condition characterized by a sudden drop in hemoglobin, putatively following exposure to drugs. Severe forms of hemolysis characterized by rapidly falling hemoglobin levels and hemoglobinuria are extremely rare. Here we report the case of a patient who exhibited severe DIIHA due to puerarin. Direct antiglobulin testing and drug-dependent antibody testing indicated that the antibodies were drug-dependent and reacted only with RBCs in the presence of the drug. Puerarin is the major isoflavonoid derived from the Chinese medical herb Radix puerariae, and has not yet been widely reported as associated with DIIHA. These results suggest that puerarin may be a cause of severe hemolysis and should be used with caution.
Collapse
|
44
|
Wang L, Lin S, Li Z, Yang D, Wang Z. Protective effects of puerarin on experimental chronic lead nephrotoxicity in immature female rats. Hum Exp Toxicol 2012; 32:172-85. [DOI: 10.1177/0960327112462729] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, People’s Republic of China
| | - Shuqian Lin
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, People’s Republic of China
| | - Zifa Li
- Laboratory Animal Center of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Dubao Yang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, People’s Republic of China
| | - Zhenyong Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, People’s Republic of China
| |
Collapse
|
45
|
Zhang J, Li X, Gao Y, Guo G, Xu C, Li G, Liu S, Huang A, Tu G, Peng H, Qiu S, Fan B, Zhu Q, Yu S, Zheng C, Liang S. Effects of puerarin on the inflammatory role of burn-related procedural pain mediated by P2X(7) receptors. Burns 2012; 39:610-8. [PMID: 23044342 DOI: 10.1016/j.burns.2012.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 08/12/2012] [Accepted: 08/14/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND Burn injury can induce an inflammatory response in the blood and wound of patients. Procedural activities in burn patients are particularly problematic in burn care due to their high intensity and frequency; hence, procedural pain evoked by burn dressing changes is a common severe issue. Previous studies demonstrated that purinergic signalling is one of the major pathways involved in the initiation, progression and down-regulation of the inflammatory response. Adenosine 5'-triphosphate (ATP) contributes to inflammation, and increased extracellular ATP levels amplify inflammation in vivo via the P2X7 receptor. In the present study, the effect of puerarin, an active ingredient extracted from Chinese herbal medicine Ge Gen, on pain relief of burn patients during dressing change and the mechanism related to the regulation of the purinergic signalling pathway were investigated. METHODS Burn patients were randomly divided into the normal saline group (NS-treated burn patients) and the puerarin-treated group (PUE-treated burn patients), and healthy volunteers were recruited as a control group. The visual Analogue Scale (VAS) scores, heart rate (HR) and respiratory rate (RR) of NS- and PUE-treated burn patients were observed. In addition, interleukin (IL)-1 and IL-4 levels in blood samples, as well as expression of P2X7 receptor messenger RNA (mRNA) and protein in peripheral blood mononuclear cells (PBMCs) were determined. RESULTS The IL-1 levels in the PUE-treated burn patients at post-dressing changes were significantly decreased in comparison with those in NS-treated burn patients; in contrast, the IL-4 levels in PUE-treated burn patients were increased. The expression levels of P2X7 protein and mRNA in PBMCs of PUE-treated burn patients were significantly decreased in comparison with those in NS-treated burn patients. CONCLUSIONS The inflammation and associated pain involved in dressing changes of burn patients were relieved by puerarin treatment. The effects were correlated with the decreased expression level of P2X7 receptor mRNA and protein in PBMCs of burn patients.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hu F, Koon CM, Chan JYW, Lau KM, Kwan YW, Fung KP. Involvements of calcium channel and potassium channel in Danshen and Gegen decoction induced vasodilation in porcine coronary LAD artery. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:1051-1058. [PMID: 22889578 DOI: 10.1016/j.phymed.2012.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/24/2012] [Accepted: 07/10/2012] [Indexed: 06/01/2023]
Abstract
Danshen (Salviae Miltiorrhizae Radix) and Gegen (Puerariae Lobatae Radix) have been widely used in treating cardiovascular diseases for thousands of years in China. The present study was carried out to evaluate the effects of a Danshen and Gegen decoction (DG) on the vascular reactivity of a porcine isolated coronary artery and the underlying mechanisms involved. Porcine coronary rings were precontracted with 15 nM U46619. The involvement of endothelium-dependent mechanisms was explored by removing the endothelium; the involvement of potassium channels was investigated by the pretreatment of the artery rings with various blockers, and the involvement of the calcium channels was investigated by incubating the artery rings with Ca²⁺-free buffer and priming them with high [K⁺] prior to adding CaCl₂ to elicit contraction. The involvement of Ca²⁺ sensitization was explored by evaluating the Rho-activity expression. The results revealed that DG elicited a concentration-dependent relaxation on a U46619-precontracted coronary artery ring. These relaxation responses were not altered by the pretreatment of inhibitors of endothelium-related dilator synthases, cGMP and cAMP pathway inhibitors, potassium channel (BK(Ca), SK(Ca), K(V) and K(ATP)) blockers and endothelium removal. The K(IR) channel blocker BaCl₂ only slightly attenuated the DG-induced relaxation. However, the Ca²⁺-induced artery contraction was inhibited by DG. Additionally, the expression of the phosphorylated myosin light chain was inhibited by DG whereas the activity of RhoA was not affected. Therefore, DG could be a useful cardioprotective agent for vasodilation in patients who have hypertension.
Collapse
Affiliation(s)
- Fan Hu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | | | | | | | | | | |
Collapse
|
47
|
Verma SK, Jain V, Singh DP. Effect of Pueraria tuberosa DC. (Indian Kudzu) on blood pressure, fibrinolysis and oxidative stress in patients with stage 1 hypertension. Pak J Biol Sci 2012; 15:742-747. [PMID: 24171260 DOI: 10.3923/pjbs.2012.742.747] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The Indian Kudzu (Pueraria tuberosa DC.) is an important medicinal plant widely used in Indian and Chinese traditional systems of medicine. The present study is an attempt to evaluate effect of its tubers on blood pressure, coagulation parameters and antioxidant status in patients with stage 1 (primary) hypertension. In a long-term, single blinded, placebo controlled study; 15 patients with stage 1 hypertension (group 1), were administered 3 g P. tuberosa in two divided doses while another 15 patients (group II) were administered matched placebo for a period of twelve weeks. A significant fall of 25, 11 and 16 mmHg was observed in systolic (p < 0.001), diastolic (p < 0.05) and mean (p < 0.001) blood pressure, respectively at the end of the study. Along with blood pressure reduction, there was a significant (p < 0.01) reduction in plasma fibrinogen and significant enhancement of plasma fibrinolytic activity (p < 0.001) and serum total antioxidant status (p < 0.05). It was tolerated well without any untoward side effects.
Collapse
Affiliation(s)
- S K Verma
- Indigenous Drug Research Center, Department of Medicine, RNT Medical College, Udaipur-313001, Rajasthan, India
| | | | | |
Collapse
|
48
|
Deng Y, Ng ESK, Yeung JHK, Kwan YW, Lau CBS, Koon JCM, Zhou L, Zuo Z, Leung PC, Fung KP, Lam FFY. Mechanisms of the cerebral vasodilator actions of isoflavonoids of Gegen on rat isolated basilar artery. JOURNAL OF ETHNOPHARMACOLOGY 2012; 139:294-304. [PMID: 22120017 DOI: 10.1016/j.jep.2011.11.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/12/2011] [Accepted: 11/12/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gegen (root of Pueraria lobata) is used in traditional Chinese medicine for treatment of cardiovascular diseases. In this study, the relaxant actions of three of its isoflavonoids; puerarin, daidzein, and daidzin, were investigated on rat-isolated cerebral basilar artery. MATERIALS AND METHODS Rat basilar artery rings were precontracted with 100 nM U46619. Involvement of endothelium-dependent mechanisms was investigated by mechanical removal of the endothelium and inhibitors of nitric oxide synthase (NOS) and cyclooxygenase (COX) enzymes. Adenylyl cyclase- and guanylyl cyclase-dependent pathways were investigated using their respective inhibitors 9-(tetrahydro-2-furanyl)-9H-purine-6-amine (SQ22536) and 1H-[1,2,4]oxadiazolo [4,3-[alpha]]-quinoxalin-1-one (ODQ). K(+) channels were investigated by pretreatment of the artery rings with various K(+) channel inhibitors, and Ca(2+) channels were investigated in artery rings incubated with Ca(2+)-free buffer and primed with 100 nM U46619 for 5 min prior to adding CaCl(2) to elicit contraction. RESULTS Puerarin, daidzein, and daidzin produced concentration-dependent relaxation of the artery rings with concentration that produced 50% inhibition (IC(50)) of 304 ± 49 μM, 20 ± 7 μM, and 140 ± 21 μM, respectively. Removal of the endothelium produced no change on their vasorelaxant responses except the maximum response (I(max)) to puerarin was inhibited by 28%. The NOS inhibitor N(G)-nitro-l-arginine methyl ester (L-NAME; 100 μM) also produced 45% inhibition on the puerarin-induced vasorelaxant response, but not the COX inhibitor flurbiprofen (10 μM). SQ22536 (100 μM) and ODQ (100μM) did not affect the vasodilator responses to puerarin, daidzein and daidzin, but glibenclamide (1μM), tetraethylammonium (TEA, 100mM) or a combination of K(+) channel inhibitors (100nM iberiotoxin+1mM 4-aminopyridine+100 μM barium chloride+1 μM glibenclamide+100mM TEA) reduced their I(max). The contractile response to CaCl(2) was attenuated by 61% and 34% in the presence of daidzein and daidzin, respectively, whereas, puerarin did not significantly affect the contraction. CONCLUSIONS The vasorelaxant action of daidzein and daidzin involved opening of K(+) channels and inhibition of Ca(2+) influx in the vascular smooth muscle cells. There is no evidence supporting involvement of endothelium-derived relaxing factors (EDRFs) in their actions. In contrast, puerarin produced vasodilatation via an endothelium-dependent mechanism involving nitric oxide production and an endothelium-independent pathway mediated by the opening of K(+) channels. The cerebral vasodilator activities of all these three isoflavonoids may be beneficial to patients with obstructive cerebrovascular diseases.
Collapse
Affiliation(s)
- Y Deng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Xu C, Xu W, Xu H, Xiong W, Gao Y, Li G, Liu S, Xie J, Tu G, Peng H, Qiu S, Liang S. Role of puerarin in the signalling of neuropathic pain mediated by P2X3 receptor of dorsal root ganglion neurons. Brain Res Bull 2011; 87:37-43. [PMID: 22044944 DOI: 10.1016/j.brainresbull.2011.10.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/16/2011] [Accepted: 10/17/2011] [Indexed: 12/21/2022]
Abstract
Tissue injury or inflammation of the nervous system may result in chronic neuropathic pain characterized by sensitivity to painful stimuli. P2X(3) receptors play a crucial role in facilitating pain transmission. Puerarin is an active compound of a traditional Chinese medicine Ge-gen, and Ge-gen soup has anti-inflammatory effects. The present research investigated the role of puerarin in the signalling of chronic neuropathic pain mediated by P2X(3) receptors of rat dorsal root ganglion neurons. Chronic constriction injury (CCI) rat model was adopted. Sprague-Dawley rats were randomly divided into blank control group (Ctrl), sham group (Sham), puerarin-treated control group (Ctrl+PUE), chronic constriction injury (CCI) group and puerarin-treated CCI group (CCI+PUE). Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured by the von-Frey test and the Hargreaves' test respectively. The stain values of P2X(3) protein and mRNA in L4/L5 dorsal root ganglion (DRG) were detected by immunohistochemistry, western blot and in situ hybridization. At day 4-7 after the operation of CCI rats, MWT and TWL in group CCI and CCI+PUE were lower than those in group Ctrl, Sham and Ctrl+PUE, while there was no difference among group Ctrl, Sham and Ctrl+PUE. At day 7-10 after operation, MWT and TWL in group CCI+PUE was higher than those in group CCI, but there was no significant difference between group CCI+PUE and group Ctrl (p>0.05). At day 14 after operation, the stain values of P2X(3) proteins and mRNAs in L4/L5 DRG of group CCI were higher than those in group Ctrl, Sham, Ctrl+PUE and CCI+PUE, while the stain values of P2X(3) proteins and mRNAs in group CCI+PUE were significantly decreased compared with those in group CCI. Therefore, puerarin may alleviate neuropathic pain mediated by P2X(3) receptors in dorsal root ganglion neurons.
Collapse
Affiliation(s)
- Changshui Xu
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Fu JY, Qian LB, Zhu LG, Liang HT, Tan YN, Lu HT, Lu JF, Wang HP, Xia Q. Betulinic acid ameliorates endothelium-dependent relaxation in L-NAME-induced hypertensive rats by reducing oxidative stress. Eur J Pharm Sci 2011; 44:385-391. [PMID: 21907795 DOI: 10.1016/j.ejps.2011.08.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/27/2011] [Indexed: 02/07/2023]
Abstract
Zizyphi Spinosi semen (ZSS) is one of the most widely used traditional Chinese herbs with protective effects on the cardiovascular system. It is not clear whether betulinic acid (BA), the key active constituent of ZSS, has beneficial cardiovascular effects on N(ω)-nitro-L-arginine methyl ester hydrochloride (L-NAME)-induced hypertensive rats. The objective of this study was to investigate the effect of BA on endothelium-dependent vasorelaxation in isolated aortic rings from L-NAME-induced hypertensive rats and its underlying mechanisms. Male Sprague-Dawley rats were injected with L-NAME (15 mg/kg/d, i.p.) for 4 weeks to induce hypertension. After treatment with L-NAME for 2 weeks, rats with mean blood pressure >120 mm Hg measured by tail-cuff method were considered hypertensive and then injected with BA (0.8, 4, 20 mg/kg/d, i.p.) for the last 2 weeks. The effect of BA on the tension of rat thoracic aortic rings was measured in an organ bath system. The levels of nitric oxide (NO), reactive oxygen species (ROS), and the activity of superoxide dismutase (SOD) and nitric oxide synthase (NOS) in aortas were assayed. We found that BA (0.1-100 μM) evoked a concentration-dependent vasorelaxation in endothelium-intact normal rat aortic rings, which was significantly attenuated by pretreatment with L-NAME (100 μM) or methylene blue (MB, 10 μM), but not by indomethacin (10 μM). Pretreatment with EC(50) (1.67 μM) concentration of BA enhanced the acetylcholine (ACh)-induced vasorelaxation, which was also markedly reversed by both L-NAME and MB. The blood pressure in hypertensive rats increased to 135.22±5.38 mm Hg (P<0.01 vs. control group), which was markedly attenuated by high dose of BA. The ACh-induced vasorelaxation in hypertensive rat aortic rings was impaired, which was markedly improved by chronic treatment with BA (20 mg/kg/d) for 2 weeks. The increase of ROS level and the decrease of NO level, SOD and eNOS activities in hypertensive rat aortas were all markedly inhibited by BA. These results indicate that BA decreased blood pressure and improved ACh-induced endothelium-dependent vasorelaxation in L-NAME-induced hypertension rats, which may be mediated by reducing oxidative stress and retaining the bioavailability of NO in the cardiovascular system.
Collapse
Affiliation(s)
- Jia-Yin Fu
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | | | | | | | | | | | | | | | | |
Collapse
|