1
|
Yang L, Liu J, Yin J, Li Y, Liu J, Liu D, Wang Z, DiSanto ME, Zhang W, Zhang X. S100A4 modulates cell proliferation, apoptosis and fibrosis in the hyperplastic prostate. Int J Biochem Cell Biol 2024; 169:106551. [PMID: 38360265 DOI: 10.1016/j.biocel.2024.106551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/30/2023] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Benign prostatic hyperplasia (BPH) is one of the most common diseases in elderly men worldwide that may result in lower urinary tract symptoms (LUTS). At present, the specific pathophysiological mechanism for BPH/LUTS LUTS remains unclear. S100 calcium binding protein A4 (S100A4), a member of the calcium binding protein family, regulates a variety of biological processes including cell proliferation, apoptosis and fibrosis. The aim of the current study was to explore and clarify the possible role of S100A4 in BPH/LUTS. The human prostate stromal cell line (WPMY-1), rat prostate epithelial cells, human prostate tissues and two BPH rat models were employed in this study. The expression and localization of S100A4 were detected by quantitative real time PCR (qRT-PCR), immunofluorescence microscopy, Western blotting and immunohistochemistry analysis. Also, S100A4 knockdown or overexpression cell models were constructed and a BPH rat model was induced with testosterone propionate (T) or phenylephrine (PE). The BPH animals were treated with Niclosamide, a S100A4 transcription inhibitor. Results demonstrated that S100A4 was mainly localized in human prostatic stroma and rat prostatic epithelium, and showed a higher expression in BPH. Knockdown of S100A4 induced cell apoptosis, cell proliferation arrest and a reduction of tissue fibrosis markers. Overexpression of S100A4 reversed the aforementioned changes. We also demonstrated that S100A4 regulated proliferation and apoptosis mainly through the ERK pathway and modulated fibrosis via Wnt/β-catenin signaling. In conclusion, our novel data demonstrate that S100A4 could play a crucial role in BPH development and may be explored as a new therapeutic target of BPH.
Collapse
Affiliation(s)
- Liang Yang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Yin
- Department of Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianmin Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Daoquan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhen Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Michael E DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Weibing Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Cho SH, Jeong H, Park S, Shin HT, Lee HM, Kim KN. Anti-inflammatory activity of Echinosophora koreensis nakai root extract in lipopolysaccharides-stimulated RAW 264.7 cells and carrageenan-induced mouse paw edema model. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115940. [PMID: 36384207 DOI: 10.1016/j.jep.2022.115940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Echinosophora koreensis Nakai is an endemic plant species distributed in a limited area within the Korean province of Gangwon, including the Yanggu-gun, Inje-gun, Cheorwon-gun, Chuncheon-si, and Hongcheon-gun counties. It is used in traditional medicine to treat various disorders, such as fever, skin diseases, diuresis, and neuralgia. MATERIALS AND METHODS This study demonstrated the effects of E. koreensis Nakai root extract (EKRE) on lipopolysaccharide (LPS)-induced inflammatory responses in vitro and in vivo. Cell viability was assessed through a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Nitric oxide (NO) production was measured using Griess reagent. Interleukin (IL)-6 and tumor necrosis factor (TNF) levels were assessed using enzyme-linked immunosorbent assays. Inducible nitric oxide synthase (iNOS), nuclear factor kappa-B (NF-κB), and mitogen-activated protein kinase (MAPK) expression were assessed using Western blot analysis. To examine the effects of EKRE in vivo, it was administered orally at doses of 50 or 200 mg/kg for 3 days in mice. Edema in the paws was induced through λ-carrageenan injection and measured hourly for up to 5 h using calipers. RESULTS EKRE markedly suppressed LPS-generated NO, IL-6, and iNOS production in RAW 264.7 cells. Moreover, it suppressed the activation of the NF-κB and MAPK in LPS-stimulated cells. Furthermore, EKRE significantly inhibited carrageenan-induced edema in mouse paws. There were no significant differences in IL-6 and TNF production in paw tissue harvested from mice, but levels decreased at high EKRE concentrations (200 mg/kg). CONCLUSION The results of this study provided validation for EKRE-induced inhibition of inflammatory responses in vitro and in vivo. This research suggested that EKRE is a promising treatment for inflammatory disorders.
Collapse
Affiliation(s)
- Su-Hyeon Cho
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon, 24341, Republic of Korea
| | - Hoibin Jeong
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon, 24341, Republic of Korea; Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - SeonJu Park
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon, 24341, Republic of Korea
| | - Hyun-Tak Shin
- Korea National Arboretum, Korea Forest Service, Pocheon, 11186, Republic of Korea
| | - Hyung-Min Lee
- Department of Forest Ecology, Yanggu County, Yanggu, 24522, Republic of Korea
| | - Kil-Nam Kim
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon, 24341, Republic of Korea; Department of Bio-analysis Science, University of Science & Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
3
|
Wei D, Mao Y, Wang H, Qu S, Chen J, Li J, Jiang B, Chen H. A mild phenoxysilyl linker for self-immolative release of antibody-drug conjugates. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Liu M, Dai Y, Song C, Wang J, Liu Y, Wang Q. Structural Characterization of a Pleurotus sajor-caju Polysaccharide and Its Neuroprotection Related to the Inhibition of Oxidative Stress. Nutrients 2022; 14:nu14194047. [PMID: 36235700 PMCID: PMC9573675 DOI: 10.3390/nu14194047] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/24/2022] Open
Abstract
A novel polysaccharide PSP2-1 was isolated and purified from Pleurotus sajor-caju. The structural characterization data displayed that the molecular weight of PSP2-1 was 44.9 kDa, and PSP2-1 consisted of fucose, galactose, glucose, and mannose. The methylation results showed that the glycosidic bonds of PSP2-1 included T-Fuc, 1,6-Gal, T-Glc, 1,6-Glc, 1,3,6-Glc, 1,3-Man, 1,2,6-Man, and T-Man. Neuroprotective studies indicated that PSP2-1 significantly improved the cell viability of the H2O2-induced oxidatively damaged neuronal cell HT22, reduced the release of LDH, inhibited apoptosis and release of cytochrome c, and alleviated the decline of mitochondrial membrane potential and ROS accumulation. Furthermore, PSP2-1 decreased the phosphorylation levels of cleaved PARP and cleaved caspase-3, and increased the ratio of bcl-2/bax. Additionally, PSP2-1 could inhibit the phosphorylation of MAPK family members including JNK, p38, and Erk. Finally, animal experiments showed that PSP2-1 could improve the oxidative stress injury and the learning and memory ability of mice with aging induced by D-galactose. Our results confirmed that PSP2-1 significantly ameliorated the oxidative stress injury, inhibited the apoptosis in H2O2-induced neuronal cells via MAPK pathway, and also improved cognition in mice with aging induced by D-galactose. Our research gives the foundation for the functional food application of P. sajor-caju polysaccharides in the future.
Collapse
Affiliation(s)
- Mengdi Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Yingdi Dai
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Chengming Song
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Jia Wang
- Guang’anmen Hospital China Academy of Chinese Medical Sciences Respiratory Department, Beijing 100053, China
| | - Yang Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (Y.L.); (Q.W.); Tel./Fax: +86-431-84532989 (Y.L.); +86-431-84533269 (Q.W.)
| | - Qi Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (Y.L.); (Q.W.); Tel./Fax: +86-431-84532989 (Y.L.); +86-431-84533269 (Q.W.)
| |
Collapse
|
5
|
Aghamohammadi M, Zolghadr L, Nezhad NS, Ahmadpour Yazdi H, Esfahani AJ, Gheibi N. Investigating the effects of quercetin fatty acid esters on apoptosis, mechanical properties, and expression of ERK in melanoma cell line (A375). Life Sci 2022; 310:121007. [PMID: 36181863 DOI: 10.1016/j.lfs.2022.121007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/19/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022]
Abstract
AIMS Malignant melanoma (MM) is the most fatal skin cancer with a critical increase in the number of cases in the last decades. Recent studies have shown the antitumor potential of active biological phytochemical structures of flavonoids for the prevention and treatment of cancerous cells. In this study, two quercetin fatty acid esters (α-linolenic acid (ALA) and linoleic acid (LA)) compounds were evaluated in terms of inducing apoptotic human melanoma cells (A375) death in vitro. MAIN METHODS The MTT assay was utilized for comparing the effects of quercetin, ALA, and LA on A375 cell viability concentrations of 5, 25, 35, 50, and 100μg/mL for 24 and 48 h to obtain IC50. To detect the effects on apoptosis and to determine p-ERK/ERK apoptosis-related signaling pathway proteins level, flow-cytometry and western blot were used. Finally, the nano-mechanical properties of the melanoma A375 membrane structure containing elastic modulus value and cell-cell adhesion forces were investigated using Atomic Force Microscopy (AFM). Statistical data was analyzed in GraphPad v.8.0.0. KEY FINDINGS The most significant A375 cell viability amplified effect of Q-LA was observed with a half-maximal inhibitory concentration (IC50 = 35 μg/ml, 48 h), proportional to dose. Ester compounds, especially Q-LA, showed the highest cell proliferation inhibition with improved elastic modulus, cell-cell adhesion forces (253 ± 11.2), and elevated apoptosis-inducing effect (p < 0.01**). Moreover, Q-LA significantly decreased the mean levels of p-ERK phosphorylation (0.1439) and, subsequently, apoptosis in A375 cells. SIGNIFICANCE The data presented in this study confirmed the antitumor activity of ester compounds against A375 cells, high-lighting the ability of the tested compounds to induce apoptosis.
Collapse
Affiliation(s)
| | - Leila Zolghadr
- Department of Chemistry, Imam Khomeini International University, Qazvin, Iran
| | | | - Hossein Ahmadpour Yazdi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Azam Janati Esfahani
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
6
|
Bathini M, Raghushaker CR, Mahato KK. The Molecular Mechanisms of Action of Photobiomodulation Against Neurodegenerative Diseases: A Systematic Review. Cell Mol Neurobiol 2022. [PMID: 33301129 DOI: 10.1007/s10571-020-01016-9,33301129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Neurodegenerative diseases might be slow but relentless, as we continue to fail in treating or delaying their progression. Given the complexity in the pathogenesis of these diseases, a broad-acting approach like photobiomodulation can prove promising. Photobiomodulation (PBM) uses red and infrared light for therapeutic benefits, working by stimulating growth and proliferation. The implications of photobiomodulation have been studied in several neurodegenerative disease models. It has been shown to improve cell survival, decrease apoptosis, alleviate oxidative stress, suppress inflammation, and rescue mitochondrial function. In in vivo models, it has reportedly preserved motor and cognitive skills. Beyond mitochondrial stimulation, the molecular mechanisms by which photobiomodulation protects against neurodegeneration have not been very well studied. This review has systematically been undertaken to study the effects of photobiomodulation at a molecular level and identify the different biochemical pathways and molecular changes in the process. The data showed the involvement of pathways like extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase (MAPK), and protein kinase B (Akt). In addition, the expression of several genes and proteins playing different roles in the disease mechanisms was found to be influenced by PBM, such as neurotrophic factors and secretases. Studying the literature indicated that PBM can be translated to a potential therapeutic tool, acting through a spectrum of mechanisms that work together to decelerate disease progression in the organism, which is difficult to achieve through pharmacological interventions.
Collapse
Affiliation(s)
- Mayukha Bathini
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Chandavalli Ramappa Raghushaker
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
7
|
Bathini M, Raghushaker CR, Mahato KK. The Molecular Mechanisms of Action of Photobiomodulation Against Neurodegenerative Diseases: A Systematic Review. Cell Mol Neurobiol 2022; 42:955-971. [PMID: 33301129 PMCID: PMC8942959 DOI: 10.1007/s10571-020-01016-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/18/2020] [Indexed: 01/08/2023]
Abstract
Neurodegenerative diseases might be slow but relentless, as we continue to fail in treating or delaying their progression. Given the complexity in the pathogenesis of these diseases, a broad-acting approach like photobiomodulation can prove promising. Photobiomodulation (PBM) uses red and infrared light for therapeutic benefits, working by stimulating growth and proliferation. The implications of photobiomodulation have been studied in several neurodegenerative disease models. It has been shown to improve cell survival, decrease apoptosis, alleviate oxidative stress, suppress inflammation, and rescue mitochondrial function. In in vivo models, it has reportedly preserved motor and cognitive skills. Beyond mitochondrial stimulation, the molecular mechanisms by which photobiomodulation protects against neurodegeneration have not been very well studied. This review has systematically been undertaken to study the effects of photobiomodulation at a molecular level and identify the different biochemical pathways and molecular changes in the process. The data showed the involvement of pathways like extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase (MAPK), and protein kinase B (Akt). In addition, the expression of several genes and proteins playing different roles in the disease mechanisms was found to be influenced by PBM, such as neurotrophic factors and secretases. Studying the literature indicated that PBM can be translated to a potential therapeutic tool, acting through a spectrum of mechanisms that work together to decelerate disease progression in the organism, which is difficult to achieve through pharmacological interventions.
Collapse
Affiliation(s)
- Mayukha Bathini
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Chandavalli Ramappa Raghushaker
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
8
|
Ding Y, Ouyang Z, Zhang C, Zhu Y, Xu Q, Sun H, Qu J, Sun Y. Tyrosine phosphatase SHP2 exacerbates psoriasis-like skin inflammation in mice via ERK5-dependent NETosis. MedComm (Beijing) 2022; 3:e120. [PMID: 35281792 PMCID: PMC8906448 DOI: 10.1002/mco2.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease, often accompanied by increased infiltration of immune cells, especially neutrophils. However, the detailed mechanism of the neutrophil function in psoriasis progression remains unclear. Here, we found that both Src homology-2 domain-containing protein tyrosine phosphatase-2 (SHP2) and neutrophils were highly correlated to developing psoriasis by single-cell ribonucleic acid (RNA) sequencing and experiment verification. The deficiency of SHP2 in neutrophils significantly alleviated psoriasis-like phenotype in an imiquimod-induced murine model. Interestingly, high levels of neutrophil extracellular traps (NETs) were produced in the inflamed lesions of psoriatic patients. In addition, imiquimod-induced psoriasis-like symptoms were remarkably ameliorated in peptidyl arginine deiminase 4 (PAD4) knockout mice, which cannot form NETs. Mechanistically, RNA-seq analysis revealed that SHP2 promoted the formation of NETs in neutrophils via the ERK5 pathway. Functionally, this mechanism resulted in the infiltration of pro-inflammatory cytokines such as TNF-α, IL-1β, IL-6, IL-17A, and CXCL-15, which enhances the inflammatory response in skin lesions and reinforces the cross-talk between neutrophils and keratinocytes, ultimately aggravating psoriasis. Our findings uncover a role for SHP2 in NET release and subsequent cell death known as NETosis in the progression of psoriasis and suggest that SHP2 may be a promising therapeutic target for psoriasis.
Collapse
Affiliation(s)
- Yan Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life SciencesNanjing UniversityNanjingChina
| | - Zijun Ouyang
- Institute of Marine Biomedicine, School of Food and DrugShenzhen PolytechnicShenzhenGuangdongChina
| | - Chenyang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life SciencesNanjing UniversityNanjingChina
| | - Yuyu Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life SciencesNanjing UniversityNanjingChina
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life SciencesNanjing UniversityNanjingChina
| | - Haiyan Sun
- Institute of Marine Biomedicine, School of Food and DrugShenzhen PolytechnicShenzhenGuangdongChina
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life SciencesNanjing UniversityNanjingChina
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life SciencesNanjing UniversityNanjingChina
- Chemistry and Biomedicine Innovation Center (ChemBIC)Nanjing UniversityNanjingChina
| |
Collapse
|
9
|
Wang Y, Shang K, Zhang N, Zhao J, Cao B. Tumor-Associated Macrophage-Derived Exosomes Promote the Progression of Gastric Cancer by Regulating the P38MAPK Signaling Pathway and the Immune Checkpoint PD-L1. Cancer Biother Radiopharm 2021. [PMID: 34698510 DOI: 10.1089/cbr.2021.0218] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Objective: To investigate the effects of M2 macrophage-derived exosomes (M2-Exos) on proliferation, migration, and apoptosis of gastric cancer cells in the tumor microenvironment and to further explore their possible molecular mechanism. Materials and Methods: M2 macrophages were induced from THP-1 cells and identified by qRT-PCR. Exosomes were extracted by ultracentrifugation and identified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot analysis. Fluorescence labeling was used to detect the internalization of exosomes in receptors. The proliferation, migration, and invasion of AGS and HGC27 cells were determined by EdU and MTS, wound healing and Transwell assay, and flow cytometry, respectively. Proteins in the related pathway of M2-Exos affecting the progression of gastric cancer were detected by Western blot analysis. Results: In this study, M2 macrophages and M2-Exos were successfully obtained. The purified M2-Exos were observed as small round vesicles with diameters of 50-90 nm and positive expression of CD63, CD9, and TSG101. Besides, M2-Exos can be effectively taken up and internalized by AGS and HGC27 cells. Cell behavior studies showed that M2-Exos promoted proliferation and migration and inhibited the apoptosis of AGS and HGC27. Further research illustrated that M2-Exos promoted the phosphorylation of P38 and high expression of programmed death ligand 1 (PD-L1). Conclusions: This study demonstrated that M2-Exos promoted proliferation and migration and inhibited the apoptosis of gastric cancer cells. Mechanically, M2-Exos may promote gastric cancer progression through the P38MAPK signaling pathway and achieve immune escape through elevating the expression of PD-L1.
Collapse
Affiliation(s)
- Yusheng Wang
- Cancer Center, Capital Medical University-Affiliated Beijing Friendship Hospital, Beijing, People's Republic of China
| | - Kun Shang
- Cancer Center, Capital Medical University-Affiliated Beijing Friendship Hospital, Beijing, People's Republic of China
| | - Ninggang Zhang
- Department of Gastrointestinal Oncology, Shanxi Provincial Cancer Hospital, Affiliated to Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jian Zhao
- Department of Gastrointestinal Oncology, Shanxi Provincial Cancer Hospital, Affiliated to Shanxi Medical University, Taiyuan, People's Republic of China
| | - Bangwei Cao
- Cancer Center, Capital Medical University-Affiliated Beijing Friendship Hospital, Beijing, People's Republic of China
| |
Collapse
|
10
|
Yuan P, Fu C, Yang Y, Adila A, Zhou F, Wei X, Wang W, Lv J, Li Y, Xia L, Li J. Cistanche tubulosa Phenylethanoid Glycosides Induce Apoptosis of Hepatocellular Carcinoma Cells by Mitochondria-Dependent and MAPK Pathways and Enhance Antitumor Effect through Combination with Cisplatin. Integr Cancer Ther 2021; 20:15347354211013085. [PMID: 33949239 PMCID: PMC8113936 DOI: 10.1177/15347354211013085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cistanche tubulosa is a type of Chinese herbal medicine and
exerts various biological functions. Previous studies have been demonstrated
that Cistanche tubulosa phenylethanoid glycosides (CTPG)
exhibit antitumor effects on a variety of tumor cells. However, the antitumor
effects of CTPG on HepG2 and BEL-7404 hepatocellular carcinoma (HCC) cells are
still elusive. Our study showed that CTPG significantly inhibited the growth of
HepG2 and BEL-7404 cells through the induction of cell cycle arrest and
apoptosis, which was associated with the activation of MAPK pathways
characterized by the up-regulated phosphorylation of p38, JNK, and ERK1/2 and
mitochondria-dependent pathway characterized by the reduction of mitochondrial
membrane potential. The release of cytochrome c and the
cleavage of caspase-3, -7, -9, and PARP were subsequently increased by CTPG
treatment. Moreover, CTPG significantly suppressed the migration of HepG2
through reducing the levels of matrix metalloproteinase-2 and vascular
endothelial growth factor. Interestingly, CTPG not only enhanced the
proliferation of splenocytes but also reduced the apoptosis of splenocytes
induced by cisplatin. In H22 tumor mouse model, CTPG combined with cisplatin
further inhibited the growth of H22 cells and reduced the side effects of
cisplatin. Taken together, CTPG inhibited the growth of HCC through direct
antitumor effect and indirect immunoenhancement effect, and improved the
antitumor efficacy of cisplatin.
Collapse
Affiliation(s)
| | | | - Yi Yang
- Xinjiang University, Urumqi, Xinjiang, China
| | | | | | | | - Weilan Wang
- Xinjiang University, Urumqi, Xinjiang, China
| | - Jie Lv
- Xinjiang University, Urumqi, Xinjiang, China
| | - Yijie Li
- Xinjiang University, Urumqi, Xinjiang, China
| | - Lijie Xia
- Xinjiang University, Urumqi, Xinjiang, China
| | - Jinyao Li
- Xinjiang University, Urumqi, Xinjiang, China
| |
Collapse
|
11
|
Kim SH, Choo GS, Yoo ES, Woo JS, Lee JH, Han SH, Jung SH, Kim HJ, Jung JY. Silymarin inhibits proliferation of human breast cancer cells via regulation of the MAPK signaling pathway and induction of apoptosis. Oncol Lett 2021; 21:492. [PMID: 33968208 PMCID: PMC8100955 DOI: 10.3892/ol.2021.12753] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/16/2021] [Indexed: 12/30/2022] Open
Abstract
Silymarin is a purified mixture of four isomeric flavonoids extracted from the seeds and fruit of the milk thistle plant, Silybum marianus (L.). Silymarin exhibits a wide variety of biological effects and is commonly used in traditional medicine. Therefore, the anticancer effects of silymarin on human breast cancer cells were investigated to determine its pharmacological mechanisms in vitro and in vivo. The viability and proliferation of MDA-MB- 231 and MCF-7 breast cancer cells were investigated using MTT and wound healing assays. Silymarin decreased the viability and proliferation of MDA-MB-231 and MCF-7 cells in a concentration-dependent manner. The number of apoptotic bodies, as shown by DAPI staining, was increased in a concentration-dependent manner, indicating that silymarin induces apoptosis. Additionally, changes in the expression levels of apoptosis-related proteins were demonstrated in human breast cancer cells using western blotting. Silymarin increased the levels of Bax, cleaved poly-ADP ribose polymerase, cleaved caspase-9 and phosphorylated (p-)JNK, and decreased the levels of Bcl-2, p-P38 and p-ERK1/2. Furthermore, the inhibitory effects of silymarin on MCF-7 tumor growth were investigated. In mice treated with silymarin for 3 weeks (25 and 50 mg/kg), MCF-7 tumor growth was inhibited without organ toxicity. In MCF-7 tumors, silymarin induced apoptosis and decreased p-ERK1/2 levels, as assessed using a TUNEL assay and immunohistochemistry. These results indicated that silymarin inhibited breast cancer cell proliferation both in vitro and in vivo by modulating the MAPK signaling pathway. Therefore, silymarin may potentially be used as a chemo-preventive or therapeutic agent.
Collapse
Affiliation(s)
- Sung-Hyun Kim
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, Chungcheongnam 340-702, Republic of Korea
| | - Gang-Sik Choo
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, Chungcheongnam 340-702, Republic of Korea
| | - Eun-Seon Yoo
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, Chungcheongnam 340-702, Republic of Korea
| | - Joong-Seok Woo
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, Chungcheongnam 340-702, Republic of Korea
| | - Jae-Han Lee
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, Chungcheongnam 340-702, Republic of Korea
| | - So-Hee Han
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, Chungcheongnam 340-702, Republic of Korea
| | - Soo-Hyun Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, Chungcheongnam 340-702, Republic of Korea
| | - Hyeong-Jin Kim
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, Chungcheongnam 340-702, Republic of Korea
| | - Ji-Youn Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, Chungcheongnam 340-702, Republic of Korea
| |
Collapse
|
12
|
Apigenin induces apoptosis by regulating Akt and MAPK pathways in human melanoma cell A375SM. Mol Med Rep 2020; 22:4877-4889. [PMID: 33174048 PMCID: PMC7646940 DOI: 10.3892/mmr.2020.11572] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
Apigenin, an aromatic compound, exhibits antioxidant, anti-inflammatory and anti-viral effects. The present study aimed to investigate the effects of apigenin on cell proliferation and apoptosis of human melanoma cells A375P and A375SM. Therefore, melanoma cells were treated with apigenin to determine its anti-proliferative and survival effects, using wound healing and MTT assays. The results revealed that melanoma cell viability was decreased in a dose-dependent manner. Furthermore, chromatin condensation, indicating apoptosis, was significantly increased in a dose-dependent manner, as demonstrated by DAPI staining. In addition, increased apoptosis rate following treatment with apigenin was confirmed by Annexin V-propidium iodide staining. The changes in the expression levels of apoptosis-related proteins in A375P and A375SM melanoma cells were subsequently detected using western blot analysis. The results demonstrated that the protein expression levels of Bcl-2 were decreased, whereas those of Bax, cleaved poly ADP-ribose polymerase, cleaved caspase-9 and p53 were upregulated in a dose-dependent manner in apigenin-treated cells compared with those noted in untreated cells. In addition, in apigenin-treated A375P cells, phosphorylated (p)-p38 was upregulated and p-extracellular signal-regulated kinase (ERK), p-c-Jun N-terminal kinase (JNK) and p-protein kinase B (Akt) were downregulated. However, in A375SM cells, apigenin treatment increased p-ERK and p-JNK and decreased p-p38 and p-Akt protein expression levels. Subsequently, the inhibitory effect of apigenin on tumor growth was investigated in vivo. Tumor volume was significantly reduced in the 25 and 50 mg/kg apigenin-treated groups compared with the control group. Additionally, a TUNEL assay was performed to detect apoptotic cells. Immunohistochemical staining also revealed elevated p-ERK expression in the apigenin-treated group compared with the control group. Overall, the findings of the present study indicated that apigenin attenuated the growth of A375SM melanoma cells by inducing apoptosis via regulating the Akt and mitogen-activated protein kinase signaling pathways.
Collapse
|
13
|
Acetyl-11-keto-β-boswellic acid regulates the repair of rat sciatic nerve injury by promoting the proliferation of Schwann cells. Life Sci 2019; 254:116887. [PMID: 31606377 DOI: 10.1016/j.lfs.2019.116887] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
Abstract
AIMS This study aimed to study the effects of acetyl-11-keto-β-boswellic acid (AKBA) on the regeneration of injured peripheral nerves and the ability of the extracellular signal-regulated kinase (ERK) signaling pathway to regulate the proliferation of Schwann cells and the formation of myelin. MAIN METHODS A sciatic nerve crush injury model rats were randomly divided into the model control, low-, medium-, and high-dose AKBA groups. The repair of myelin damage was observed through Luxol Fast Blue staining and the expression of neurofilament-200 (NF200) protein was detected through immunohistochemical tests. The relative expression levels of ERK, Phosphorylated-ERK (p-ERK), c-Jun N-terminal Kinase (JNK), and Phosphorylated-JNK (p-JNK) proteins were detected in vitro in Schwann cells treated with AKBA. The effect of AKBA on P0 and P75 protein expression in Schwann cells was detected through siRNA-mediated ERK gene knockout. KEY FINDINGS AKBA promotes the repair of rat sciatic nerve injury by elevating the phosphorylation of the ERK signaling pathway and by regulating the proliferation and myelination of Schwann cells. SIGNIFICANCE This test can provide data support for AKBA to repair sciatic nerve injury, provide a theoretical basis for further revealing AKBA repair mechanism, and provide reference for clinical development of sciatic nerve injury drugs.
Collapse
|
14
|
Kim SH, Yoo ES, Woo JS, Han SH, Lee JH, Jung SH, Kim HJ, Jung JY. Antitumor and apoptotic effects of quercetin on human melanoma cells involving JNK/P38 MAPK signaling activation. Eur J Pharmacol 2019; 860:172568. [DOI: 10.1016/j.ejphar.2019.172568] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/09/2019] [Accepted: 07/22/2019] [Indexed: 10/26/2022]
|
15
|
The effectiveness of colchicine combined with mitomycin C to prolong bleb function in trabeculectomy in rabbits. PLoS One 2019; 14:e0213811. [PMID: 30889194 PMCID: PMC6424470 DOI: 10.1371/journal.pone.0213811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/28/2019] [Indexed: 11/30/2022] Open
Abstract
Purpose To investigate the potential of colchicine to improve bleb function after trabeculectomy. Methods To find the maximum usable colchicine concentration, an ocular irritation study was performed with the Draize test at concentrations of 0.001%, 0.01% and 0.1%. Additionally, the synergistic effect of topical colchicine instillation and MMC application to surgical site was evaluated in a rabbit model by measuring changes after trabeculectomy in intraocular pressure (IOP) and bleb morphology score at 3, 7, 14, 21, 28, 35, 42, and 49 days. Results Experiments with a rabbit model of trabeculectomy showed that 0.04% MMC plus 0.01% colchicine was more effective than saline and 0.04% MMC alone in maintaining IOP reduction at days 7–49 (P < 0.01 at all time points) and day 49 (P < 0.05), respectively, while 0.04% MMC alone was more effective than saline only at days 7–35 (P < 0.05 at all time points). 0.04% MMC plus 0.01% colchicine and 0.04% MMC alone were more effective than saline at preserving bleb score at days 7–21 and 35–49 (P < 0.05 at all time points) and at days 7–35 (P < 0.05 at all time points), respectively. Conclusion Colchicine may be a promising adjuvant for strengthening the effect of MMC and improving the survival of the filtering bleb in trabeculectomy.
Collapse
|
16
|
Du S, Sarver JG, Trabbic CJ, Erhardt PW, Schroering A, Maltese WA. 6-MOMIPP, a novel brain-penetrant anti-mitotic indolyl-chalcone, inhibits glioblastoma growth and viability. Cancer Chemother Pharmacol 2018; 83:237-254. [PMID: 30426158 DOI: 10.1007/s00280-018-3726-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/03/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE 3-(6-Methoxy-2-methyl-1H-indol-3-yl)-1-(4-pyridinyl)-2-propene-1-one (6-MOMIPP) is a novel indole-based chalcone that disrupts microtubules. The present study aims to define the mechanism through which 6-MOMIPP induces cell death and to evaluate the efficacy of the compound in penetrating the blood-brain barrier and inhibiting growth of glioblastoma xenografts. METHODS The effects of 6-MOMIPP were evaluated in cultured U251 glioblastoma cells, using viability, flow cytometry, and tubulin polymerization assays. Scintillation proximity and tubulin crosslinking methods were used to identify the binding site of 6-MOMIPP on tubulin, and western blots were performed to define the signaling pathways that contribute to cell death. LC/MS assays were used to study the pharmacokinetic behavior of 6-MOMIPP in mice. Subcutaneous and intracerebral xenograft models were utilized to assess the effects of 6-MOMIPP on growth of U251 glioblastoma in vivo. RESULTS The findings indicate that 6-MOMIPP targets the colchicine site on β-tubulin. At concentrations ≥ 250 nm, 6-MOMIPP induces mitotic arrest, caspase activation and loss of cell viability. Cells are protected by caspase inhibitors, pointing to an apoptotic mechanism of cell death. Loss of cell viability is preceded by activation of Cdk1(Cdc2) and phosphorylation of Bcl-2 and Bcl-xL. Inhibition of both events with a Cdk1 inhibitor prevents cell death. 6-MOMIPP has broad activity against the viability of multiple glioblastoma, melanoma and lung carcinoma cell lines. Viability of normal cells, including differentiated neurons, is not significantly affected at a drug concentration (1 µM) that reduces viability in most cancer lines. Pharmacokinetic studies in mice show that concentrations of 6-MOMIPP in the brain mirror those in the plasma, indicating that 6-MOMIPP readily penetrates the blood-brain barrier. Studies with mice bearing human U251 glioblastoma xenografts demonstrate that 6-MOMIPP is effective in suppressing growth of subcutaneous and intracerebral tumors without causing general toxicity. CONCLUSIONS The results indicate that 6-MOMIPP is a novel microtubule disruptor that targets the colchicine binding site on β-tubulin to induce mitotic arrest and cell death. The ability of 6-MOMIPP to penetrate the blood-brain barrier and inhibit growth of glioblastoma xenografts suggests that it warrants further preclinical evaluation as potential small-molecule therapeutic that may have advantages in treating primary and metastatic brain tumors.
Collapse
Affiliation(s)
- Shengnan Du
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Transverse Drive, Toledo, OH, 43614, USA
| | - Jeffrey G Sarver
- Center for Drug Design and Development, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 2810 W. Bancroft Street, Toledo, OH, 43606, USA
| | - Christopher J Trabbic
- Center for Drug Design and Development, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 2810 W. Bancroft Street, Toledo, OH, 43606, USA
| | - Paul W Erhardt
- Center for Drug Design and Development, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 2810 W. Bancroft Street, Toledo, OH, 43606, USA
| | - Allen Schroering
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Transverse Drive, Toledo, OH, 43614, USA
| | - William A Maltese
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Transverse Drive, Toledo, OH, 43614, USA.
| |
Collapse
|
17
|
Zhang L, Yang Z, Granieri L, Pasculescu A, Datti A, Asa SL, Xu Z, Ezzat S. High-throughput drug library screening identifies colchicine as a thyroid cancer inhibitor. Oncotarget 2018; 7:19948-59. [PMID: 26942566 PMCID: PMC4991430 DOI: 10.18632/oncotarget.7890] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/09/2016] [Indexed: 12/12/2022] Open
Abstract
We employed a high-throughput drug library screening platform to identify novel agents affecting thyroid cancer cells. We used human thyroid cancer cell lines to screen a collection of approximately 5200 small molecules with biological and/or pharmacologial properties. Parallel primary screens yielded a number of hits differentially active between thyroid and melanoma cells. Amongst compounds specifically targeting thyroid cancer cells, colchicine emerged as an effective candidate. Colchicine inhibited cell growth which correlated with G2 cell cycle arrest and apoptosis. These effects were hampered through inhibition of MEK1/2 and JNK. In contrast, inhibition of p38-MAPK had little effect, and AKT had no impact on colchicine action. Systemic colchicine inhibited thyroid cancer progression in xenografted mice. These findings demonstrate that our screening platform is an effective vehicle for drug reposition and show that colchicine warrants further attention in well-defined clinical niches such as thyroid cancer.
Collapse
Affiliation(s)
- Le Zhang
- Department of Breast Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, P.R. China.,Ontario Cancer Institute and The Endocrine Oncology Site Group, Princess Margaret Hospital, University Health Network, Toronto, ON, Canada
| | - Zhaoying Yang
- Department of Breast Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, P.R. China.,Ontario Cancer Institute and The Endocrine Oncology Site Group, Princess Margaret Hospital, University Health Network, Toronto, ON, Canada
| | - Letizia Granieri
- SMART Laboratory for High-Throughput Screening Programs, Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, ON, Canada
| | - Adrian Pasculescu
- SMART Laboratory for High-Throughput Screening Programs, Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, ON, Canada
| | - Alessandro Datti
- SMART Laboratory for High-Throughput Screening Programs, Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, ON, Canada.,Department of Agricultural, Food, and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Sylvia L Asa
- Ontario Cancer Institute and The Endocrine Oncology Site Group, Princess Margaret Hospital, University Health Network, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, Toronto, ON, Canada
| | - Zheli Xu
- Department of Breast Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, P.R. China.,Ontario Cancer Institute and The Endocrine Oncology Site Group, Princess Margaret Hospital, University Health Network, Toronto, ON, Canada
| | - Shereen Ezzat
- Ontario Cancer Institute and The Endocrine Oncology Site Group, Princess Margaret Hospital, University Health Network, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Cui G, Li Y, Ding K, Hao S, Wang J, Zhang Z. Attribution of Bax and mitochondrial permeability transition pore on cantharidin-induced apoptosis of Sf9 cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 142:91-101. [PMID: 29107253 DOI: 10.1016/j.pestbp.2017.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 01/11/2017] [Accepted: 01/14/2017] [Indexed: 06/07/2023]
Abstract
To investigate the insecticidal mechanism of cantharidin, a promising biological pesticide substance from blister beetle, on Sf9 cells, a cultured cell line derived from fall armyworm, Spodoptera frugiperda, we preliminary studied the attribution of Bax channel and mitochondrial permeability transition pore on cantharidin-induced mitochondrial apoptosis signal pathway. Changes in cell morphology, activity of mitochondrial dehydrogenases, release of cytochrome C and mitochondrial transmembrane potential were detected when the two channels were blocked by specific inhibitors, Bax channel blocker and cyclosporin A. Results showed that cantharidin-induced apoptotic features, including changes in the cell morphology, release of cytochrome C and decrease in mitochondrial transmembrane potential could be significantly inhibited by Bax channel blocker, while cyclosporin A accelerated the downward trend of mitochondrial dehydrogenases activity and caused a decrease of Ca2+ in mitochondria. In summary, Bax might be necessary but not exclusively for the apoptosis induced by cantharidin and the attribution of these channels seems to be more complexity.
Collapse
Affiliation(s)
- Gaofeng Cui
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yuansheng Li
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Kai Ding
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Shaodong Hao
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Jinzhong Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Zhiyong Zhang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
19
|
Wu HY, Mao XF, Fan H, Wang YX. p38 β Mitogen-Activated Protein Kinase Signaling Mediates Exenatide-Stimulated Microglial β-Endorphin Expression. Mol Pharmacol 2017; 91:451-463. [PMID: 28202578 DOI: 10.1124/mol.116.107102] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/07/2017] [Indexed: 12/14/2022] Open
Abstract
Recent discoveries established that activation of glucagon-like peptide-1 receptors (GLP-1Rs) mediates neuroprotection and antinociception through microglial β-endorphin expression. This study aimed to explore the underlying signaling mechanisms of microglial β-endorphin. GLP-1Rs and β-endorphin were coexpressed in primary cultures of microglia. Treatment with the GLP-1R agonist exenatide concentration-dependently stimulated microglial expression of the β-endorphin precursor gene proopiomelanocortin (POMC) and peptides, with EC50 values of 4.1 and 7.5 nM, respectively. Exenatide also significantly increased intracellular cAMP levels and expression of p-protein kinase A (PKA), p-p38, and p-cAMP response element binding protein (CREB) in cultured primary microglia. Furthermore, exenatide-induced microglial expression of POMC was completely blocked by reagents that specifically inhibit adenylyl cyclase and activation of PKA, p38, and CREB. In addition, knockdown of p38β (but not p38α) using short interfering RNA (siRNA) eliminated exenatide-induced microglial p38 phosphorylation and POMC expression. In contrast, lipopolysaccharide increased microglial activation of p38, and knockdown of p38α (but not p38β) partially suppressed expression of proinflammatory factors (including tumor necrosis factor-α, interleukin-1β, and interleukin-6). Exenatide-induced phosphorylation of p38 and CREB was also totally blocked by the PKA inhibitor and siRNA/p38β, but not by siRNA/p38α Seven-day intrathecal injections of siRNA/p38β (but not siRNA/p38α) completely blocked exenatide-induced spinal p38 activation, β-endorphin expression, and mechanical antiallodynia in rats with established neuropathy, although siRNA/p38β and siRNA/p38α were not antiallodynic. To our knowledge, our results are the first to show a causal relationship between the PKA-dependent p38β mitogen-activated protein kinase/CREB signal cascade and GLP-1R agonism-mediated microglial β-endorphin expression. The differential role of p38α and p38β activation in inflammation and nociception was also highlighted.
Collapse
Affiliation(s)
- Hai-Yun Wu
- King's Laboratory, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Xiao-Fang Mao
- King's Laboratory, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Hui Fan
- King's Laboratory, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Yong-Xiang Wang
- King's Laboratory, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| |
Collapse
|
20
|
Zhao HB, Jiang YM, Li XJ, Liu YY, Bai XH, Li N, Chen JX, Liu Q, Yan ZY, Zhao FZ. Xiao Yao San Improves the Anxiety-Like Behaviors of Rats Induced by Chronic Immobilization Stress: The Involvement of the JNK Signaling Pathway in the Hippocampus. Biol Pharm Bull 2017; 40:187-194. [PMID: 28154259 DOI: 10.1248/bpb.b16-00694] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The current study evaluated the effects of Xiao Yao San (XYS) on anxiety-like behaviors and sought to determine whether the c-Jun N-terminal kinase (JNK) signaling pathway is involved. A total of 40 rats were divided into 5 groups (n=8): the control group (deionized water, per os (p.o.)), the model group (deionized water, p.o.), the SP600125 group (surgery), the per se group (surgery), and the XYS group (3.9 g/kg/d, p.o.). A 1% dimethyl sulfoxide (DMSO) citrate buffer solution (2 µL/ventricle/d) and SP600125 (10 µg/ventricle, 2 µL/ventricle/d) were separately and bilaterally injected into the rats of the two surgery groups via the ventricular system of the brain. All but the control group underwent 14 d of chronic immobilization stress (CIS; 3 h/d). On day 15, the body weights of all of the rats were measured; additionally, the rats were subjected to the elevated plus maze (EPM) and novelty suppressed feeding (NSF) tests. Finally, JNK signaling pathway indices, including phosphorylated JNK (P-JNK), JNK, phosphorylated c-Jun (P-c-Jun) and cytochrome C (Cyt-C), were examined. After modeling, the body weight and behavioral analyses of the model rats indicated that this modeling method induced anxiety-like behaviors. P-JNK, JNK, and P-c-Jun were altered in the hippocampus of the model rats. After 14 d of treatment with XYS and SP600125, rat body weight and behaviors as well as P-JNK, JNK, and P-c-Jun had changed. However, no significant difference in Cyt-C was found. XYS improves the anxiety-like behaviors induced by CIS, which might be related to the JNK signaling pathway in the hippocampus.
Collapse
Affiliation(s)
- Hong-Bo Zhao
- School of Basic Medical Science, Beijing University of Chinese Medicine
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lee JI, Kim IH, Nam TJ. Crude extract and solvent fractions of Calystegia soldanella induce G1 and S phase arrest of the cell cycle in HepG2 cells. Int J Oncol 2017; 50:414-420. [PMID: 28101580 PMCID: PMC5238786 DOI: 10.3892/ijo.2017.3836] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 12/23/2016] [Indexed: 11/06/2022] Open
Abstract
The representative halophyte Calystegia soldanella (L) Roem. et Schult is a perennial vine herb that grows in coastal dunes throughout South Korea as well as in other regions around the world. This plant has long been used as an edible and medicinal herb to cure rheumatic arthritis, sore throat, dropsy, and scurvy. Some studies have also shown that this plant species exhibits various biological activities. However, there are few studies on cytotoxicity induced by C. soldanella treatment in HepG2 human hepatocellular carcinoma cells. In this study, we investigated the viability of HepG2 cells following treatment with crude extracts and four solvent-partitioned fractions of C. soldanella. Of the crude extract and four solvent fractions tested, treatment with the 85% aqueous methanol (aq. MeOH) fraction resulted in the greatest inhibition of HepG2 cell proliferation. Flow cytometry showed that the 85% aq. MeOH fraction induced a G0/G1 and S phase arrest of the cell cycle progression. The 85% aq. MeOH fraction arrested HepG2 cells at the G0/G1 phase in a concentration-dependent manner, and resulted in decreased expression of cyclin D1, cyclin E, cyclin-dependent kinase (CDK)2, CDK4, CDK6, p21, and p27. Additionally, the 85% aq. MeOH fraction treatment also arrested HepG2 cells in the S phase, with decreased expression of cyclin A, CDK2, and CDC25A. Also, treatment with this fraction reduced the expression of retinoblastoma (RB) protein and the transcription factor E2F. These results suggest that the 85% aq. MeOH fraction exhibits potential anticancer activity in HepG2 cells by inducing G0/G1 and S phase arrest of the cell cycle.
Collapse
Affiliation(s)
- Jung Im Lee
- Institute of Fisheries Science, Pukyong National University, Ilgwang-myeon, Gijang-gun, Busan 619-911
| | - In-Hye Kim
- Institute of Fisheries Science, Pukyong National University, Ilgwang-myeon, Gijang-gun, Busan 619-911
| | - Taek-Jeong Nam
- Institute of Fisheries Science, Pukyong National University, Ilgwang-myeon, Gijang-gun, Busan 619-911
- Department of Food Science and Nutrition, Pukyong National University, Nam-gu, Busan 48513, Republic of Korea
| |
Collapse
|
22
|
Androutsopoulos VP, Fragiadaki I, Spandidos DA, Tosca A. The resveratrol analogue, 3,4,5,4'‑trans-tetramethoxystilbene, inhibits the growth of A375 melanoma cells through multiple anticancer modes of action. Int J Oncol 2016; 49:1305-14. [PMID: 27498704 DOI: 10.3892/ijo.2016.3635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/13/2016] [Indexed: 11/06/2022] Open
Abstract
Resveratrol is a natural dietary product that has demonstrated multifaceted anticancer activity. Several analogues of resveratrol have been synthesized in an effort to enhance the pharmacological potency and improve the pharmacokinetic properties of the compound. 3,4,5,4'‑trans‑tetramethoxystilbene (3,4,5,4'‑TMS) is a methoxylated analogue of resveratrol that has demonstrated anti-proliferative activity in vitro (in cancer cell lines) and in vivo (in xenograft models). In the present study, the anticancer effects of 3,4,5,4'‑TMS in A375 human melanoma cells were examined. 3,4,5,4'‑TMS markedly inhibited the proliferation of A375 cells (IC50=0.7 µM), via a mechanism involving mitotic arrest at the prometaphase stage of cell division. This effect was accompanied by the upregulation of the expression of the mitogen activated protein kinases, JNK and p38, and the concomitant activation of p38, that was verified by the nuclear translocation of the phoshorylated form of the protein. The pharmacological inhibition of p38 by SB203580 (4 µM) attenuated the effects of 3,4,5,4'‑TMS, as demonstrated by decreased cell cycle progression at the mitotic phase. Furthermore, 3,4,5,4'‑TMS increased the total levels of Aurora A, while it inhibited the localization of the protein to the spindle poles. Finally, 3,4,5,4'‑TMS exhibited anti-metastatic activity, inhibiting A375 cell migration and the attachment of the cells to a collagen type IV-coated surface. Collectively, the data suggest that 3,4,5,4'‑TMS is an effective chemotherapeutic drug for the treatment of human melanoma and that it exerts its effects through multiple anticancer modes of action.
Collapse
Affiliation(s)
- Vasilis P Androutsopoulos
- Laboratory of Experimental Dermatology, University of Crete, Medical School, Heraklion 71003, Greece
| | - Irene Fragiadaki
- Laboratory of Experimental Dermatology, University of Crete, Medical School, Heraklion 71003, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, University of Crete, Medical School, Heraklion 71003, Greece
| | - Androniki Tosca
- Laboratory of Experimental Dermatology, University of Crete, Medical School, Heraklion 71003, Greece
| |
Collapse
|
23
|
Choo GS, Lee HN, Shin SA, Kim HJ, Jung JY. Anticancer Effect of Fucoidan on DU-145 Prostate Cancer Cells through Inhibition of PI3K/Akt and MAPK Pathway Expression. Mar Drugs 2016; 14:md14070126. [PMID: 27399727 PMCID: PMC4962016 DOI: 10.3390/md14070126] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/18/2016] [Accepted: 06/29/2016] [Indexed: 12/19/2022] Open
Abstract
In this study, we showed that PI3K/Akt signaling mediates fucoidan’s anticancer effects on prostate cancer cells, including suppression of proliferation. Fucoidan significantly decreased viability of DU-145 cancer cells in a concentration-dependent manner as shown by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. The drug also significantly increased chromatin condensation, which indicates apoptosis, in a concentration-dependent manner as shown by DAPI (4′,6-diamidino-2-phenylindole) staining. Fucoidan increased expression of Bax, cleaved poly-ADP ribose polymerase and cleaved caspase-9, and decreased of the Bcl-2, p-Akt, p-PI3K, p-P38, and p-ERK in a concentration-dependent manner. In vivo, fucoidan (at 5 and 10 mg/kg) significantly decreased tumor volume, and increased apoptosis as assessed by the TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assay, confirming the tumor inhibitory effect. The drug also increased expression of p-Akt and p-ERK as shown by immunohistochemistry staining. Therefore, fucoidan may be a promising cancer preventive medicine due to its growth inhibitory effects and induction of apoptosis in human prostate cancer cells.
Collapse
Affiliation(s)
- Gang-Sik Choo
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340-702, Korea.
| | - Hae-Nim Lee
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340-702, Korea.
| | - Seong-Ah Shin
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340-702, Korea.
| | - Hyeong-Jin Kim
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340-702, Korea.
| | - Ji-Youn Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340-702, Korea.
| |
Collapse
|
24
|
Hien NTT, Nhiem NX, Yen DTH, Hang DTT, Tai BH, Quang TH, Tuan Anh HL, Kiem PV, Minh CV, Kim EJ, Kim SH, Kang HK, Kim YH. Chemical constituents of the Annona glabra fruit and their cytotoxic activity. PHARMACEUTICAL BIOLOGY 2015; 53:1602-7. [PMID: 25856711 DOI: 10.3109/13880209.2014.993042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
CONTEXT Traditional Chinese medicines have attracted increasing interest as potential sources of novel drugs with a wide range of biological and pharmacological activities. Annona glabra Linn (Annonaceae) is used in traditional medicine as an anticancer drug. Phytochemical investigation of this plant led to the isolation of acetogenins, ent-kauranes, peptides, and alkaloids. In addition, compounds exhibited anticancer, anti-HIV-reserve, and antimalaria. OBJECTIVE Isolation, structure determination, and cytotoxic activity evaluation of compounds from the methanol extract from A. glabra fruits. MATERIALS AND METHODS Using chromatographic methods to isolate compounds from the A. glabra methanol extract. The cytotoxic activity of compounds was evaluated by a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. In addition, compounds which showed significant cytotoxic activity were chosen for further study apoptosis characteristics. RESULTS One new, (2E,4E,1'R,3'S,5'R,6'S)-dihydrophaseic acid 1,3'-di-O-β-d-glucopyranoside, and eight known compounds, (2E,4E,1'R,3'S,5'R,6'S)-dihydrophaseic acid 3'-O-β-d-glucopyranoside (2), icariside D2 (3), icariside D2 6'-O-β-d-xylopyranoside (4), 3,4-dimethoxyphenyl O-β-d-glucopyranoside (5), 3,4-dihydroxybenzoic acid (6), blumenol A (7), cucumegastigmane I (8), and icariside B1 (9), were isolated from the fruits of A. glabra. Icariside D2 (3) was found to show significant cytotoxic activity on the HL-60 cell line with the IC50 value of 9.0 ± 1.0 µM and did not show cytotoxic activity on the Hel-299 normal cell line. The further test indicated that compound 3 induced apoptosis via alteration of expression of apoptosis-related proteins and decreased phosphorylation of AKT in HL-60 cells. DISCUSSION AND CONCLUSION The results suggested that the constituents from A. glabra may contain effective compounds which can be used as anticancer agents.
Collapse
Affiliation(s)
- Nguyen Thi Thu Hien
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST) , Caugiay, Hanoi , Vietnam
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rao YK, Shih HN, Lee YC, Cheng WT, Hung HC, Wang HC, Chen CJ, Tzeng YM, Lee MJ. Purification of kavalactones from Alpinia zerumbet and their protective actions against hydrogen peroxide-induced cytotoxicity in PC12 cells. J Biosci Bioeng 2014; 118:679-88. [DOI: 10.1016/j.jbiosc.2014.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 12/11/2022]
|
26
|
Sun Y, Zheng Q, Sun YT, Huang P, Guo ZL, Xu LH. Microcystin-LR induces protein phosphatase 2A alteration in a human liver cell line. ENVIRONMENTAL TOXICOLOGY 2014; 29:1236-1244. [PMID: 23436320 DOI: 10.1002/tox.21854] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 01/09/2013] [Accepted: 01/17/2013] [Indexed: 06/01/2023]
Abstract
Microcystin-LR (MC-LR) is a potent inhibitor of protein phosphatases 1 and 2A, and has potent hepatotoxicity and tumor promotion activity. Numerous studies on MC-LR toxicity have been conducted in rat hepatocytes, but few studies of the effects of microcystins on human hepatocytes have been done. In this study, HL7702 cells (a human normal liver cell line) were incubated in MC-LR for 24 h. The existence of MC-LR in HL7702 cells was confirmed. Furthermore, PP2A activity and the alteration of PP2A subunits were assessed. The results show that PP2A activity decreased from the concentration of 1 μM MC-LR, showing a concentration-dependent decline, to about 34% at 10 μM MC-LR. This activity undergone opposite change with alternations of phosphorylated Y307-PP2A/C and PP2A/C subunit but showed same change with the alteration of the ratio of methylated L309-PP2A/C to PP2A/C. B55α, a regulatory subunit of PP2A, was slightly increases in cells treated with the highest concentration of MC-LR (10 μM), and colocalized increasedly with rearranged-microtubules after 1 μM MC-LR exposure. However, the proportion of early apoptotic cells did not show any change at various concentration of MC-LR for 24 h. To our knowledge, this is the first report showing MC-LR-induced alteration of PP2A phosphatase in human cultured hepatocytes, and the mechanism of action seems to be similar as described before in vitro. The alteration of PP2A and microtubule seems to be the early event induced by MC-LR exposure.
Collapse
Affiliation(s)
- Yu Sun
- Department of Biochemistry and Molecular Biology, School of Medicine, Zhejiang University, 310058 Hangzhou, China
| | | | | | | | | | | |
Collapse
|
27
|
Hong JY, Park SH, Min HY, Park HJ, Lee SK. Anti-proliferative effects of evodiamine in human lung cancer cells. J Cancer Prev 2014; 19:7-13. [PMID: 25337567 PMCID: PMC4189475 DOI: 10.15430/jcp.2014.19.1.7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 03/18/2014] [Accepted: 03/18/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Evodiamine, a compound isolated from the Evodia rutaecarpa Bentham (Rutaceae), is known to have a potential anti-proliferative activity in human cancer cells. However, the growth inhibitory activity against lung cancer cells and the underlying molecular mechanisms have been poorly determined. The present study was designed to examine the anti-proliferative effect of evodiamine in A549 human lung cancer cells. METHODS A549 cells were treated with the compounds from Evodia rutaecarpa, and the anti-proliferative activity was evaluated by the sulforhodamine B assay. The mechanisms of action for the growth inhibitory activity of evodiamine on A549 human lung cancer cells were evaluated using flow cytometry for cell cycle distribution, and Western blot for assessment of accumulation and phosphorylation of potential target proteins. RESULTS Evodiamine exhibited a potent anti-proliferative activity against A549 human lung cancer cells. Flow cytometric analysis revealed that evodiamine induced cell cycle arrest at G2/M phase and apoptosis in the A549 cells. The cell cycle arrest was well correlated with the inhibition of cyclin B1, cyclin A, cdk2 and p-cdc2 (Tyr15) and increase of p-chk1 (Ser345) and p-chk2 (Thr68). Evodiamine also significantly increased the ratio of Bax/Bcl-2 and decreased procaspase-3, suggesting evodiamine-induced apoptosis via the intrinsic apoptotic pathway. In addition, evodiamine inhibited the expression of p-ERK and ERK. CONCLUSIONS These findings suggest that the anti-proliferative effect of evodiamine was associated in part with the induction of G2/M phase cell cycle arrest and apoptosis, and down-regulation of ERK in human lung cancer cells.
Collapse
Affiliation(s)
- Ji-Young Hong
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - So Hyun Park
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Hye-Young Min
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Hyen Joo Park
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, Seoul, Korea
| |
Collapse
|
28
|
Li W, Zhou W, Kim EJ, Shim SH, Kang HK, Kim YH. Isolation and identification of aromatic compounds in Lion's Mane Mushroom and their anticancer activities. Food Chem 2014; 170:336-42. [PMID: 25306354 DOI: 10.1016/j.foodchem.2014.08.078] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/07/2014] [Accepted: 08/14/2014] [Indexed: 11/28/2022]
Abstract
Lion's Mane Mushroom (Hericium erinaceum) is a traditional edible mushroom widely used in culinary applications and as an herbal medicine in East Asian countries. In the present study, two new aromatic compounds, hericerin A (1) and isohericenone J (5), along with five known compounds, isoericerin (2), hericerin (3), N-De phenylethyl isohericerin (4), hericenone J (6), and 4-[3',7'-dimethyl-2',6'-octadienyl]-2-formyl-3-hydroxy-5-methyoxybenzylalcohol (7), were isolated from a methanol extract of the fruiting bodies of H. erinaceum. The chemical structures of the compounds were determined from mass spectra and 1D- and 2D NMR spectroscopy. The anticancer effects of the isolated compounds were examined in HL-60 human acute promyelocytic leukaemia cells. Hericerin A (1) and hericerin (3) significantly reduced cell proliferation with IC50 values of 3.06 and 5.47 μM, respectively. These same compounds also induced apoptosis of HL-60 cells, accompanied by time-dependent down-regulation of p-AKT and c-myc levels. These data suggest that compounds 1 and 3 from H. erinaceum are suitable for use in potential cancer treatments.
Collapse
Affiliation(s)
- Wei Li
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Republic of Korea
| | - Wei Zhou
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Eun-Ji Kim
- School of Medicine and Institute of Medical Science, Jeju National University, Jeju 690-756, Republic of Korea
| | - Sang Hee Shim
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Republic of Korea.
| | - Hee Kyoung Kang
- School of Medicine and Institute of Medical Science, Jeju National University, Jeju 690-756, Republic of Korea.
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea.
| |
Collapse
|
29
|
Loss of the spectraplakin short stop activates the DLK injury response pathway in Drosophila. J Neurosci 2013; 33:17863-73. [PMID: 24198375 DOI: 10.1523/jneurosci.2196-13.2013] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The MAPKKK dual leucine zipper-containing kinase (DLK, Wallenda in Drosophila) is an evolutionarily conserved component of the axonal injury response pathway. After nerve injury, DLK promotes degeneration of distal axons and regeneration of proximal axons. This dual role in coordinating degeneration and regeneration suggests that DLK may be a sensor of axon injury, and so understanding how DLK is activated is important. Two mechanisms are known to activate DLK. First, increasing the levels of DLK via overexpression or loss of the PHR ubiquitin ligases that target DLK activate DLK signaling. Second, in Caenorhabditis elegans, a calcium-dependent mechanism, can activate DLK. Here we describe a new mechanism that activates DLK in Drosophila: loss of the spectraplakin short stop (shot). In a genetic screen for mutants with defective neuromuscular junction development, we identify a hypomorphic allele of shot that displays synaptic terminal overgrowth and a precocious regenerative response to nerve injury. We demonstrate that both phenotypes are the result of overactivation of the DLK signaling pathway. We further show that, unlike mutations in the PHR ligase Highwire, loss of function of shot activates DLK without a concomitant increase in the levels of DLK. As a spectraplakin, Shot binds to both actin and microtubules and promotes cytoskeletal stability. The DLK pathway is also activated by downregulation of the TCP1 chaperonin complex, whose normal function is to promote cytoskeletal stability. These findings support the model that DLK is activated by cytoskeletal instability, which is a shared feature of both spectraplakin mutants and injured axons.
Collapse
|
30
|
Li W, Sun YN, Yan XT, Yang SY, Kim EJ, Kang HK, Kim YH. Coumarins and lignans from Zanthoxylum schinifolium and their anticancer activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:10730-10740. [PMID: 24144361 DOI: 10.1021/jf403479c] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Zanthoxylum schinifolium is an aromatic shrub, and its pericarp and leaves are widely used in culinary applications in East Asian countries. It has also long been used in traditional Oriental medicine for treating the common cold, stomach ache, diarrhea, and jaundice. In this study, we identified two new compounds, zanthoxyloside (1) and schinifolisatin A (13), along with 23 known coumarins (2-12) and lignans (14-25), from a methanol extract of the stems of Z. schinifolium . The chemical structures of the compounds were determined by mass, 1D-, and 2D NMR spectroscopy. The anticancer effects of the isolated compounds were examined in three human cancer cell lines. Compounds 10-12 significantly reduced the proliferation of HL-60 human acute promyelocytic leukemia cells with IC50 values of 4.62-5.12 μM. Treatment of PC-3 prostate cancer cells and SNU-C5 colorectal cancer cells with compound 10 resulted in potent antiproliferative activity, with IC50 values of 4.39 and 6.26 μM, respectively. Also, compounds 10-12 induced the apoptosis of three cancer cells. Furthermore, the induction of apoptosis was accompanied by down-regulation of p-ERK1/2 MAPK, p-AKT, and c-myc levels, in a time-dependent manner. These data suggested that compounds 10-12 from Z. schinifolium have potential in cancer treatment.
Collapse
Affiliation(s)
- Wei Li
- College of Pharmacy, Chungnam National University , Daejeon 305-764, Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Boo HJ, Hong JY, Kim SC, Kang JI, Kim MK, Kim EJ, Hyun JW, Koh YS, Yoo ES, Kwon JM, Kang HK. The anticancer effect of fucoidan in PC-3 prostate cancer cells. Mar Drugs 2013; 11:2982-99. [PMID: 23966032 PMCID: PMC3766877 DOI: 10.3390/md11082982] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 07/22/2013] [Accepted: 08/05/2013] [Indexed: 11/17/2022] Open
Abstract
Fucoidan, a sulfated polysaccharide, has a variety of biological activities, such as anti-cancer, anti-angiogenic and anti-inflammatory. However, the mechanisms of action of fucoidan as an anti-cancer agent have not been fully elucidated. The present study examined the anti-cancer effect of fucoidan obtained from Undaria pinnatifida in PC-3 cells, human prostate cancer cells. Fucoidan induced the apoptosis of PC-3 cells by activating both intrinsic and extrinsic pathways. The induction of apoptosis was accompanied by the activation of extracellular signal-regulated kinase mitogen-activated protein kinase (ERK1/2 MAPK) and the inactivation of p38 MAPK and phosphatidylinositol 3-kinase (PI3K)/Akt. In addition, fucoidan also induced the up-regulation of p21Cip1/Waf and down-regulation of E2F-1 cell-cycle-related proteins. Furthermore, in the Wnt/β-catenin pathway, fucoidan activated GSK-3β that resulted in the decrease of β-catenin level, followed by the decrease of c-myc and cyclin D1 expressions, target genes of β-catenin in PC-3 cells. These results suggested that fucoidan treatment could induce intrinsic and extrinsic apoptosis pathways via the activation of ERK1/2 MAPK, the inactivation of p38 MAPK and PI3K/Akt signaling pathway, and the down-regulation of Wnt/β-catenin signaling pathway in PC-3 prostate cancer cells. These data support that fucoidan might have potential for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Hye-Jin Boo
- Department of Pharmacology, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 690-756, Korea; E-Mails: (H.-J.B.); (J.-Y.H.); (S.-C.K.); (J.-I.K.); (M.-K.K.); (E.-J.K.); (E.-S.Y.)
| | - Ji-Young Hong
- Department of Pharmacology, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 690-756, Korea; E-Mails: (H.-J.B.); (J.-Y.H.); (S.-C.K.); (J.-I.K.); (M.-K.K.); (E.-J.K.); (E.-S.Y.)
| | - Sang-Cheol Kim
- Department of Pharmacology, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 690-756, Korea; E-Mails: (H.-J.B.); (J.-Y.H.); (S.-C.K.); (J.-I.K.); (M.-K.K.); (E.-J.K.); (E.-S.Y.)
| | - Jung-Il Kang
- Department of Pharmacology, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 690-756, Korea; E-Mails: (H.-J.B.); (J.-Y.H.); (S.-C.K.); (J.-I.K.); (M.-K.K.); (E.-J.K.); (E.-S.Y.)
| | - Min-Kyoung Kim
- Department of Pharmacology, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 690-756, Korea; E-Mails: (H.-J.B.); (J.-Y.H.); (S.-C.K.); (J.-I.K.); (M.-K.K.); (E.-J.K.); (E.-S.Y.)
| | - Eun-Ji Kim
- Department of Pharmacology, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 690-756, Korea; E-Mails: (H.-J.B.); (J.-Y.H.); (S.-C.K.); (J.-I.K.); (M.-K.K.); (E.-J.K.); (E.-S.Y.)
| | - Jin-Won Hyun
- Department of Biochemistry, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 690-756, Korea; E-Mail:
| | - Young-Sang Koh
- Department of Microbiology, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 690-756, Korea; E-Mail:
| | - Eun-Sook Yoo
- Department of Pharmacology, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 690-756, Korea; E-Mails: (H.-J.B.); (J.-Y.H.); (S.-C.K.); (J.-I.K.); (M.-K.K.); (E.-J.K.); (E.-S.Y.)
| | - Jung-Mi Kwon
- Department of Internal Medicine, School of Medicine, Institute of Medical Sciences, Jeju National University, 102 Jejudaehakno, Jeju 690-756, Korea
| | - Hee-Kyoung Kang
- Department of Pharmacology, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 690-756, Korea; E-Mails: (H.-J.B.); (J.-Y.H.); (S.-C.K.); (J.-I.K.); (M.-K.K.); (E.-J.K.); (E.-S.Y.)
| |
Collapse
|
32
|
Francés DEA, Ingaramo PI, Mayoral R, Través P, Casado M, Valverde ÁM, Martín-Sanz P, Carnovale CE. Cyclooxygenase-2 over-expression inhibits liver apoptosis induced by hyperglycemia. J Cell Biochem 2013; 114:669-80. [PMID: 23059845 DOI: 10.1002/jcb.24409] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/24/2012] [Indexed: 12/22/2022]
Abstract
Increased expression of COX-2 has been linked to inflammation and carcinogenesis. Constitutive expression of COX-2 protects hepatocytes from several pro-apoptotic stimuli. Increased hepatic apoptosis has been observed in experimental models of diabetes. Our present aim was to analyze the role of COX-2 as a regulator of apoptosis in diabetic mouse liver. Mice of C57BL/6 strain wild type (Wt) and transgenic in COX-2 (hCOX-2 Tg) were separated into Control (vehicle) and SID (streptozotocin induced diabetes, 200 mg/kg body weight, i.p.). Seven days post-injection, Wt diabetic animals showed a decrease in PI3K activity and P-Akt levels, an increase of P-JNK, P-p38, pro-apoptotic Bad and Bax, release of cytochrome c and activities of caspases-3 and -9, leading to an increased apoptotic index. This situation was improved in diabetic COX-2 Tg. In addition, SID COX-2 Tg showed increased expression of anti-apoptotic Mcl-1 and XIAP. Pro-apoptotic state in the liver of diabetic animals was improved by over-expression of COX-2. We also analyzed the roles of high glucose-induced apoptosis and hCOX-2 in vitro. Non-transfected and hCOX-2-transfected cells were cultured at 5 and 25 mM of glucose by 72 h. At 25 mM there was an increase in apoptosis in non-transfected cells versus those exposed to 5 mM. This increase was partly prevented in transfected cells at 25 mM. Moreover, the protective effect observed in hCOX-2-transfected cells was suppressed by addition of DFU (COX-2 selective inhibitor), and mimicked by addition of PGE(2) in non-transfected cells. Taken together, these results demonstrate that hyperglycemia-induced hepatic apoptosis is protected by hCOX-2 expression.
Collapse
Affiliation(s)
- Daniel E A Francés
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhang Y, Liang J, Sun L, Guo Z, Xu L. Inhibition of PP2A and the consequent activation of JNK/c-Jun are involved in tributyltin-induced apoptosis in human amnionic cells. ENVIRONMENTAL TOXICOLOGY 2013; 28:390-400. [PMID: 21626652 DOI: 10.1002/tox.20730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 04/03/2011] [Accepted: 04/04/2011] [Indexed: 05/30/2023]
Abstract
Tributyltin (TBT), a highly toxic environmental contaminant, has been shown to induce mitochondrial-dependent apoptosis in several mammalian cells. However, the upstream signal transduction pathways involved in TBT-induced apoptosis are still not fully elucidated. In this study, the protein phosphatase (PP) 2A, microtubule organization, and mitogen-activated protein kinases (MAPKs), including JNK, p38 and their downstream transcription factors, c-Jun and ATF-2, respectively, were investigated in human amnionic cells treated by TBT. Furthermore, the activation of procaspase-3 after blocking either one of these MAPK pathways was also observed. The results showed that TBT effectively induced apoptosis characterized by caspase-3 activation. In apoptotic cells, the inhibition of PP2A activity and microtubule depolymerization was detected. Additionally, JNK and p38, as well as their downstream targets, c-Jun and ATF-2, were activated. Moreover, a JNK inhibitor, but not p38 inhibitor, significantly reduced caspase-3 activation. It can be concluded that the inhibition of PP2A may (1) play as a role in the activation of JNK and c-Jun and the concomitant promotion of microtubule depolymerization and (2) lead to the activation of caspase-3 in TBT-induced apoptotic cells. The results of this study suggest a critical role of PP2A in the TBT toxicity mechanism.
Collapse
Affiliation(s)
- Yali Zhang
- Department of Biochemistry and Genetics, School of medicine, Zhejiang University, 388 Yu Hang Tang Road, 310058, Hangzhou, China
| | | | | | | | | |
Collapse
|
34
|
Tau protein kinases: involvement in Alzheimer's disease. Ageing Res Rev 2013; 12:289-309. [PMID: 22742992 DOI: 10.1016/j.arr.2012.06.003] [Citation(s) in RCA: 470] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/21/2012] [Accepted: 06/06/2012] [Indexed: 02/07/2023]
Abstract
Tau phosphorylation is regulated by a balance between tau kinase and phosphatase activities. Disruption of this equilibrium was suggested to be at the origin of abnormal tau phosphorylation and thereby might contribute to tau aggregation. Thus, understanding the regulation modes of tau phosphorylation is of high interest in determining the possible causes at the origin of the formation of tau aggregates in order to elaborate protection strategies to cope with these lesions in Alzheimer's disease. Among the possible and specific interventions that reverse tau phosphorylation is the inhibition of certain tau kinases. Here, we extensively reviewed tau protein kinases, their physiological roles and regulation, their involvement in tau phosphorylation and their relevance to AD. We also reviewed the most common inhibitory compounds acting on each tau kinase.
Collapse
|
35
|
Teng M, Jiang XP, Zhang Q, Zhang JP, Zhang DX, Liang GP, Huang YS. Microtubular stability affects pVHL-mediated regulation of HIF-1alpha via the p38/MAPK pathway in hypoxic cardiomyocytes. PLoS One 2012; 7:e35017. [PMID: 22506063 PMCID: PMC3323643 DOI: 10.1371/journal.pone.0035017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/08/2012] [Indexed: 12/04/2022] Open
Abstract
Background Our previous research found that structural changes of the microtubule network influence glycolysis in cardiomyocytes by regulating the hypoxia-inducible factor (HIF)-1α during the early stages of hypoxia. However, little is known about the underlying regulatory mechanism of the changes of HIF-1α caused by microtubule network alternation. The von Hippel-Lindau tumor suppressor protein (pVHL), as a ubiquitin ligase, is best understood as a negative regulator of HIF-1α. Methodology/Principal Findings In primary rat cardiomyocytes and H9c2 cardiac cells, microtubule-stabilization was achieved by pretreating with paclitaxel or transfection of microtubule-associated protein 4 (MAP4) overexpression plasmids and microtubule–depolymerization was achieved by pretreating with colchicine or transfection of MAP4 siRNA before hypoxia treatment. Recombinant adenovirus vectors for overexpressing pVHL or silencing of pVHL expression were constructed and transfected in primary rat cardiomyocytes and H9c2 cells. With different microtubule-stabilizing and -depolymerizing treaments, we demonstrated that the protein levels of HIF-1α were down-regulated through overexpression of pVHL and were up-regulated through knockdown of pVHL in hypoxic cardiomyocytes. Importantly, microtubular structure breakdown activated p38/MAPK pathway, accompanied with the upregulation of pVHL. In coincidence, we found that SB203580, a p38/MAPK inhibitor decreased pVHL while MKK6 (Glu) overexpression increased pVHL in the microtubule network altered-hypoxic cardiomyocytes and H9c2 cells. Conclusions/Significance This study suggests that pVHL plays an important role in the regulation of HIF-1α caused by the changes of microtubular structure and the p38/MAPK pathway participates in the process of pVHL change following microtubule network alteration in hypoxic cardiomyocytes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yue-sheng Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
36
|
Huang X, Cheng Z, Su Q, Zhu X, Wang Q, Chen R, Wang X. Neuroprotection by nicotine against colchicine-induced apoptosis is mediated by PI3-kinase--Akt pathways. Int J Neurosci 2012; 122:324-32. [PMID: 22248034 DOI: 10.3109/00207454.2012.657377] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although nicotine is known to protect against β-amyloid (Aβ)-induced neurotoxicity, the effect of nicotine on colchicine-induced neurotoxicity remains unknown. Colchicine is a microtubule-interfering agent and is able to induce neural apoptosis. Here we investigated whether nicotine exhibits similar neuroprotective effects and the mechanism against colchicine-induced neurotoxicity of the primarily cultured cortical neurons. In this study, we investigated the effect of nicotine on the protection of neurons against colchicine damage and evaluated the associated intracellular signaling pathways. Nicotine-induced protection was blocked by an α7 nicotinic acetylcholine receptors (nAChRs) antagonist and a phosphatidylinositol 3-kinase (PI3K) inhibitor. These results suggest that the neuroprotective effects of nicotine are mediated by the α7 nAChRs and PI3K-Akt signaling pathway. In addition, we reveal that blockade of p38 and JNK (c-Jun N-terminal kinase) signaling increased Akt signaling, thus enhancing the survival of cell treatment with colchicine. On the other hand, inhibition of constitutively active Akt enhanced p38 or JNK signaling phosphorylation. These data suggested that crosstalk between PI3K Akt and p38 or JNK signaling pathways contributed to nicotine against colchicine-induced cytotoxicity.
Collapse
Affiliation(s)
- Xiaohui Huang
- Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Cytotoxic oleane-type triterpene saponins from Glochidion eriocarpum. Arch Pharm Res 2012; 35:19-26. [PMID: 22297739 DOI: 10.1007/s12272-012-0102-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 07/21/2011] [Accepted: 07/21/2011] [Indexed: 12/23/2022]
Abstract
The anticancer activity of ten compounds from the aerial parts of Glochidion eriocarpum were evaluated on two human cancer cell lines, HL-60 and HCT-116. Compounds 1-4 displayed highly potent cytotoxic activity on the HCT-116 cancer cell line with IC(50) values ranging of 0.41∼1.16 μM. Compounds 1-4 significantly inhibited the HL-60 cell line with IC(50) values ranging of 4.51∼6.33 μM. These results suggested that the benzoyl group at the C-22 position in oleane-type triterpene saponins was essential for cytotoxicity towards tumor cells. Moreover, compounds 2 and 3 showed more potent cytotoxicity than compounds 1 and 4 against HL-60 and HCT-116 cells. With respect to the mechanism underlying cytotoxicity, compounds 1-4 increased chromatin condensation, a typical apoptotic characteristic in HL-60 and HCT-116 cells. In the mechanism of apoptosis induction, compounds 1-4 reduced Bcl-2 expression, whereas the expression of Bax was increased compared to controls in HCT-116 cells. In addition, compounds 1-4 decreased the level of procaspase-3. The cleavage of poly (ADP-ribose) polymerase (PARP), a vital substrate of effector caspase, was observed in HCT-116 cells. Furthermore, the induction of apoptosis was also accompanied by an activation of extracellular signal-regulated kinase (ERK) and p38 kinase in HCT-116 cells. These findings provide evidence demonstrating that the pro-apoptotic effects of compounds 1-4 are mediated through the activation of ERK and p38 in HCT-116 cells.
Collapse
|
38
|
Shen L, Xu W, Li A, Ye J, Zhou J. JWA enhances As₂O₃-induced tubulin polymerization and apoptosis via p38 in HeLa and MCF-7 cells. Apoptosis 2012; 16:1177-93. [PMID: 21847655 DOI: 10.1007/s10495-011-0637-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Arsenic trioxide (As₂O₃) has potential anti-cancer activity against a wide range of carcinomas via apoptosis induction or oncoprotein degradation. The mechanisms involved are not fully elucidated. Here, we demonstrated that As₂O₃ induced-apoptosis in HeLa and MCF-7 cancer cells was in part triggered by tubulin polymerization. High expression of JWA promoted tubulin polymerization and increased the sensitivity of the cancer cells to As₂O₃. The activation of the p38 MAPK (mitogen-activated protein kinases) signaling pathway was found to contribute to JWA-promoted tubulin polymerization. Our results suggest that JWA may serve as an effective enhancer of microtubule-targeted As₂O₃ anti-cancer therapy.
Collapse
Affiliation(s)
- Lianlian Shen
- Department of Molecular Cell Biology & Toxicology, The Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, People's Republic of China
| | | | | | | | | |
Collapse
|
39
|
Boo HJ, Hyun JH, Kim SC, Kang JI, Kim MK, Kim SY, Cho H, Yoo ES, Kang HK. Fucoidan from Undaria pinnatifida induces apoptosis in A549 human lung carcinoma cells. Phytother Res 2011; 25:1082-6. [PMID: 21452391 DOI: 10.1002/ptr.3489] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Fucoidan, a sulfated polysaccharide, has various biological activities, such as anticancer, antiangiogenic and antiinflammatory effects; however, the mechanisms of action of fucoidan on anticancer activity have not been fully elucidated. The anticancer effects of fucoidan from Undaria pinnatifida on A549 human lung carcinoma cells were examined. Treatment of A549 cells with fucoidan resulted in potent antiproliferative activity. Also, some typical apoptotic characteristics, such as chromatin condensation and an increase in the population of sub-G1 hypodiploid cells, were observed. With respect to the mechanism underlying the induction of apoptosis, fucoidan reduced Bcl-2 expression, but the expression of Bax was increased in a dose-dependent manner compared with the controls. Furthermore, fucoidan induced caspase-9 activation, but decreased the level of procaspase-3. Cleavage of poly-ADP-ribose polymerase (PARP), a vital substrate of effector caspase, was found. The study further investigated the role of the MAPK and PI3K/Akt pathways with respect to the apoptotic effect of fucoidan, and showed that fucoidan activates ERK1/2 in A549 cells. Unlike ERK1/2, however, treatment with fucoidan resulted in the down-regulation of phospho-p38 expression. In addition, fucoidan resulted in the down-regulation of phospho-PI3K/Akt. Together, these results indicate that fucoidan induces apoptosis of A549 human lung cancer cells through down-regulation of p38, PI3K/Akt, and the activation of the ERK1/2 MAPK pathway.
Collapse
Affiliation(s)
- Hye-Jin Boo
- School of Medicine, Institute of Medical Sciences, Jeju National University, 66 Jejudaehakno, Jeju 690-756, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ruan HL, Yang Y, Zhu XN, Wang XL, Chen RZ. Similar potency of catechin and its enantiomers in alleviating 1-methyl-4-phenylpyridinium ion cytotoxicity in SH-SY5Y cells. J Pharm Pharmacol 2011; 63:1169-74. [PMID: 21827489 DOI: 10.1111/j.2042-7158.2011.01293.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Previously, the flavonoid (±)-catechin was shown to exert potent neuroprotective action in the mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease model. The purpose of this study was to investigate whether the different enantiomers of catechin ((+)-catechin, (-)-catechin and (±)-catechin, a 50:50 mixture of (+)-catechin and (-)-catechin) could protect SH-SY5Y cells against 1-methyl-4-phenylpyridinium ion (MPP(+) ) toxicity by decreasing the generation of oxygen free radicals. The inhibitive effect of (±)-catechin on JNK/c-Jun activation was investigated. METHODS The effects of (+)-catechin, (-)-catechin or (±)-catechin in protecting against MPP(+) toxicity were evaluated and compared in SH-SY5Y cells by testing the release of lactate dehydrogenase. The generation of reactive oxygen species (ROS) was measured by immunochemistry and the phosphorylation level of JNK/c-Jun was determined by Western blotting. KEY FINDINGS In SH-SY5Y cells, (+)-catechin, (-)-catechin or (±)-catechin reduced apoptosis induced by MPP(+) and decreased ROS generation caused by MPP(+) . Different enantiomers of catechin showed protective effects at similar potency. Moreover (±)-catechin decreased JNK/c-Jun phosphorylation which was increased by MPP(+). CONCLUSIONS Catechin and its two enantiomers could protect SH-SY5Y cells against MPP(+) cytotoxicity at a similar potency. Antioxidative stress and inhibition of the JNK/c-Jun signalling pathway might have been involved in the neuroprotective mechanisms of catechin against MPP(+) cytotoxicity in SH-SY5Y cells.
Collapse
Affiliation(s)
- Hao-lan Ruan
- Guangdong Institute for Drug Control, Guangzhou, China
| | | | | | | | | |
Collapse
|
41
|
Michinaga S, Hisatsune A, Isohama Y, Katsuki H. Orexin neurons in hypothalamic slice cultures are vulnerable to endoplasmic reticulum stress. Neuroscience 2011; 190:289-300. [PMID: 21712074 DOI: 10.1016/j.neuroscience.2011.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 05/18/2011] [Accepted: 06/07/2011] [Indexed: 01/09/2023]
Abstract
Narcolepsy results from disruption of orexin neurons in the hypothalamus that play a key role in maintenance of the arousal state. Underlying mechanisms leading to selective loss of orexin neurons remain unknown. On the other hand, endoplasmic reticulum stress, namely, conditions associated with impairment of endoplasmic reticulum functions such as proper folding and sorting of newly synthesized proteins, is implicated in pathogenesis of several types of neurodegenerative disorders. Here we found that application of endoplasmic reticulum stress inducers such as tunicamycin (that prevents protein N-glycosylation) and thapsigargin (that inhibits Ca²⁺-ATPase) to organotypic slice cultures of the hypothalamus caused preferential loss of orexin-immunoreactive neurons, as compared to melanin-concentrating hormone- or calcitonin gene-related peptide-immunoreactive neurons. The decrease in orexin-immunoreactive neurons at early time points (6-24 h) was not accompanied by induction of cell death as indicated by the absence of caspase-3 activation and no significant change in the number of NeuN-positive cells, whereas sustained treatment with tunicamycin for 72 h induced cell death. At 24-h treatment, tunicamycin and thapsigargin did not decrease expression of prepro-orexin mRNA, suggesting that post-transcriptional mechanisms were responsible for depletion of orexin peptides. In addition, inhibition of axonal transport by colchicine and inhibition of proteasomal activity by MG132 significantly prevented the decrease in orexin immunoreactivity by tunicamycin. Comparative examinations of expression of unfolded protein response-related proteins revealed that C/EBP-homologous protein (a transcription factor that promotes induction of apoptosis) as well as phosphorylated form of RNA-dependent protein kinase-like endoplasmic reticulum kinase (a protein kinase that mediates inhibition of protein translation) was expressed more prominently in orexin neurons than in melanin-concentrating hormone neurons, in response to tunicamycin. These results indicate that orexin neurons are particularly sensitive to endoplasmic reticulum stress, which may be relevant to pathogenic events in narcolepsy.
Collapse
Affiliation(s)
- S Michinaga
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | | | | | | |
Collapse
|
42
|
Chen T, Liu W, Chao X, Qu Y, Zhang L, Luo P, Xie K, Huo J, Fei Z. Neuroprotective effect of osthole against oxygen and glucose deprivation in rat cortical neurons: involvement of mitogen-activated protein kinase pathway. Neuroscience 2011; 183:203-11. [DOI: 10.1016/j.neuroscience.2011.03.038] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 03/10/2011] [Accepted: 03/20/2011] [Indexed: 11/30/2022]
|
43
|
Bounoutas A, Kratz J, Emtage L, Ma C, Nguyen KC, Chalfie M. Microtubule depolymerization in Caenorhabditis elegans touch receptor neurons reduces gene expression through a p38 MAPK pathway. Proc Natl Acad Sci U S A 2011; 108:3982-7. [PMID: 21368137 PMCID: PMC3054000 DOI: 10.1073/pnas.1101360108] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Microtubules are integral to neuronal development and function. They endow cells with polarity, shape, and structure, and their extensive surface area provides substrates for intracellular trafficking and scaffolds for signaling molecules. Consequently, microtubule polymerization dynamics affect not only structural features of the cell but also the subcellular localization of proteins that can trigger intracellular signaling events. In the nematode Caenorhabditis elegans, the processes of touch receptor neurons are filled with a bundle of specialized large-diameter microtubules. We find that conditions that disrupt these microtubules (loss of either the MEC-7 β-tubulin or MEC-12 α-tubulin or growth in 1 mM colchicine) cause a general reduction in touch receptor neuron (TRN) protein levels. This reduction requires a p38 MAPK pathway (DLK-1, MKK-4, and PMK-3) and the transcription factor CEBP-1. Cells may use this feedback pathway that couples microtubule state and MAPK activation to regulate cellular functions.
Collapse
Affiliation(s)
- Alexander Bounoutas
- Department of Biological Sciences, Columbia University, New York, NY 10027; and
| | - John Kratz
- Department of Biological Sciences, Columbia University, New York, NY 10027; and
| | - Lesley Emtage
- Department of Biological Sciences, Columbia University, New York, NY 10027; and
| | - Charles Ma
- Department of Biological Sciences, Columbia University, New York, NY 10027; and
| | - Ken C. Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461-1116
| | - Martin Chalfie
- Department of Biological Sciences, Columbia University, New York, NY 10027; and
| |
Collapse
|
44
|
Secalonic acid A reduced colchicine cytotoxicity through suppression of JNK, p38 MAPKs and calcium influx. Neurochem Int 2011; 58:85-91. [DOI: 10.1016/j.neuint.2010.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 10/26/2010] [Accepted: 10/28/2010] [Indexed: 11/15/2022]
|
45
|
Zhang J, Zhou J, Ren X, Diao Y, Li H, Jiang H, Ding K, Pei D. A new diaryl urea compound, D181, induces cell cycle arrest in the G1 and M phases by targeting receptor tyrosine kinases and the microtubule skeleton. Invest New Drugs 2010; 30:490-507. [DOI: 10.1007/s10637-010-9577-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 10/28/2010] [Indexed: 12/16/2022]
|
46
|
SP600125, a competitive inhibitor of JNK attenuates streptozotocin induced neurocognitive deficit and oxidative stress in rats. Pharmacol Biochem Behav 2010; 96:386-94. [DOI: 10.1016/j.pbb.2010.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 05/26/2010] [Accepted: 06/20/2010] [Indexed: 02/04/2023]
|
47
|
Mehan S, Meena H, Sharma D, Sankhla R. JNK: A Stress-Activated Protein Kinase Therapeutic Strategies and Involvement in Alzheimer’s and Various Neurodegenerative Abnormalities. J Mol Neurosci 2010; 43:376-90. [DOI: 10.1007/s12031-010-9454-6] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 09/16/2010] [Indexed: 01/26/2023]
|
48
|
Lizárraga-Mollinedo E, Fernández-Millán E, de Miguel-Santos L, Martínez-Honduvilla CJ, Alvarez C, Escrivá F. Early undernutrition increases glycogen content and reduces the activated forms of GSK3, AMPK, p38 MAPK, and JNK in the cerebral cortex of suckling rats. J Neurochem 2010; 112:123-33. [DOI: 10.1111/j.1471-4159.2009.06434.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Mansell JP, Farrar D, Jones S, Nowghani M. Cytoskeletal reorganisation, 1alpha,25-dihydroxy vitamin D3 and human MG63 osteoblast maturation. Mol Cell Endocrinol 2009; 305:38-46. [PMID: 19433260 DOI: 10.1016/j.mce.2009.02.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 02/27/2009] [Accepted: 02/27/2009] [Indexed: 01/11/2023]
Abstract
Bone tissue is especially receptive to physical stimulation and agents with the capacity to mimic the signalling incurred via mechanical loading on osteoblasts may find an application in a bone regenerative setting. Recently this laboratory revealed that the major serum lipid, lysophosphatidic acid (LPA), co-operated with 1alpha,25-dihydroxy vitamin D3 (D3) in stimulating human osteoblast maturation. Actin stress fiber accrual in LPA treated osteoblasts would have generated peripheral tension which in turn may have heightened the maturation response of these cells to D3. To test this hypothesis we examined if other agents known to trigger stress fiber accumulation co-operated with D3 in stimulating human osteoblast maturation. Colchicine, nocodazole and LPA all co-operated with D3 to promote MG63 maturation in a MEK dependent manner. In contrast, calpeptin, a direct activator of Rho kinase and stress fiber accumulation did not act with D3 to secure MG63 differentiation. Herein we describe how the signalling elicited via microtubule disruption cooperates with D3 in the development of mature osteoblasts.
Collapse
Affiliation(s)
- Jason Peter Mansell
- Department of Oral & Dental Science, University of Bristol Dental School, Lower Maudlin St., Bristol, BS1 2LY, UK.
| | | | | | | |
Collapse
|
50
|
Kurada BRVVSN, Li LC, Mulherkar N, Subramanian M, Prasad KV, Prabhakar BS. MADD, a splice variant of IG20, is indispensable for MAPK activation and protection against apoptosis upon tumor necrosis factor-alpha treatment. J Biol Chem 2009; 284:13533-13541. [PMID: 19289468 PMCID: PMC2679454 DOI: 10.1074/jbc.m808554200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 02/24/2009] [Indexed: 11/06/2022] Open
Abstract
We investigated the physiological role of endogenous MAPK-activating death domain-containing protein (MADD), a splice variant of the IG20 gene, that can interact with TNFR1 in tumor necrosis factor-alpha (TNFalpha)-induced activation of NF-kappaB, MAPK, ERK1/2, JNK, and p38. Using exon-specific short hairpin RNAs expressing lentiviruses, we knocked down the expression of all IG20 splice variants or MADD, which is overexpressed in cancer cells. Abrogation of MADD expression rendered cells highly susceptible to TNFalpha-induced apoptosis in the absence of cycloheximide. It also resulted in a dramatic loss in TNFalpha-induced activation of MAPK without any apparent effect on NF-kappaB activation. This observation was substantiated by an accompanying loss in the activation of p90RSK, a key downstream target of MAPK, whereas the NF-kappaB-regulated interleukin 6 levels remained unaffected. Endogenous MADD knockdown, however, did not affect epidermal growth factor-induced MAPK activation thereby demonstrating the specific requirement of MADD for TNF receptor-mediated MAPK activation. Re-expression of short hairpin RNA-resistant MADD in the absence of endogenous IG20 expression rescued the cells from TNFalpha-induced apoptosis. The requirement for MADD was highly specific for TNFalpha-induced activation of MAPK but not the related JNK and p38 kinases. Loss of MADD expression resulted in reduced Grb2 and Sos1/2 recruitment to the TNFR1 complex and decreased Ras and MEKK1/2 activation. These results demonstrate the essential role of MADD in protecting cancer cells from TNFalpha-induced apoptosis by specifically activating MAPKs through Grb2 and Sos1/2 recruitment, and its potential as a novel cancer therapeutic target.
Collapse
Affiliation(s)
- Bapi Raju V V S N Kurada
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Liang Cheng Li
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Nirupama Mulherkar
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Mahesh Subramanian
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Kanteti V Prasad
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612.
| |
Collapse
|