1
|
Schultz J, Andersen A, Gade IL, Kjaergaard B, Nielsen-Kudsk JE. Riociguat, sildenafil and inhaled nitric oxide reduces pulmonary vascular resistance and improves right ventricular function in a porcine model of acute pulmonary embolism. EUROPEAN HEART JOURNAL. ACUTE CARDIOVASCULAR CARE 2020; 9:293-301. [PMID: 31025569 DOI: 10.1177/2048872619840772] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Pulmonary vasodilators as add-on to current treatment strategies in acute pulmonary embolism may improve right ventricular unloading and hence improve patient outcome. We aimed to investigate whether stimulation of the nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP) pathway with riociguat, sildenafil or inhaled NO causes pulmonary vasodilation and improves right ventricular function in a porcine model of acute intermediate risk pulmonary embolism. METHODS Two large autologous blood clots were administered to the pulmonary circulation of 28 pigs (60 kg). Animals were randomized to four increasing, clinically equivalent doses of riociguat (n=6), sildenafil (n=6), inhaled NO (n=6) or vehicle (n=6). Sham animals (n=4) did not receive pulmonary embolism or treatment. Haemodynamic responses were evaluated at baseline, after pulmonary embolism and after each dose using invasive pressure measurements, transoesophageal echocardiography, respiratory parameters and blood analysis. RESULTS Pulmonary embolism caused a three-fold increase in pulmonary vascular resistance compared with baseline (pulmonary embolism: 352±29 vs. baseline: 107±6 dynes, p<0.0001). All treatments lowered pulmonary vascular resistance compared with vehicle (riociguat: -158±35, sildenafil: -224±35, inhaled NO: -156±35 dynes, p<0.0001). Sildenafil, but neither inhaled NO nor riociguat, caused a decrease in systemic vascular resistance (sildenafil 678±41 vs. vehicle 1081±93 dynes, p=0.02) and increased cardiac output (sildenafil 8.8±0.8 vs. vehicle: 5.9±0.2 L/min, p<0.001). Systemic blood pressure was unaltered in all treatment groups. CONCLUSION Stimulation of the NO-sGC-cGMP pathway by riociguat, sildenafil and inhaled NO reduces pulmonary vascular resistance in a porcine model of acute pulmonary embolism without lowering systemic blood pressure.
Collapse
Affiliation(s)
- Jacob Schultz
- Department of Cardiology, Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Denmark
| | - Asger Andersen
- Department of Cardiology, Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Denmark
| | - Inger Lise Gade
- Department of Clinical Medicine, Faculty of Health, Aalborg University, Denmark
- Department of Haematology, Aalborg University Hospital, Denmark
| | | | - Jens Erik Nielsen-Kudsk
- Department of Cardiology, Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Denmark
| |
Collapse
|
2
|
Lyhne MD, Kline JA, Nielsen-Kudsk JE, Andersen A. Pulmonary vasodilation in acute pulmonary embolism - a systematic review. Pulm Circ 2020; 10:2045894019899775. [PMID: 32180938 PMCID: PMC7057411 DOI: 10.1177/2045894019899775] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/18/2019] [Indexed: 01/17/2023] Open
Abstract
Acute pulmonary embolism is the third most common cause of cardiovascular death. Pulmonary embolism increases right ventricular afterload, which causes right ventricular failure, circulatory collapse and death. Most treatments focus on removal of the mechanical obstruction caused by the embolism, but pulmonary vasoconstriction is a significant contributor to the increased right ventricular afterload and is often left untreated. Pulmonary thromboembolism causes mechanical obstruction of the pulmonary vasculature coupled with a complex interaction between humoral factors from the activated platelets, endothelial effects, reflexes and hypoxia to cause pulmonary vasoconstriction that worsens right ventricular afterload. Vasoconstrictors include serotonin, thromboxane, prostaglandins and endothelins, counterbalanced by vasodilators such as nitric oxide and prostacyclins. Exogenous administration of pulmonary vasodilators in acute pulmonary embolism seems attractive but all come with a risk of systemic vasodilation or worsening of pulmonary ventilation-perfusion mismatch. In animal models of acute pulmonary embolism, modulators of the nitric oxide-cyclic guanosine monophosphate-protein kinase G pathway, endothelin pathway and prostaglandin pathway have been investigated. But only a small number of clinical case reports and prospective clinical trials exist. The aim of this review is to give an overview of the causes of pulmonary embolism-induced pulmonary vasoconstriction and of experimental and human investigations of pulmonary vasodilation in acute pulmonary embolism.
Collapse
Affiliation(s)
- Mads Dam Lyhne
- Department of Cardiology, Aarhus University Hospital and Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jeffrey Allen Kline
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jens Erik Nielsen-Kudsk
- Department of Cardiology, Aarhus University Hospital and Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Asger Andersen
- Department of Cardiology, Aarhus University Hospital and Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Dua K, Malyla V, Singhvi G, Wadhwa R, Krishna RV, Shukla SD, Shastri MD, Chellappan DK, Maurya PK, Satija S, Mehta M, Gulati M, Hansbro N, Collet T, Awasthi R, Gupta G, Hsu A, Hansbro PM. Increasing complexity and interactions of oxidative stress in chronic respiratory diseases: An emerging need for novel drug delivery systems. Chem Biol Interact 2018; 299:168-178. [PMID: 30553721 DOI: 10.1016/j.cbi.2018.12.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/02/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023]
Abstract
Oxidative stress is intensely involved in enhancing the severity of various chronic respiratory diseases (CRDs) including asthma, chronic obstructive pulmonary disease (COPD), infections and lung cancer. Even though there are various existing anti-inflammatory therapies, which are not enough to control the inflammation caused due to various contributing factors such as anti-inflammatory genes and antioxidant enzymes. This leads to an urgent need of novel drug delivery systems to combat the oxidative stress. This review gives a brief insight into the biological factors involved in causing oxidative stress, one of the emerging hallmark feature in CRDs and particularly, highlighting recent trends in various novel drug delivery carriers including microparticles, microemulsions, microspheres, nanoparticles, liposomes, dendrimers, solid lipid nanocarriers etc which can help in combating the oxidative stress in CRDs and ultimately reducing the disease burden and improving the quality of life with CRDs patients. These carriers improve the pharmacokinetics and bioavailability to the target site. However, there is an urgent need for translational studies to validate the drug delivery carriers for clinical administration in the pulmonary clinic.
Collapse
Affiliation(s)
- Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia.
| | - Vamshikrishna Malyla
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, 333031, India
| | - Ridhima Wadhwa
- Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India
| | - Rapalli Vamshi Krishna
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, 333031, India
| | - Shakti Dhar Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Madhur D Shastri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Jant-Pali, Mahendergarh District, 123031, Haryana, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Faculty of Applied Medical Sciences, Lovely Professional University, Phagwara, Punjab, 144441, India
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Faculty of Applied Medical Sciences, Lovely Professional University, Phagwara, Punjab, 144441, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Faculty of Applied Medical Sciences, Lovely Professional University, Phagwara, Punjab, 144441, India
| | - Nicole Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia; Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
| | - Trudi Collet
- Indigenous Medicines Group, Institute of Health & Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Brisbane, Queensland, 4059, Australia
| | - Rajendra Awasthi
- Amity Institute of Pharmacy, Amity University, Sec. 125, Noida, 201303, Uttar Pradesh, India
| | - Gaurav Gupta
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017, Jaipur, India
| | - Alan Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia; Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
| |
Collapse
|
4
|
Zhang Y, Liu H, Zhang Y, Wu Q, Zhang Y, Zhang J, Zhou X, Jiao H, Fan F, Xue Q, Wang X, Zhong Z. Efficacy evaluation of reteplase in a novel canine acute pulmonary thromboembolism model developed by minimally invasive surgery and digital subtraction angiography. Drug Des Devel Ther 2018; 12:3717-3730. [PMID: 30464403 PMCID: PMC6219412 DOI: 10.2147/dddt.s180151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Purpose In order to evaluate the thrombolytic effects of reteplase in pulmonary thromboembolism (PTE), we developed a novel canine PTE model. The efficacy of reteplase against PTE in comparison to alteplase was clarified for the first time, and this PTE model could be further applied to studies of novel thrombolytic therapies. Patients and methods Twenty-four dogs were divided into four groups: sham operation, vehicle, alteplase, and reteplase. Autologous thrombi/saline were injected into the pulmonary artery, and thrombolytic agents were administrated. Thrombus formation and dissolution were monitored by real-time digital subtraction angiography (DSA), and pulmonary pressures were measured simultaneously. Blood coagulation, blood gas, hematology, and histopathologic examinations were used as subsidiary methods. Results The canine PTE model was established with a significant decrease of blood flow and ~75% blocking area. Administration of reteplase (0.6 mg/kg) resulted in effective thrombus dissolution with a recovery of over 80% blood flow, as effective as alteplase (1.6 mg/kg). Correspondingly, the elevated pulmonary systolic, diastolic, and mean arterial pressures declined to the normal level. Blood coagulation was changed by reteplase, with a dramatic elongation of prothrombin time, activated partial thromboplastin time, and thrombin time, even longer than alteplase. In contrast to the vehicle group, no obvious pathological changes were found in the two thrombolytic groups. Hematological, blood biochemical, and blood gas results also indicated that reteplase had no adverse reactions in this PTE model. Conclusion Reteplase proved to be an effective and safe therapy for PTE for the first time, and a small dosage of reteplase exerted an efficacy comparable to the routine dosage of alteplase. Our findings indicated the potential of reteplase as clinical treatment against PTE. This technically innovative, stability- and validity-proved canine PTE model developed by minimally invasive surgery and DSA resembled major clinical features. This may further facilitate our understanding of thrombotic disorders and development of prophylactic and therapeutic approaches.
Collapse
Affiliation(s)
- Yinbing Zhang
- Laboratory of Nonhuman Primate Disease Modeling Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China, , .,Sichuan Kangcheng Biomed Co., Ltd., Chengdu, China, ,
| | - Haifeng Liu
- Angde Biotech Pharmaceutical Co., Ltd., Liaocheng, China
| | - Yingqian Zhang
- Department of Physiology, Southwest Medical University, Luzhou, China
| | - Qiong Wu
- Laboratory of Nonhuman Primate Disease Modeling Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China, ,
| | - Yanyan Zhang
- Laboratory of Nonhuman Primate Disease Modeling Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China, , .,Sichuan Kangcheng Biomed Co., Ltd., Chengdu, China, ,
| | - Jie Zhang
- Laboratory of Nonhuman Primate Disease Modeling Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China, , .,Sichuan Kangcheng Biomed Co., Ltd., Chengdu, China, ,
| | - Xiangshan Zhou
- Angde Biotech Pharmaceutical Co., Ltd., Liaocheng, China
| | - He Jiao
- Department of Interventional therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Fan
- Department of Neurointervention, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Xue
- Food and Drug Administration of Shibei District Government, Qingdao, China
| | - Xin Wang
- Laboratory of Nonhuman Primate Disease Modeling Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China, , .,Sichuan Kangcheng Biomed Co., Ltd., Chengdu, China, ,
| | - Zhihui Zhong
- Laboratory of Nonhuman Primate Disease Modeling Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China, , .,Sichuan Kangcheng Biomed Co., Ltd., Chengdu, China, ,
| |
Collapse
|
5
|
Discovery and development of sGC stimulators for the treatment of pulmonary hypertension and rare diseases. Nitric Oxide 2018; 77:88-95. [PMID: 29738821 DOI: 10.1016/j.niox.2018.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/26/2022]
Abstract
The NO/sGC/cGMP signaling cascade plays a pivotal role in regulation of cardiovascular, cardiopulmonary and cardiorenal diseases and impairment of this cascade results in severe pathologies. Therefore, pharmacological interventions, targeting this pathway are promising strategies for treating a variety of diseases. Nitrates, supplementing NO and, PDE5 inhibitors preventing cGMP degradation, are used for angina pectoris treatment and the treatment of pulmonary arterial hypertension (PAH), respectively. More recently, a new class of drugs which directly stimulate the sGC enzyme and trigger NO-independent cGMP production was introduced and termed sGC stimulators. In 2013, the first sGC stimulator, riociguat, was approved for the treatment of PAH and chronic thromboembolic pulmonary hypertension (CTEPH). Since cGMP targets multiple intracellular downstream targets, sGC stimulators have shown - beyond the well characterized vasodilatation - anti-fibrotic, anti-inflammatory and anti-proliferative effects. These additional modes of action might extend the therapeutic potential of this drug class substantially. This review summarizes the NO/sGC/cGMP signaling cascades, the discovery and the mode of action of sGC stimulators. Furthermore, the preclinical evidence and development of riociguat for the treatment of PAH and CTEPH is reviewed. Finally, a summary of the antifibrotic effects of sGC stimulators, especially the most recent finding for skin fibrosis are included which may indicate efficacy in fibrotic diseases like Systemic Sclerosis (SSc).
Collapse
|
6
|
Koress C, Swan K, Kadowitz P. Soluble Guanylate Cyclase Stimulators and Activators: Novel Therapies for Pulmonary Vascular Disease or a Different Method of Increasing cGMP? Curr Hypertens Rep 2016; 18:42. [PMID: 27118316 DOI: 10.1007/s11906-016-0645-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a progressively worsening disorder characterized by increased pulmonary vascular resistance leading to increased afterload, right ventricular hypertrophy, and ultimately right heart failure and death. Current pharmacologic treatments primarily act to reduce pulmonary vascular resistance (PVR) and provide some benefit but do not cure PAH. Canonical vasodilator therapy involving the nitric oxide (NO)-soluble guanylate cyclase (sGC)-cGMP pathway has demonstrated efficacy, but in pathologic states, endothelial dysfunction within the pulmonary vasculature leads to the reduced synthesis and bioavailability of NO. Acting downstream of NO, sGC stimulators and activators restore the endogenous functions of NO and exploit the positive effects of sGC stimulation on various organ systems, including the heart. Riociguat (BAY 63-2521) is the first agent in a class of sGC stimulators to receive FDA approval for the treatment of PAH and chronic thromboembolic hypertension (CTEPH). Riociguat has demonstrated significant benefit as assessed by 6MWD, PVR, N-terminal pro-brain natriuretic peptide (NT-proBNP) levels, time to clinical worsening, World Health Organization (WHO) functional class, and other quality of life measures in clinical trials as a monotherapy and in combination with endothelin receptor antagonists or non-intravenous prostanoids. Riociguat is the first FDA-approved treatment option for inoperable or persistent CTEPH and adds a new effective drug to available treatment options for pulmonary hypertension (PH). The question of whether riociguat is superior to other available treatment options is unanswered at the present time and requires further study.
Collapse
Affiliation(s)
- Cody Koress
- Department of Pharmacology, 8683 School of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Kevin Swan
- Department of Pharmacology, 8683 School of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Philip Kadowitz
- Department of Pharmacology, 8683 School of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA.
| |
Collapse
|
7
|
Ceron CS, Rizzi E, Guimarães DA, Martins-Oliveira A, Gerlach RF, Tanus-Santos JE. Nebivolol attenuates prooxidant and profibrotic mechanisms involving TGF-β and MMPs, and decreases vascular remodeling in renovascular hypertension. Free Radic Biol Med 2013; 65:47-56. [PMID: 23806385 DOI: 10.1016/j.freeradbiomed.2013.06.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/31/2013] [Accepted: 06/17/2013] [Indexed: 01/13/2023]
Abstract
Nebivolol and metoprolol are β1-adrenergic receptor blockers with different properties. We hypothesized that nebivolol, but not metoprolol, could attenuate prooxidant and profibrotic mechanisms of hypertension and therefore protect against the vascular remodeling associated with hypertension. Hypertension was induced in male Wistar rats by clipping the left renal artery. Six weeks after surgery, hypertensive and sham rats were treated with nebivolol (10 mg kg(-1) day(-1)) or metoprolol (20 mg kg(-1) day(-1)) for 4 weeks. Systolic blood pressure was monitored weekly. Morphologic changes in the aortic wall were studied in hematoxylin/eosin and picrosirius red sections. Aortic NAD(P)H activity and superoxide production were evaluated by luminescence and dihydroethidium, respectively, and TBARS levels were measured in plasma. Aortic nitrotyrosine staining was evaluated to assess peroxynitrite formation. TGF-β levels and p-ERK 1/2 expression were determined by immunofluorescence and Western blotting, respectively. Matrix metalloproteinase (MMP) activity and expression were determined by in situ zymography, gel zymography, Western blotting, and immunofluorescence, and TIMP-1 was assessed by immunohistochemistry. Both β1-receptor antagonists exerted very similar antihypertensive effects. However, while metoprolol had no significant effects, nebivolol significantly attenuated vascular remodeling and collagen deposition associated with hypertension. Moreover, nebivolol, but not metoprolol, attenuated hypertension-induced increases in aortic NAD(P)H oxidase activity, superoxide production, TBARS concentrations, nitrotyrosine levels, TGF-β upregulation, and MMP-2 and -9 expression/activity. No effects on p-ERK 1/2 and TIMP-1 expression were found. These results show for the first time that nebivolol, but not metoprolol, attenuates prooxidant and profibrotic mechanisms involving TGF-β and MMP-2 and MMP-9, which promote vascular remodeling in hypertension.
Collapse
Affiliation(s)
- Carla S Ceron
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Elen Rizzi
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Danielle A Guimarães
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Alisson Martins-Oliveira
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Raquel F Gerlach
- Department of Morphology, Estomatology, and Physiology, Dental School of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, SP, Brazil, 14049-900
| | - Jose E Tanus-Santos
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil.
| |
Collapse
|
8
|
Watts JA, Gellar MA, Fulkerson MBK, Kline JA. A soluble guanylate cyclase stimulator, BAY 41-8543, preserves right ventricular function in experimental pulmonary embolism. Pulm Pharmacol Ther 2012; 26:205-11. [PMID: 23142020 DOI: 10.1016/j.pupt.2012.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/20/2012] [Accepted: 10/26/2012] [Indexed: 11/24/2022]
Abstract
Pulmonary embolism (PE) increases pulmonary vascular resistance, causing right ventricular (RV) dysfunction, and poor clinical outcome. Present studies test if the soluble guanylate cyclase stimulator BAY 41-8543 reduces pulmonary vascular resistance and protects RV function. Experimental PE was induced in anesthetized, male Sprague-Dawley rats by infusing 25 μm polystyrene microspheres (1.95 million/100 g body wt, right jugular vein) producing moderate PE. Pulmonary artery vascular resistance, estimated as RVPSP/CO, increased 3-fold after 5 h of PE. Treatment with BAY 41-8543 (50 μg/kg, I.V.; given at the time of PE induction) normalized this index by reducing RVPSP and markedly increasing CO, via preservation of heart rate and stroke volume. Ex vivo RV heart function showed minimal changes at 5 h of PE, but decreased significantly after 18 h of PE, including peak systolic pressure (PSP, Control 39 ± 1 mmHg vs. 19 ± 3 PE), +dP/dt (1192 ± 93 mmHg/s vs. 444 ± 64) and -dP/dt (-576 ± 60 mmHg/s vs. -278 ± 40). BAY 41-8543 significantly improved all three indices of RV heart function (PSP 35 ± 3.5, +dP/dt 1129 ± 100, -dP/dt -568 ± 87). Experimental PE produced increased PVR and RV dysfunction, which were ameliorated by treatment with BAY 41-8543. Thus, there is vasodilator reserve in this model of experimental PE that can be exploited to reduce the stress upon the heart and preserve RV contractile function.
Collapse
Affiliation(s)
- John A Watts
- Department of Emergency Medicine, Carolinas Medical Center, Charlotte, NC, USA.
| | | | | | | |
Collapse
|
9
|
Ceron CS, Rizzi E, Guimaraes DA, Martins-Oliveira A, Cau SB, Ramos J, Gerlach RF, Tanus-Santos JE. Time course involvement of matrix metalloproteinases in the vascular alterations of renovascular hypertension. Matrix Biol 2012; 31:261-70. [PMID: 22342460 DOI: 10.1016/j.matbio.2012.01.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/26/2012] [Indexed: 11/19/2022]
Abstract
Increased vascular matrix metalloproteinases (MMPs) levels play a role in late phases of hypertensive vascular remodeling. However, no previous study has examined the time course of MMPs in the various phases of two-kidney, one-clip hypertension (2K1C). We examined structural vascular changes, collagen and elastin content, vascular oxidative stress, and MMPs levels/activities during the development of 2K1C hypertension. Plasma angiotensin converting enzyme (ACE) activity was measured to assess renin-angiotensin system activation. Sham or 2K1C hypertensive rats were studied after 2, 4, 6, and 10weeks of hypertension. Systolic blood pressure (SBP) was monitored weekly. Morphometry of structural changes in the aortic wall was studied in hematoxylin/eosin, orcein and picrosirius red sections. Aortic NADPH activity and superoxide production was evaluated. Aortic gelatinolytic activity was determined by in situ zymography, and MMP-2, MMP-14, and tissue inhibitor of MMPs (TIMP)-2 levels were determined by gelatin zymography, immunofluorescence and immunohistochemistry. 2K1C hypertension was associated with increased ACE activity, which decreased to normal after 10 weeks. We found increased aortic collagen and elastin content in the early phase of hypertension, which were associated with vascular hypertrophy, increased vascular MMP-2 and MMP-14 (but not TIMP-2) levels, and increased gelatinolytic activity, possibly as a result of increased vascular NADPH oxidase activity and oxidative stress. These results indicate that vascular remodeling of renovascular hypertension is an early process associated with early increases in MMPs activities, enhanced matrix deposition and oxidative stress. Using antioxidants or MMPs inhibitors in the early phase of hypertension may prevent the vascular alterations of hypertension.
Collapse
Affiliation(s)
- Carla S Ceron
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, 14049-900, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Arginase depletes plasma l-arginine and decreases pulmonary vascular reserve during experimental pulmonary embolism. Pulm Pharmacol Ther 2012; 25:48-54. [DOI: 10.1016/j.pupt.2011.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/19/2011] [Accepted: 10/27/2011] [Indexed: 01/18/2023]
|
11
|
Pulmonary vascular reserve during experimental pulmonary embolism: Effects of a soluble guanylate cyclase stimulator, BAY 41-8543*. Crit Care Med 2011; 39:2700-4. [DOI: 10.1097/ccm.0b013e318226678e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Is there a role for soluble guanylate cyclase stimulators in acute pulmonary embolism?*. Crit Care Med 2011; 39:2773-4. [DOI: 10.1097/ccm.0b013e31822b3a34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Affiliation(s)
- Johannes-Peter Stasch
- Institute of Pharmacy, Martin Luther University, Halle, and the Cardiology Research, Bayer HealthCare AG, Wuppertal, Germany.
| | | | | |
Collapse
|
14
|
Antihypertensive effects exerted by enalapril in mild to moderate hypertension are not associated with changes in the circulating levels of nitric oxide-related markers. Eur J Clin Pharmacol 2011; 67:365-370. [PMID: 21305271 DOI: 10.1007/s00228-011-1003-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 01/17/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE The antihypertensive effects of angiotensin-converting enzyme inhibitors (ACEi) are explained, at least in part, by enhanced bradykinin-dependent nitric oxide (NO) formation and decreased angiotensin II-induced oxidative stress and vasoconstriction. We examined for the first time whether treatment with enalapril increases the plasma levels of markers of NO formation and decreases oxidative stress in mild to moderate hypertensive patients. METHODS Eighteen untreated hypertensive patients were treated with enalapril 10 mg/day (n=10) or 20 mg/day (n=8) for 60 days. Eighteen normotensive healthy controls were followed for the same period. Venous blood samples were collected at baseline and after 30/60 days of treatment with enalapril. Plasma NOx (nitrites + nitrates) concentrations were determined by using the Griess reaction. Plasma nitrite and whole blood nitrite concentrations were determined by using an ozone-based chemiluminescence assay. Plasma thiobarbituric acid-reactive species (TBARS) and 8-isoprostane concentrations were determined by a fluorimetric method and by ELISA, respectively. RESULTS Treatment with enalapril decreased blood pressure in hypertensive patients. However, we found no significant changes in plasma NOx, nitrite, whole blood nitrite, and in the levels of markers of oxidative stress in both normotensive controls and hypertensive patients treated with enalapril. CONCLUSIONS Our data show that enalapril 10-20 mg/day does not affect the concentrations of relevant markers of NO formation or markers of oxidative stress in mild to moderately hypertensive subjects, despite satisfactory blood pressure control. Our findings do not rule out the possibility that ACEi may produce such effects in more severely hypertensive patients treated with higher doses of ACEi.
Collapse
|
15
|
Metalloproteinase inhibition protects against cardiomyocyte injury during experimental acute pulmonary thromboembolism*. Crit Care Med 2011; 39:349-56. [DOI: 10.1097/ccm.0b013e3181fa3dfe] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Thorsen LB, Eskildsen-Helmond Y, Zibrandtsen H, Stasch JP, Simonsen U, Laursen BE. BAY 41-2272 inhibits the development of chronic hypoxic pulmonary hypertension in rats. Eur J Pharmacol 2010; 647:147-54. [PMID: 20828552 DOI: 10.1016/j.ejphar.2010.08.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/13/2010] [Accepted: 08/24/2010] [Indexed: 11/17/2022]
Abstract
The present study investigated whether BAY 41-2272(5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-pyrimidin-4-ylamine), a novel pyrazolopyridine that activates guanylyl cyclase and sensitizes the enzyme towards nitric oxide (NO), inhibits the development of pulmonary hypertension. BAY 41-2272 (1 or 10 mg/kg/day) was administered intraperitoneally, and sildenafil (25 mg/kg/day), an inhibitor phosphodiesterase type 5, was given in the drinking water to rats kept under chronic hypobaric hypoxia for two weeks. Right ventricular systolic pressure and hypertrophy, degree of muscularization and relaxation of pulmonary arteries were measured, and immunoblotting was performed. Chronic hypoxia increased right ventricular systolic pressure and expression of soluble guanylyl cyclase and phosphorylated vasodilator-stimulated phosphoprotein (VASP-P(ser239)). BAY 41-2272 prevented hypoxia-induced increase in right ventricular systolic pressure and right ventricular hypertrophy to the same extent as sildenafil. Only sildenafil significantly decreased hypoxia-induced muscularization of pulmonary arteries. Expressed relative to soluble guanylyl cyclase expression, VASP-P(ser239) was increased in lungs from rats treated with BAY 41-2272. Acutely BAY 41-2272 caused pulmonary as well as systemic vasodilatation. In the chronic setting systemic blood pressure was not different to baseline at trough after intraperitoneally administered BAY 41-2272. BAY 41-2272 vasorelaxation in isolated pulmonary resistance arteries was inhibited by an inhibitor of guanylyl cyclase, ODQ (1H-[1,2,4] oxadiazolo[4,3-a]quinoxaline-1-one), and of Na(+)-K(+)-ATPase, ouabain. In conclusion, in an adult rat model of chronic hypoxic pulmonary hypertension, BAY 41-2272 to a similar degree as sildenafil prevents pulmonary hypertension. Thus, BAY 41-2272 may provide a novel therapeutic compound for treating chronic hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Lise Bech Thorsen
- Department of Pharmacology, Faculty of Health Sciences, Aarhus University, Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
17
|
Dias-Junior CA, Neto-Neves EM, Montenegro MF, Tanus-Santos JE. Hemodynamic effects of inducible nitric oxide synthase inhibition combined with sildenafil during acute pulmonary embolism. Nitric Oxide 2010; 23:284-8. [PMID: 20804854 DOI: 10.1016/j.niox.2010.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 08/24/2010] [Indexed: 11/27/2022]
Abstract
While endogenous nitric oxide (NO) may be relevant to the beneficial hemodynamic effects produced by sildenafil during acute pulmonary embolism (APE), huge amounts of inducible NO synthase (iNOS)-derived NO may contribute to lung injury. We hypothesized that iNOS inhibition with S-methylisothiourea could attenuate APE-induced increases in oxidative stress and pulmonary hypertension and, therefore, could improve the beneficial hemodynamic and antioxidant effects produced by sildenafil during APE. Hemodynamic evaluations were performed in non-embolized dogs treated with saline (n=4), S-methylisothiourea (0.01 mg/kg followed by 0.5 mg/kg/h, n=4), sildenafil (0.3 mg/kg, n=4), or S-methylisothiourea followed by sildenafil (n=4), and in dogs that received the same drugs and were embolized with silicon microspheres (n=8 for each group). Plasma nitrite/nitrate (NOx) and thiobarbituric acid reactive substances (TBARS) concentrations were determined by Griess and a fluorometric assay, respectively. APE increased mean pulmonary arterial pressure (MPAP) and pulmonary vascular resistance index (PVRI) by 25±1.7 mm Hg and by 941±34 dyn s cm(-5) m(-2), respectively. S-methylisothiourea neither attenuated APE-induced pulmonary hypertension, nor enhanced the beneficial hemodynamic effects produced by sildenafil after APE (>50% reduction in pulmonary vascular resistance). While sildenafil produced no change in plasma NOx concentrations, S-methylisothiourea alone or combined with sildenafil blunted APE-induced increases in NOx concentrations. Both drugs, either alone or combined, produced antioxidant effects. In conclusion, although iNOS-derived NO may play a key role in APE-induced oxidative stress, our results suggest that the iNOS inhibitor S-methylisothiourea neither attenuates APE-induced pulmonary hypertension, nor enhances the beneficial hemodynamic effects produced by sildenafil.
Collapse
Affiliation(s)
- Carlos A Dias-Junior
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | | | | | | |
Collapse
|
18
|
Mechanisms of relaxant activity of the nitric oxide-independent soluble guanylyl cyclase stimulator BAY 41-2272 in rat tracheal smooth muscle. Eur J Pharmacol 2010; 645:158-64. [PMID: 20670622 DOI: 10.1016/j.ejphar.2010.07.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 06/20/2010] [Accepted: 07/12/2010] [Indexed: 01/10/2023]
Abstract
The soluble guanylyl cyclase is expressed in airway smooth muscle, and agents that stimulate this enzyme activity cause airway smooth muscle relaxation and bronchodilation. The compound 5-Cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-pyrimidin-4-ylamine (BAY 41-2272) is a potent nitric oxide (NO)-independent soluble guanylyl cyclase stimulator, but little is known about its effects in airway smooth muscle. Therefore, this study aimed to investigate the mechanisms underlying the relaxations of rat tracheal smooth muscle induced by BAY 41-2272. Tracheal rings were mounted in 10-ml organ baths for isometric force recording. BAY 41-2272 concentration-dependently relaxed carbachol-precontracted tracheal rings (pEC(50)=6.68+/-0.14). Prior incubation with the NO synthesis inhibitor l-NAME (100 microM) or the soluble guanylyl cyclase inhibitor ODQ (10 microM) caused significant rightward shifts in the concentration-response curves to BAY 41-2272. Sodium nitroprusside caused concentration-dependent relaxations, which were greatly potentiated by BAY 41-2272 and completely inhibited by ODQ. In addition, BAY 41-2272 shifted to the right the tracheal contractile responses to either carbachol (0.01-1 microM) or electrical field stimulation (EFS, 1-32 Hz). BAY 41-2272 (1 microM) also caused a marked rightward shift and decreased the maximal contractile responses to extracellular CaCl2, and such effect was not modified by pretreatment with ODQ. In addition, BAY 41-2272 (up to 1 microM) significantly increased the cGMP levels, and that was abolished by ODQ. Our results indicate that BAY 41-2272 causes cGMP-dependent rat tracheal smooth muscle relaxations in a synergistic fashion with exogenous NO. BAY 41-2272 has also an additional mechanism independently of soluble guanylyl cyclase activation possibly involving Ca(2+) entry blockade.
Collapse
|
19
|
Zago AS, Park JY, Fenty-Stewart N, Silveira LR, Kokubun E, Brown MD. Effects of aerobic exercise on the blood pressure, oxidative stress and eNOS gene polymorphism in pre-hypertensive older people. Eur J Appl Physiol 2010; 110:825-32. [PMID: 20614130 DOI: 10.1007/s00421-010-1568-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2010] [Indexed: 10/19/2022]
Abstract
The polymorphisms of endothelial nitric oxide synthase (eNOS) are associated with reduced eNOS activity. Aerobic exercise training (AEX) may influence resting nitric oxide (NO) production, oxidative stress and blood pressure. The purpose of this study was to investigate the effect of AEX on the relationship among blood pressure, eNOS gene polymorphism and oxidative stress in pre-hypertensive older people. 118 pre-hypertensive subjects (59 ± 6 years) had blood samples collected after a 12 h overnight fast for assessing plasma NO metabolites (NOx) assays, thiobarbituric acid reactive substances (T-BARS) and superoxide dismutase activity (ecSOD). eNOS polymorphism (T-786C and G-894T) was done by standard PCR methods. All people were divided according to the genotype results (G1: TT/GG, G2: TT/GT + TT, G3: TC + CC/GG, G4: TC + CC/GT + TT). All parameters were measured before and after 6 months of AEX (70% of VO(2 max)). At baseline, no difference was found in systolic and diastolic blood pressure, ecSOD and T-BARS activity. Plasma NOx levels were significantly different between G1 (19 ± 1 μM) and G4 (14.2 ± 0.6 μM) and between G2 (20.1 ± 1.7 μM) and G4 (14.2 ± 0.6 μM). Therefore, reduced NOx concentration in G4 group occurred only when the polymorphisms were associated, suggesting that these results are more related to genetic factors than NO-scavenging effect. After AEX, the G4 increased NOx values (17.2 ± 1.2 μM) and decreased blood pressure. G1, G3 and G4 decreased T-BARS levels. These results suggest the AEX can modulate the NOx concentration, eNOS activity and the relationship among eNOS gene polymorphism, oxidative stress and blood pressure especially in C (T-786C) and T (G-894T) allele carriers.
Collapse
Affiliation(s)
- Anderson Saranz Zago
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900-Monte Alegre, Ribeirão Preto, São Paulo, 14040-900, Brazil.
| | | | | | | | | | | |
Collapse
|
20
|
Montenegro MF, Pessa LR, Gomes VA, Desta Z, Flockhart DA, Tanus-Santos JE. Assessment of vascular effects of tamoxifen and its metabolites on the rat perfused hindquarter vascular bed. Basic Clin Pharmacol Toxicol 2009; 104:400-7. [PMID: 19413660 DOI: 10.1111/j.1742-7843.2009.00377.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tamoxifen has been suggested to produce beneficial cardiovascular effects, although the mechanisms for these effects are not fully known. Moreover, although tamoxifen metabolites may exhibit 30-100 times higher potency than the parent drug, no previous study has compared the effects produced by tamoxifen and its metabolites on vascular function. Here, we assessed the vascular responses to acetylcholine and sodium nitroprusside on perfused hindquarter vascular bed of rats treated with tamoxifen or its main metabolites (N-desmethyl-tamoxifen, 4-hydroxy-tamoxifen, and endoxifen) for 2 weeks. Plasma and whole-blood thiobarbituric acid reactive substances (TBARS) concentrations were determined using a fluorometric method. Plasma nitrite and NOx (nitrite + nitrate) concentrations were determined using an ozone-based chemiluminescence assay and Griess reaction, respectively. Treatment with tamoxifen reduced the responses to acetylcholine (pD(2) = 2.2 +/- 0.06 and 1.9 +/- 0.05 after vehicle and tamoxifen, respectively; P < 0.05), while its metabolites improved these responses (pD(2) = 2.5 +/- 0.04 after N-desmethyl-tamoxifen, 2.5 +/- 0.03 after 4-hydroxy-tamoxifen, and 2.6 +/- 0.08 after endoxifen; P < 0.01). Tamoxifen and its metabolites showed no effect on endothelial-independent responses to sodium nitroprusside (P > 0.05). While tamoxifen treatment resulted in significantly higher plasma and whole blood lipid peroxide levels (37% and 62%, respectively; both P < 0.05), its metabolites significantly decreased lipid peroxide levels (by approximately 50%; P < 0.05). While treatment with tamoxifen decreased the concentrations of markers of nitric oxide formation by approximately 50% (P < 0.05), tamoxifen metabolites had no effect on these parameters (P > 0.05). These results suggest that while tamoxifen produces detrimental effects, its metabolites produce counteracting beneficial effects on the vascular system and on nitric oxide/reactive oxygen species formation.
Collapse
Affiliation(s)
- Marcelo F Montenegro
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|
21
|
Dias-Junior CA, Cau SB, Oliveira AM, Castro MM, Montenegro MF, Gerlach RF, Tanus-Santos JE. Nitrite or sildenafil, but not BAY 41-2272, blunt acute pulmonary embolism-induced increases in circulating matrix metalloproteinase-9 and oxidative stress. Thromb Res 2009; 124:349-55. [DOI: 10.1016/j.thromres.2008.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 11/22/2008] [Accepted: 12/09/2008] [Indexed: 10/21/2022]
|
22
|
Abstract
The nitric oxide (NO) signalling pathway is altered in cardiovascular diseases, including systemic and pulmonary hypertension, stroke, and atherosclerosis. The vasodilatory properties of NO have been exploited for over a century in cardiovascular disease, but NO donor drugs and inhaled NO are associated with significant shortcomings, including resistance to NO in some disease states, the development of tolerance during long-term treatment, and non-specific effects such as post-translational modification of proteins. The development of pharmacological agents capable of directly stimulating the NO receptor, soluble guanylate cyclase (sGC), is therefore highly desirable. The benzylindazole compound YC-1 was the first sGC stimulator to be identified; this compound formed a lead structure for the development of optimized sGC stimulators with improved potency and specificity for sGC, including CFM-1571, BAY 41-2272, BAY 41-8543, and BAY 63-2521. In contrast to the NO- and haem-independent sGC activators such as BAY 58-2667, these compounds stimulate sGC activity independent of NO and also act in synergy with NO to produce anti-aggregatory, anti-proliferative, and vasodilatory effects. Recently, aryl-acrylamide compounds were identified independent of YC-1 as sGC stimulators; although structurally dissimilar to YC-1, they have a similar mode of action and promote smooth muscle relaxation. Pharmacological stimulators of sGC may be beneficial in the treatment of a range of diseases, including systemic and pulmonary hypertension, heart failure, atherosclerosis, erectile dysfunction, and renal fibrosis. An sGC stimulator, BAY 63-2521, is currently in clinical development as an oral therapy for patients with pulmonary hypertension. It has demonstrated efficacy in a proof-of-concept study, reducing pulmonary vascular resistance and increasing cardiac output from baseline. A full, phase 2 trial of BAY 63-2521 in pulmonary hypertension is underway.
Collapse
Affiliation(s)
- Johannes-Peter Stasch
- Bayer Schering Pharma AG, Cardiology Research, Pharma Research Center, Wuppertal, 42096, Germany.
| | | |
Collapse
|
23
|
Lercanidipine decreases vascular matrix metalloproteinase-2 activity and protects against vascular dysfunction in diabetic rats. Eur J Pharmacol 2008; 599:110-6. [DOI: 10.1016/j.ejphar.2008.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 09/18/2008] [Accepted: 10/05/2008] [Indexed: 11/18/2022]
|
24
|
Dias-Junior CA, Montenegro MF, Florencio BC, Tanus-Santos JE. Sildenafil Improves the Beneficial Haemodynamic Effects of Intravenous Nitrite Infusion during Acute Pulmonary Embolism. Basic Clin Pharmacol Toxicol 2008; 103:374-9. [DOI: 10.1111/j.1742-7843.2008.00299.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Gomes VA, Casella-Filho A, Chagas ACP, Tanus-Santos JE. Enhanced concentrations of relevant markers of nitric oxide formation after exercise training in patients with metabolic syndrome. Nitric Oxide 2008; 19:345-50. [PMID: 18799138 DOI: 10.1016/j.niox.2008.08.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 08/18/2008] [Accepted: 08/27/2008] [Indexed: 10/21/2022]
Abstract
Metabolic syndrome (MetS) denotes a clustering of risk factors that may affect nitric oxide (NO) bioavailability and predispose to cardiovascular diseases, which are delayed by exercise training. However, no previous study has examined how MetS affects markers of NO formation, and whether exercise training increases NO formation in MetS patients. Here, we tested these two hypotheses. We studied 48 sedentary individuals: 20 healthy controls and 28 MetS patients. Eighteen MetS patients were subjected to a 3-month exercise training (E+group), while the remaining 10 MetS patients remained sedentary (E-group). The plasma concentrations of nitrite, cGMP, and ADMA (asymmetrical dimethylarginine; an endogenous nitric oxide synthase inhibitor), and the whole blood nitrite concentrations were determined at baseline and after exercise training using an ozone-based chemiluminescence assay, and commercial enzyme immunoassays. Thiobarbituric acid reactive species (TBA-RS) were measured in the plasma to assess oxidative stress using a fluorometric method. We found that, compared with healthy subjects, patients with MetS have lower concentrations of markers of NO formation, including whole blood nitrite, plasma nitrite, and plasma cGMP, and increased oxidative stress (all P<0.05). Exercise training increased the concentrations of whole blood nitrite and cGMP, and decreased both oxidative stress and the circulating concentrations of ADMA (both P<0.05). These findings show clinical evidence for lower endogenous NO formation in patients with MetS, and for improvements in NO formation associated with exercise training in MetS patients.
Collapse
Affiliation(s)
- Valéria A Gomes
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, 13081-970 Campinas, SP, Brazil
| | | | | | | |
Collapse
|
26
|
Lercanidipine reduces matrix metalloproteinase-2 activity and reverses vascular dysfunction in renovascular hypertensive rats. Eur J Pharmacol 2008; 591:224-30. [DOI: 10.1016/j.ejphar.2008.06.096] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 06/13/2008] [Accepted: 06/22/2008] [Indexed: 11/24/2022]
|