1
|
Yu N, Yan Y, Han Q, Zhang L, Liu Z. Insecticidal toxicity of ω-Atypitoxin-Cs1a and its inhibitory effects on insect voltage-gated calcium channels. PEST MANAGEMENT SCIENCE 2023; 79:4879-4885. [PMID: 37506304 DOI: 10.1002/ps.7689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/15/2023] [Accepted: 07/29/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Excessive use of chemical insecticides raises concerns about insecticide resistance, urging the development of novel insecticides. Peptide neurotoxins from spider venom are an incredibly rich source of ion channel modulators with potent insecticidal activity. A neurotoxin U1-Atypitoxin-Cs1a from the spider Calommata signata was annotated previously. It was of interest to investigate its insecticidal activity and potential molecular targets. RESULTS Cs1a was heterologously expressed, purified and pharmacologically characterized here. The recombinant neurotoxin inhibited high-voltage-activated calcium channel currents with an median inhibitory concentration (IC50 ) value of 0.182 ± 0.026 μm on cockroach DUM neurons and thus was designated as ω-Atypitoxin-Cs1a. The recombinant Cs1a was toxic to three insect pests of agricultural importance, Nilaparvata lugens, Spodoptera frugiperda and Plutella xylostella with median lethal concentration (LD50 ) values of 0.121, 0.172 and 0.356 nmol g-1 , respectively, at 24 h postinjection. Cs1a was equivalently toxic to both insecticide-susceptible and -resistant insects. Cs1a exhibited low toxicity to Danio rerio with an LD50 of 2.316 nmol g-1 . CONCLUSION Our results suggest that ω-Atypitoxin-Cs1a is a potent CaV channel inhibitor and an attractive candidate reagent for pest control and resistance management. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Na Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yangyang Yan
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qianqian Han
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lingchun Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Xiao Z, Zhang Y, Zeng J, Liang S, Tang C, Liu Z. Purification and Characterization of a Novel Insecticidal Toxin, μ-sparatoxin-Hv2, from the Venom of the Spider Heteropoda venatoria. Toxins (Basel) 2018; 10:toxins10060233. [PMID: 29880771 PMCID: PMC6024679 DOI: 10.3390/toxins10060233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/03/2018] [Accepted: 06/06/2018] [Indexed: 12/27/2022] Open
Abstract
The venom of the spider Heteropoda venatoria produced lethal effect to cockroaches as reported in our previous study, and could be a resource for naturally-occurring insecticides. The present study characterized a novel cockroach voltage-gated sodium channels (NaVs) antagonist, μ-sparatoxin-Hv2 (μ-SPRTX-Hv2 for short), from this venom. μ-SPRTX-Hv2 is composed of 37 amino acids and contains six conserved cysteines. We synthesized the toxin by using the chemical synthesis method. The toxin was lethal to cockroaches when intraperitoneally injected, with a LD50 value of 2.8 nmol/g of body weight. Electrophysiological data showed that the toxin potently blocked NaVs in cockroach dorsal unpaired median (DUM) neurons, with an IC50 of 833.7 ± 132.2 nM, but it hardly affected the DUM voltage-gated potassium channels (KVs) and the DUM high-voltage-activated calcium channels (HVA CaVs). The toxin also did not affect NaVs, HVA CaVs, and Kvs in rat dorsal root ganglion (DRG) neurons, as well as NaV subtypes NaV1.3–1.5, NaV1.7, and NaV1.8. No envenomation symptoms were observed when μ-SPRTX-Hv2 was intraperitoneally injected into mouse at the dose of 7.0 μg/g. In summary, μ-SPRTX-Hv2 is a novel insecticidal toxin from H. venatoria venom. It might exhibit its effect by blocking the insect NaVs and is a candidate for developing bioinsecticide.
Collapse
Affiliation(s)
- Zhen Xiao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Yunxiao Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Jiao Zeng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Cheng Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
3
|
Yan S, Huang P, Wang Y, Zeng X, Zhang Y. The Venom of Ornithoctonus huwena affect the electrophysiological stability of neonatal rat ventricular myocytes by inhibiting sodium, potassium and calcium current. Channels (Austin) 2018. [PMID: 29532737 PMCID: PMC5972801 DOI: 10.1080/19336950.2018.1449497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Spider venoms are known to contain various toxins that are used as an effective means to capture their prey or to defend themselves against predators. An investigation of the properties of Ornithoctonus huwena (O.huwena) crude venom found that the venom can block neuromuscular transmission of isolated mouse phrenic nerve-diaphragm and sciatic nerve-sartorius preparations. However, little is known about its electrophysiological effects on cardiac myocytes. In this study, electrophysiological activities of ventricular myocytes were detected by 100 μg/mL venom of O.huwena, and whole cell patch-clamp technique was used to study the acute effects of the venom on action potential (AP), sodium current (INa), potassium currents (IKr, IKs, Ito1 and IK1) and L-type calcium current (ICaL). The results indicated that the venom prolongs APD90 in a frequency-dependent manner in isolated neonatal rat ventricular myocytes. 100 μg/mL venom inhibited 72.3 ± 3.6% INa current, 58.3 ± 4.2% summit current and 54 ± 6.1% the end current of IKr, and 65 ± 3.3% ICaL current, yet, didn't have obvious effect on IKs, Ito1 and IK1 currents. In conclusion, the O.huwena venom represented a multifaceted pharmacological profile. It contains abundant of cardiac channel antagonists and might be valuable tools for investigation of both channels and anti- arrhythmic therapy development.
Collapse
Affiliation(s)
- Sha Yan
- a Department of Dermatology, Xiangya Hospital , Central South University , Changsha , China.,b Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province , Central South University , Changsha , Hunan , China
| | - Pengfei Huang
- c The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences , Hunan Normal University , Changsha , P. R. China.,d The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development , College of Life Sciences, Hunan Normal University , Changsha , China
| | - Ying Wang
- c The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences , Hunan Normal University , Changsha , P. R. China.,d The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development , College of Life Sciences, Hunan Normal University , Changsha , China
| | - Xiongzhi Zeng
- c The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences , Hunan Normal University , Changsha , P. R. China.,d The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development , College of Life Sciences, Hunan Normal University , Changsha , China
| | - Yiya Zhang
- a Department of Dermatology, Xiangya Hospital , Central South University , Changsha , China.,b Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province , Central South University , Changsha , Hunan , China.,c The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences , Hunan Normal University , Changsha , P. R. China.,d The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development , College of Life Sciences, Hunan Normal University , Changsha , China
| |
Collapse
|
4
|
Deng M, Hu Z, Cai T, Liu K, Wu W, Luo X, Jiang L, Wang M, Yang J, Xiao Y, Liang S. Characterization of ion channels on subesophageal ganglion neurons from Chinese tarantula Ornithoctonus huwena: Exploring the myth of the spider insensitive to its venom. Toxicon 2016; 120:61-8. [PMID: 27452932 DOI: 10.1016/j.toxicon.2016.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/13/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022]
Abstract
Chinese tarantula Ornithoctonus huwena is one of the most venomous spiders distributing in the hilly areas of southern China. In this study, using whole-cell patch-clamp technique we investigated electrophysiological and pharmacological properties of ion channels from tarantula subesophageal ganglion neurons. It was found that the neurons express multiple kinds of ion channels at least including voltage-gated calcium channels, TTX-sensitive sodium channels and two types of potassium channels. They exhibit pharmacological properties similar to mammalian subtypes. Spider calcium channels were sensitive to ω-conotoxin GVIA and diltiazem, two well-known inhibitors of mammalian neuronal high-voltage-activated (HVA) subtypes. 4-Aminopyridine and tetraethylammonium could inhibit spider outward transient and delayed-rectifier potassium channels, respectively. Huwentoxin-I and huwentoxin-IV are two abundant toxic components in the venom of Ornithoctonus huwena. Interestingly, although in our previous work they inhibit HVA calcium channels and TTX-sensitive sodium channels from mammalian sensory neurons, respectively, they fail to affect the subtypes from spider neurons. Moreover, the crude venom has no effect on delayed-rectifier potassium channels and only slightly reduces transient outward potassium channels with an IC50 value of ∼51.3 mg/L. Therefore, our findings provide important evidence for ion channels from spiders having an evolution as self-defense and prey mechanism.
Collapse
Affiliation(s)
- Meichun Deng
- State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, Hunan, 410013, China; Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| | - Zhaotun Hu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, School of Biological and Food Engineering, Huaihua College, Huaihua, Hunan, 418008, China; Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| | - Tianfu Cai
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Kai Liu
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Wenfang Wu
- State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Xuan Luo
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Liping Jiang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Meichi Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Jing Yang
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Yucheng Xiao
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Songping Liang
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| |
Collapse
|
5
|
ω-Tbo-IT1-New Inhibitor of Insect Calcium Channels Isolated from Spider Venom. Sci Rep 2015; 5:17232. [PMID: 26611444 PMCID: PMC4661699 DOI: 10.1038/srep17232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/27/2015] [Indexed: 11/08/2022] Open
Abstract
Novel disulfide-containing polypeptide toxin was discovered in the venom of the Tibellus oblongus spider. We report on isolation, spatial structure determination and electrophysiological characterization of this 41-residue toxin, called ω-Tbo-IT1. It has an insect-toxic effect with LD50 19 μg/g in experiments on house fly Musca domestica larvae and with LD50 20 μg/g on juvenile Gromphadorhina portentosa cockroaches. Electrophysiological experiments revealed a reversible inhibition of evoked excitatory postsynaptic currents in blow fly Calliphora vicina neuromuscular junctions, while parameters of spontaneous ones were not affected. The inhibition was concentration dependent, with IC50 value 40 ± 10 nM and Hill coefficient 3.4 ± 0.3. The toxin did not affect frog neuromuscular junctions or glutamatergic and GABAergic transmission in rat brains. Ca(2+) currents in Calliphora vicina muscle were not inhibited, whereas in Periplaneta americana cockroach neurons at least one type of voltage gated Ca(2+) current was inhibited by ω-Tbo-IT1. Thus, the toxin apparently acts as an inhibitor of presynaptic insect Ca(2+) channels. Spatial structure analysis of the recombinant ω-Tbo-IT1 by NMR spectroscopy in aqueous solution revealed that the toxin comprises the conventional ICK fold containing an extended β-hairpin loop and short β-hairpin loop which are capable of making "scissors-like mutual motions".
Collapse
|
6
|
Zhang YY, Huang Y, He QZ, Luo J, Zhu L, Lu SS, Liu JY, Huang PF, Zeng XZ, Liang SP. Structural and Functional Diversity of Peptide Toxins from Tarantula Haplopelma hainanum (Ornithoctonus hainana) Venom Revealed by Transcriptomic, Peptidomic, and Patch Clamp Approaches. J Biol Chem 2015; 290:14192-207. [PMID: 25770214 DOI: 10.1074/jbc.m114.635458] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Indexed: 11/06/2022] Open
Abstract
Spider venom is a complex mixture of bioactive peptides to subdue their prey. Early estimates suggested that over 400 venom peptides are produced per species. In order to investigate the mechanisms responsible for this impressive diversity, transcriptomics based on second generation high throughput sequencing was combined with peptidomic assays to characterize the venom of the tarantula Haplopelma hainanum. The genes expressed in the venom glands were identified, and the bioactivity of their protein products was analyzed using the patch clamp technique. A total of 1,136 potential toxin precursors were identified that clustered into 90 toxin groups, of which 72 were novel. The toxin peptides clustered into 20 cysteine scaffolds that included between 4 and 12 cysteines, and 14 of these groups were newly identified in this spider. Highly abundant toxin peptide transcripts were present and resulted from hypermutation and/or fragment insertion/deletion. In combination with variable post-translational modifications, this genetic variability explained how a limited set of genes can generate hundreds of toxin peptides in venom glands. Furthermore, the intraspecies venom variability illustrated the dynamic nature of spider venom and revealed how complex components work together to generate diverse bioactivities that facilitate adaptation to changing environments, types of prey, and milking regimes in captivity.
Collapse
Affiliation(s)
- Yi-Ya Zhang
- From the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China and
| | - Yong Huang
- the State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai District, Beijing 100071, China
| | - Quan-Ze He
- From the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China and
| | - Ji Luo
- From the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China and
| | - Li Zhu
- From the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China and
| | - Shan-Shan Lu
- From the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China and
| | - Jin-Yan Liu
- From the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China and
| | - Peng-Fei Huang
- From the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China and
| | - Xiong-Zhi Zeng
- From the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China and
| | - Song-Ping Liang
- From the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China and
| |
Collapse
|
7
|
Zhang Y, Huang Y, He Q, Liu J, Luo J, Zhu L, Lu S, Huang P, Chen X, Zeng X, Liang S. Toxin diversity revealed by a transcriptomic study of Ornithoctonus huwena. PLoS One 2014; 9:e100682. [PMID: 24949878 PMCID: PMC4065081 DOI: 10.1371/journal.pone.0100682] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/26/2014] [Indexed: 12/31/2022] Open
Abstract
Spider venom comprises a mixture of compounds with diverse biological activities, which are used to capture prey and defend against predators. The peptide components bind a broad range of cellular targets with high affinity and selectivity, and appear to have remarkable structural diversity. Although spider venoms have been intensively investigated over the past few decades, venomic strategies to date have generally focused on high-abundance peptides. In addition, the lack of complete spider genomes or representative cDNA libraries has presented significant limitations for researchers interested in molecular diversity and understanding the genetic mechanisms of toxin evolution. In the present study, second-generation sequencing technologies, combined with proteomic analysis, were applied to determine the diverse peptide toxins in venom of the Chinese bird spider Ornithoctonus huwena. In total, 626 toxin precursor sequences were retrieved from transcriptomic data. All toxin precursors clustered into 16 gene superfamilies, which included six novel superfamilies and six novel cysteine patterns. A surprisingly high number of hypermutations and fragment insertions/deletions were detected, which accounted for the majority of toxin gene sequences with low-level expression. These mutations contribute to the formation of diverse cysteine patterns and highly variable isoforms. Furthermore, intraspecific venom variability, in combination with variable transcripts and peptide processing, contributes to the hypervariability of toxins in venoms, and associated rapid and adaptive evolution of toxins for prey capture and defense.
Collapse
Affiliation(s)
- Yiya Zhang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yong Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Quanze He
- The State Key Laboratory of Genetic Engineering, Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Jinyan Liu
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ji Luo
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Li Zhu
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shanshan Lu
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Pengfei Huang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xinyi Chen
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiongzhi Zeng
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
- * E-mail: (ZX); (SL)
| | - Songping Liang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
- * E-mail: (ZX); (SL)
| |
Collapse
|
8
|
Jiang L, Deng M, Duan Z, Tang X, Liang S. Molecular cloning, bioinformatics analysis and functional characterization of HWTX-XI toxin superfamily from the spider Ornithoctonus huwena. Peptides 2014; 54:9-18. [PMID: 24418069 DOI: 10.1016/j.peptides.2014.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/02/2014] [Accepted: 01/03/2014] [Indexed: 01/18/2023]
Abstract
Spider venom contains a very valuable repertoire of natural resources to discover novel components for molecular diversity analyses and therapeutic applications. In this study, HWTX-XI toxins from the spider venom glands of Ornithoctonus huwena which are Kunitz-type toxins (KTTs) and were directly cloned, analyzed and functionally characterized. To date, the HWTX-XI superfamily consists of 38 members deduced from 121 high-quality expressed sequence tags, which is the largest spider KTT superfamily with significant molecular diversity mainly resulted from cDNA tandem repeats as well as focal hypermutation. Among them, HW11c40 and HW11c50 may be intermediate variants between native Kunitz toxins and sub-Kunitz toxins based on evolutionary analyses. In order to elucidate their biological activities, recombinant HW11c4, HW11c24, HW11c27 and HW11c39 were successfully expressed, further purified and functionally characterized. Both HW11c4 and HW11c27 display inhibitory activities against trypsin, chymotrypsin and kallikrein. Moreover, HW11c4 is also an inhibitor relatively specific for Kv1.1 channels. HW11c24 and HW11c39 are found to be inactive on chymotrysin, trypsin, kallikrein, thrombin and ion channels. These findings provide molecular evidence for toxin diversification of the HWTX-XI superfamily and useful molecular templates of serine protease inhibitors and ion channel blockers for the development of potentially clinical applications.
Collapse
Affiliation(s)
- Liping Jiang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China.
| | - Meichun Deng
- Department of Biochemistry, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Zhigui Duan
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, PR China
| | - Xing Tang
- College of Chemistry, Biology, and Material Science, East China Institute of Technology, Nanchang, Jiangxi 330013, PR China
| | - Songping Liang
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, PR China.
| |
Collapse
|
9
|
Schwartz EF, Mourão CBF, Moreira KG, Camargos TS, Mortari MR. Arthropod venoms: A vast arsenal of insecticidal neuropeptides. Biopolymers 2012. [DOI: 10.1002/bip.22100] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Windley MJ, Herzig V, Dziemborowicz SA, Hardy MC, King GF, Nicholson GM. Spider-venom peptides as bioinsecticides. Toxins (Basel) 2012; 4:191-227. [PMID: 22741062 PMCID: PMC3381931 DOI: 10.3390/toxins4030191] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/07/2012] [Accepted: 03/15/2012] [Indexed: 12/19/2022] Open
Abstract
Over 10,000 arthropod species are currently considered to be pest organisms. They are estimated to contribute to the destruction of ~14% of the world's annual crop production and transmit many pathogens. Presently, arthropod pests of agricultural and health significance are controlled predominantly through the use of chemical insecticides. Unfortunately, the widespread use of these agrochemicals has resulted in genetic selection pressure that has led to the development of insecticide-resistant arthropods, as well as concerns over human health and the environment. Bioinsecticides represent a new generation of insecticides that utilise organisms or their derivatives (e.g., transgenic plants, recombinant baculoviruses, toxin-fusion proteins and peptidomimetics) and show promise as environmentally-friendly alternatives to conventional agrochemicals. Spider-venom peptides are now being investigated as potential sources of bioinsecticides. With an estimated 100,000 species, spiders are one of the most successful arthropod predators. Their venom has proven to be a rich source of hyperstable insecticidal mini-proteins that cause insect paralysis or lethality through the modulation of ion channels, receptors and enzymes. Many newly characterized insecticidal spider toxins target novel sites in insects. Here we review the structure and pharmacology of these toxins and discuss the potential of this vast peptide library for the discovery of novel bioinsecticides.
Collapse
Affiliation(s)
- Monique J. Windley
- Neurotoxin Research Group, School of Medical & Molecular Biosciences, University of Technology, Sydney, Broadway NSW 2007, Australia; (M.J.W.); (S.A.D.)
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia; (V.H.); (M.C.H.)
| | - Sławomir A. Dziemborowicz
- Neurotoxin Research Group, School of Medical & Molecular Biosciences, University of Technology, Sydney, Broadway NSW 2007, Australia; (M.J.W.); (S.A.D.)
| | - Margaret C. Hardy
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia; (V.H.); (M.C.H.)
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia; (V.H.); (M.C.H.)
| | - Graham M. Nicholson
- Neurotoxin Research Group, School of Medical & Molecular Biosciences, University of Technology, Sydney, Broadway NSW 2007, Australia; (M.J.W.); (S.A.D.)
| |
Collapse
|
11
|
Chen J, Zhang Y, Rong M, Zhao L, Jiang L, Zhang D, Wang M, Xiao Y, Liang S. Expression and characterization of jingzhaotoxin-34, a novel neurotoxin from the venom of the tarantula Chilobrachys jingzhao. Peptides 2009; 30:1042-8. [PMID: 19463735 DOI: 10.1016/j.peptides.2009.02.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Revised: 02/23/2009] [Accepted: 02/26/2009] [Indexed: 11/30/2022]
Abstract
Jingzhaotoxin-34 (JZTX-34) is a 35-residue polypeptide from the venom of Chinese tarantula Chilobrachys jingzhao. Our previous work reported its full-length cDNA sequence encoding a precursor with 87 residues. In this study we report the protein expression and biological function characterization. The toxin was efficiently expressed by the secretary pathway in yeast. Under whole-cell patch-clamp mode, the expressed JZTX-34 was able to inhibit tetrodotoxin-sensitive (TTX-S) sodium currents (IC(50) approximately 85 nM) while having no significant effects on tetrodotoxin-resistant (TTX-R) sodium currents on rat dorsal root ganglion neurons. The inhibition of TTX-S sodium channels was completely reversed by strong depolarization (+120 mV). Toxin treatment altered neither channel activation and inactivation kinetics nor recovery rate from inactivation. However, it is interesting to note that in contrast to huwentoxin-IV, a recently identified receptor site-4 toxin from Ornithoctonus huwena venom, 100 nM JZTX-34 caused a negative shift of steady-state inactivation curve of TTX-S sodium channels by approximately 10 mV. The results indicated that JZTX-34 might inhibit mammalian sensory neuronal sodium channels through a mechanism similar to HWTX-IV by trapping the IIS4 voltage sensor in the resting conformation, but their binding sites should not overlay completely.
Collapse
Affiliation(s)
- Jinjun Chen
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Jiang L, Peng L, Zhang Y, Chen J, Zhang D, Liang S. Expression, purification and characterization of a group of lectin-like peptides from the spider Ornithoctonus huwena. Peptides 2009; 30:669-74. [PMID: 19150376 DOI: 10.1016/j.peptides.2008.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 11/30/2008] [Accepted: 12/02/2008] [Indexed: 10/21/2022]
Abstract
By sequencing random clones from the venom gland cDNA library of the spider Ornithoctonus huwena, a transcript, named SHL-Ib1, encoding a lectin-like peptide was cloned. The amino acid sequence of the putative mature peptide of SHL-Ib1 is identical, except for seven different residues, with that of SHL-I, a lectin found in the venom of O. huwena. The mature peptides of SHL-Ib1b and SHL-Ib1c are the mutants of SHL-Ib1 with two or three amino acid residues truncated at the C-terminal. The recombinant SHL-Ib1b and SHL-Ib1c were expressed successfully by the yeast expression system and purified by using a combination of ion-exchange and reverse phase high performance liquid chromatography (HPLC). The molecular masses of the two expressed peptides were identified by mass spectrometry, indicating that the C-terminals of the two peptides were not amidated. The two peptides can agglutinate human erythrocytes at minimal concentrations of 0.75 and 1.475mg/ml, respectively. Structure modeling of SHL-Ib1 has given a clue to the low agglutination bioactivities of these recombinant toxins. These lectin-like peptides, due to the small molecular sizes, may have the advantage to investigate the binding mechanism of the lectin and have the potential to be the carrier for drug delivery.
Collapse
|