1
|
Lyudinina AY, Parshukova OI, Bojko ER. n-3 Polyunsaturated Fatty Acids Are Associated with Stable Nitric Oxide Metabolites in Highly Trained Athletes. Cells 2024; 13:1110. [PMID: 38994963 PMCID: PMC11240318 DOI: 10.3390/cells13131110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND The aim of this study was to investigate the relationships between levels of n-3 essential polyunsaturated fatty acids (n-3 PUFAs) and stable nitric oxide (NO) metabolites in the plasma of athletes. METHODS Highly trained cross-country skiers (males, n = 39) were examined. The fatty acid profile of the total plasma lipids was determined by gas chromatography. The plasma NO level was studied by a colorimetric method via reaction with Griess reagent. RESULTS A widespread deficiency of essential n-3 PUFAs in the plasma of athletes (more than 80% of the subjects) was demonstrated in association with an imbalance in the levels of nitrates (NO3) and nitrites (NO2). A lower value of n-3 linolenic acid in the plasma (0.21 mol/%) was associated with a NO3 level below the normal range (n-3 C18:3 and NO3 Rs = 0.461; p = 0.003). Higher levels of n-3 eicosapentaenoic acid (0.8 mol/%) were associated with a concentration of NO2 above the normal value (n-3 C20:5 and NO2 Rs = 0.449; p = 0.004). CONCLUSION For the first time, the participation of essential n-3 PUFAs in the nitrite-nitrate pathway of NO synthesis in highly trained skiers was demonstrated.
Collapse
Affiliation(s)
| | | | - Evgeny R. Bojko
- Institute of Physiology, Komi Science Centre, Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, 50 Pervomayskaya Str., 167982 Syktyvkar, Russia; (A.Y.L.); (O.I.P.)
| |
Collapse
|
2
|
Szewczyk-Roszczenko OK, Roszczenko P, Shmakova A, Finiuk N, Holota S, Lesyk R, Bielawska A, Vassetzky Y, Bielawski K. The Chemical Inhibitors of Endocytosis: From Mechanisms to Potential Clinical Applications. Cells 2023; 12:2312. [PMID: 37759535 PMCID: PMC10527932 DOI: 10.3390/cells12182312] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Endocytosis is one of the major ways cells communicate with their environment. This process is frequently hijacked by pathogens. Endocytosis also participates in the oncogenic transformation. Here, we review the approaches to inhibit endocytosis, discuss chemical inhibitors of this process, and discuss potential clinical applications of the endocytosis inhibitors.
Collapse
Affiliation(s)
| | - Piotr Roszczenko
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (P.R.); (A.B.)
| | - Anna Shmakova
- CNRS, UMR 9018, Institut Gustave Roussy, Université Paris-Saclay, 94800 Villejuif, France;
| | - Nataliya Finiuk
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov 14/16, 79005 Lviv, Ukraine;
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; (S.H.); (R.L.)
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; (S.H.); (R.L.)
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (P.R.); (A.B.)
| | - Yegor Vassetzky
- CNRS, UMR 9018, Institut Gustave Roussy, Université Paris-Saclay, 94800 Villejuif, France;
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland;
| |
Collapse
|
3
|
Albrakati A. Caveolar disruption with methyl-β-cyclodextrin causes endothelium-dependent contractions in Wistar rat carotid arteries. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63071-63080. [PMID: 35445923 DOI: 10.1007/s11356-022-20226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Caveolae are organizing centers for cellular signal transduction in endothelial cells (ED) and smooth muscle cells (SMCs) in the blood vessels. Myography was used to investigate the effects of a caveolar disruption using methyl-β-cyclodextrin (MBCD) on maxi-K channels in rat carotid arteries. Incubation of carotid segments with MBCD augmented contractions in response to BaK (chemical channel agonist) but not those induced by depolarizing high potassium physiological saline (KPSS). In contrast, incubation with cholesterol-saturated MBCD (Ch-MBCD) abolished the effects of MBCD. Mechanical removal of endothelial cells by MBCD triggered a small contraction in response to BaK. Incubation with nitroarginine methyl ester (L-NAME) inhibited nitric oxide (NO) release, causing increased contractions in response to BaK, and this effect was reversed by pretreatment with MBCD. These results suggest that MBCD inhibits endothelial NO release. Contrastingly, inhibition of maxi-K channels with iberiotoxin enhanced contractions in response to BaK. Likewise, L-NAME decreased the contractile effect of iberiotoxin, as in the ED-denuded arteries. Transmission electron microscopy (TEM) showed the presence and absence of caveolae in intact blood vessels before and after MBCD treatment, respectively, whereas histology confirmed ED removal after the treatment. Caveolar disruption using MBCD impairs ED-dependent relaxation by inhibiting the release of NO from the ED and altered the contractility of SMCs independent of the ED due to reduced contribution of maxi-K channels to the SMC membrane potential, causing depolarization and increasing carotid artery contraction. These findings might help to understand the physiological role of the maxi-K channels in rat carotid arteries.
Collapse
Affiliation(s)
- Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| |
Collapse
|
4
|
Fliri AF, Kajiji S. Functional characterization of nutraceuticals using spectral clustering: Centrality of caveolae-mediated endocytosis for management of nitric oxide and vitamin D deficiencies and atherosclerosis. Front Nutr 2022; 9:885364. [PMID: 36046126 PMCID: PMC9421303 DOI: 10.3389/fnut.2022.885364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
It is well recognized that redox imbalance, nitric oxide (NO), and vitamin D deficiencies increase risk of cardiovascular, metabolic, and infectious diseases. However, clinical studies assessing efficacy of NO and vitamin D supplementation have failed to produce unambiguous efficacy outcomes suggesting that the understanding of the pharmacologies involved is incomplete. This raises the need for using systems pharmacology tools to better understand cause-effect relationships at biological systems levels. We describe the use of spectral clustering methodology to analyze protein network interactions affected by a complex nutraceutical, Cardio Miracle (CM), that contains arginine, citrulline, vitamin D, and antioxidants. This examination revealed that interactions between protein networks affected by these substances modulate functions of a network of protein complexes regulating caveolae-mediated endocytosis (CME), TGF beta activity, vitamin D efficacy and host defense systems. Identification of this regulatory scheme and the working of embedded reciprocal feedback loops has significant implications for treatment of vitamin D deficiencies, atherosclerosis, metabolic and infectious diseases such as COVID-19.
Collapse
|
5
|
Bernak-Oliveira Â, Guizoni DM, Chiavegatto S, Davel AP, Rossoni LV. The protective role of neuronal nitric oxide synthase in endothelial vasodilation in chronic β-adrenoceptor overstimulation. Life Sci 2021; 285:119939. [PMID: 34506836 DOI: 10.1016/j.lfs.2021.119939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 01/12/2023]
Abstract
AIMS Nitric oxide synthases (NOSs) are key enzymes regulating vascular function. Previously, we reported that β-adrenergic (β-AR) overstimulation, a common feature of cardiovascular diseases, did not impair endothelium-dependent vasodilation, although it resulted in endothelial NOS (eNOS) uncoupling and reduced NO bioavailability. In addition to NO, neuronal NOS (nNOS) produces H2O2, which contributes to vasodilation. However, there is limited information regarding vascular β-AR signaling and nNOS. In the present study, we assessed the possible role of nNOS-derived H2O2 and caveolins on endothelial vasodilation function following β-AR overstimulation. MAIN METHODS Male C57BL/6 wild-type and nNOS knockout mice (nNOS-/-) were treated with the β-AR agonist isoproterenol (ISO, 15 mg·kg-1·day-1, s.c.) or vehicle (VHE) for seven days. Relaxation responses of aortic rings were evaluated using wire myograph and H2O2 by Amplex Red. KEY FINDINGS Acetylcholine- or calcium ionophore A23187-induced endothelium-dependent relaxation was similar in aortic rings from VHE and ISO. However, this relaxation was significantly reduced in aortas from ISO compared to VHE when (1) caveolae were disrupted, (2) nNOS was pharmacologically inhibited or genetically suppressed and (3) H2O2 was scavenged. NOS-derived H2O2 production was higher in the aortas of ISO mice than in those of VHE mice. Aortas from ISO-treated mice showed increased expression of caveolin-1, nNOS and catalase, while caveolin-3 expression did not change. SIGNIFICANCE The results suggest a role of caveolin-1 and the nNOS/H2O2 vasodilatory pathway in endothelium-dependent relaxation following β-AR overstimulation and reinforce the protective role of nNOS in cardiovascular diseases associated with high adrenergic tone.
Collapse
Affiliation(s)
- Ângelo Bernak-Oliveira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences (ICB), University of Sao Paulo (USP), Brazil
| | - Daniele M Guizoni
- Department of Structural and Functional Biology, Institute of Biology (IB), University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Silvana Chiavegatto
- Department of Pharmacology, Institute of Biomedical Sciences (ICB), University of Sao Paulo (USP), Brazil; Department of Psychiatry, Institute of Psychiatry (IPq), University of Sao Paulo Medical School (FMUSP), Sao Paulo, Brazil
| | - Ana P Davel
- Department of Structural and Functional Biology, Institute of Biology (IB), University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil.
| | - Luciana V Rossoni
- Department of Physiology and Biophysics, Institute of Biomedical Sciences (ICB), University of Sao Paulo (USP), Brazil.
| |
Collapse
|
6
|
Modulatory effects of BPC 157 on vasomotor tone and the activation of Src-Caveolin-1-endothelial nitric oxide synthase pathway. Sci Rep 2020; 10:17078. [PMID: 33051481 PMCID: PMC7555539 DOI: 10.1038/s41598-020-74022-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
BPC 157-activated endothelial nitric oxide synthase (eNOS) is associated with tissue repair and angiogenesis as reported in previous studies. However, how BPC 157 regulates the vasomotor tone and intracellular Src-Caveolin-1 (Cav-1)-eNOS signaling is not yet clear. The present study demonstrated a concentration-dependent vasodilation effect of BPC 157 in isolated rat aorta. Attenuation of this vasodilation effect in the absence of endothelium suggested an endothelium-dependent vasodilation effect of BPC 157. Although slightly increased vasorelaxation in aorta without endothelium was noticed at high concentration of BPC 157, there was no direct relaxation effect on three-dimensional model made of vascular smooth muscle cells. The vasodilation effect of BPC 157 was nitric oxide mediated because the addition of L-NAME or hemoglobin inhibited the vasodilation of aorta. Nitric oxide generation was induced by BPC 157 as detected by intracellular DFA-FM DA labeling which was capable of promoting the migration of vascular endothelial cells. BPC 157 enhanced the phosphorylation of Src, Cav-1 and eNOS which was abolished by pretreatment with Src inhibitor, confirming the upstream role of Src in this signal pathway. Activation of eNOS required the released binding with Cav-1 in advance. Co-immunoprecipitation analysis revealed that BPC 157 could reduce the binding between Cav-1 and eNOS. Together, the present study demonstrates that BPC 157 can modulate the vasomotor tone of an isolated aorta in a concentration- and nitric oxide-dependent manner. BPC 157 can induce nitric oxide generation likely through the activation of Src-Cav-1-eNOS pathway.
Collapse
|
7
|
Gambardella J, Khondkar W, Morelli MB, Wang X, Santulli G, Trimarco V. Arginine and Endothelial Function. Biomedicines 2020; 8:277. [PMID: 32781796 PMCID: PMC7460461 DOI: 10.3390/biomedicines8080277] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Arginine (L-arginine), is an amino acid involved in a number of biological processes, including the biosynthesis of proteins, host immune response, urea cycle, and nitric oxide production. In this systematic review, we focus on the functional role of arginine in the regulation of endothelial function and vascular tone. Both clinical and preclinical studies are examined, analyzing the effects of arginine supplementation in hypertension, ischemic heart disease, aging, peripheral artery disease, and diabetes mellitus.
Collapse
Affiliation(s)
- Jessica Gambardella
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY 10461, USA
- Department of Advanced Biomedical Sciences, “Federico II” University, 80131 Naples, Italy
- International Translational Research and Medical Education (ITME), 80100 Naples, Italy
| | - Wafiq Khondkar
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
| | - Marco Bruno Morelli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY 10461, USA
| | - Xujun Wang
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
| | - Gaetano Santulli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY 10461, USA
- Department of Advanced Biomedical Sciences, “Federico II” University, 80131 Naples, Italy
- International Translational Research and Medical Education (ITME), 80100 Naples, Italy
| | - Valentina Trimarco
- Department of Neuroscience, “Federico II” University, 80131 Naples, Italy;
| |
Collapse
|
8
|
Moccia F, Negri S, Faris P, Berra-Romani R. Targeting the Endothelial Ca2+ Toolkit to Rescue Endothelial Dysfunction in Obesity Associated-Hypertension. Curr Med Chem 2020; 27:240-257. [PMID: 31486745 DOI: 10.2174/0929867326666190905142135] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/03/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Obesity is a major cardiovascular risk factor which dramatically impairs endothelium- dependent vasodilation and leads to hypertension and vascular damage. The impairment of the vasomotor response to extracellular autacoids, e.g., acetylcholine, mainly depends on the reduced Nitric Oxide (NO) bioavailability, which hampers vasorelaxation in large conduit arteries. In addition, obesity may affect Endothelium-Dependent Hyperpolarization (EDH), which drives vasorelaxation in small resistance arteries and arterioles. Of note, endothelial Ca2+ signals drive NO release and trigger EDH. METHODS A structured search of bibliographic databases was carried out to retrieve the most influential, recent articles on the impairment of vasorelaxation in animal models of obesity, including obese Zucker rats, and on the remodeling of the endothelial Ca2+ toolkit under conditions that mimic obesity. Furthermore, we searched for articles discussing how dietary manipulation could be exploited to rescue Ca2+-dependent vasodilation. RESULTS We found evidence that the endothelial Ca2+ could be severely affected by obese vessels. This rearrangement could contribute to endothelial damage and is likely to be involved in the disruption of vasorelaxant mechanisms. However, several Ca2+-permeable channels, including Vanilloid Transient Receptor Potential (TRPV) 1, 3 and 4 could be stimulated by several food components to stimulate vasorelaxation in obese individuals. CONCLUSION The endothelial Ca2+ toolkit could be targeted to reduce vascular damage and rescue endothelium- dependent vasodilation in obese vessels. This hypothesis remains, however, to be probed on truly obese endothelial cells.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
9
|
Wu Y, Wang X, Zhou Q, Wang Y, Zhou J, Jiang Q, Wang Y, Zhu H. ATRA improves endothelial dysfunction in atherosclerotic rabbits by decreasing CAV‑1 expression and enhancing eNOS activity. Mol Med Rep 2018; 17:6796-6802. [PMID: 29488619 DOI: 10.3892/mmr.2018.8647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 12/09/2016] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to explore the protective effects and possible mechanisms of all‑trans‑retinoic acid (ATRA) against atherosclerosis (AS). Rabbits were randomly allocated for standard or high‑fat diet with or without ATRA. After 12 weeks, the aortic rings of the rabbits were removed. Endothelium‑dependent relaxation (EDR) induced by acetylcholine and non‑endothelium‑dependent relaxation induced by sodium nitroprusside in the thoracic aorta were evaluated. NO level and eNOS activity were measured according to the protocol of NO and eNOS ELISA kits. The permeability and morphology of the arterial walls were identified by immunofluorescence and H&E staining respectively. The expression of caveolin‑1 (CAV‑1) and occludin was analyzed using western blotting and immunohistochemistry. The EDR function was significantly reduced in the AS rabbits compared with the normal group, however it was elevated following treatment with ATRA. The eNOS activity and NO level were reduced in the AS group, however were notably increased following oral administration of ATRA. There was an enhancement of endothelial permeability in the AS group compared with the normal group, which decreased following ATRA treatment. Western blot analysis and immunohistochemical analysis identified an increase in occludin expression after treatment with ATRA, in contrast to CAV‑1 expression under the same conditions. ATRA is able to ameliorate high‑fat‑induced AS in rabbits, which is mediated through the activation of eNOS and downregulating CAV‑1 expression.
Collapse
Affiliation(s)
- Yan Wu
- Reproductive Medicine Center, 105 Hospital of People's Liberation Army, Hefei, Anhui 230031, P.R. China
| | - Xiaobian Wang
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qing Zhou
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yi Wang
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jiali Zhou
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qiaoling Jiang
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuan Wang
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Huaqing Zhu
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
10
|
Emerging role of various signaling pathways in the pathogenesis and therapeutics of atherosclerosis. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.rvm.2017.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Tao L, Nie Y, Wang G, Ding Y, Ding J, Xiong F, Tang S, Wang Y, Zhou B, Zhu H. All‑trans retinoic acid reduces endothelin‑1 expression and increases endothelial nitric oxide synthase phosphorylation in rabbits with atherosclerosis. Mol Med Rep 2017; 17:2619-2625. [PMID: 29207193 DOI: 10.3892/mmr.2017.8156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 10/24/2017] [Indexed: 11/06/2022] Open
Abstract
All-trans retinoic acid (ATRA) is a natural derivative of vitamin A that ameliorates atherosclerosis (AS) by regulating inflammatory factors. However, studies concerning the role of retinoic acid in artery endothelial function are rare. Therefore, the present study investigated its role in regulating the production of endothelin‑1 (ET‑1) and nitric oxide (NO) in rabbits with AS. The rabbits were randomly divided into 3 groups: The control group was administered an ordinary diet, while the high fat group and the ATRA drug intervention group were administered a high fat diet. After 12 weeks, the blood lipid levels of rabbits, the morphological structure of the arterial wall, the arterial intimal permeability, the activity of blood endothelial nitric oxide synthase (eNOS) and the level of plasma NO were investigated. Western blot analysis was used to detect the levels of ET‑1, eNOS and eNOS phosphorylation at Ser‑1177 (p‑eNOS), and a radioimmunoassay was performed to detect the level of ET‑1 in the plasma. It was identified that plaque formation was alleviated in the ATRA group compared with the high fat group, as revealed by hematoxylin and eosin and oil red O staining, and a similar trend was reflected in the immunofluorescence results for endothelial permeability. Western blotting demonstrated significantly decreased ET‑1 expression levels in the arterial tissue of rabbits in the ATRA group compared with the high fat group, together with increased p‑eNOS level (P<0.05), however, no difference was observed in the expression of eNOS (P>0.05). The trends observed for ET‑1 and the activity of eNOS in plasma were similar to those for arterial tissue. Therefore, the present study demonstrated that ATRA may regulate the grade of AS by the reduction of ET‑1 secretion and increased NO formation via increased phosphorylation of eNOS. ATRA provides a potential novel method for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Linlin Tao
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yumei Nie
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Ganxian Wang
- Laboratory of Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yanhui Ding
- Laboratory of Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Junli Ding
- Laboratory of Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Fangyuan Xiong
- Laboratory of Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Songtao Tang
- Laboratory of Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuan Wang
- Laboratory of Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Birong Zhou
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Huaqing Zhu
- Laboratory of Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
12
|
Shihata WA, Putra MRA, Chin-Dusting JPF. Is There a Potential Therapeutic Role for Caveolin-1 in Fibrosis? Front Pharmacol 2017; 8:567. [PMID: 28970796 PMCID: PMC5609631 DOI: 10.3389/fphar.2017.00567] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/09/2017] [Indexed: 01/06/2023] Open
Abstract
Fibrosis is a process of dysfunctional wound repair, described by a failure of tissue regeneration and excessive deposition of extracellular matrix, resulting in tissue scarring and subsequent organ deterioration. There are a broad range of stimuli that may trigger, and exacerbate the process of fibrosis, which can contribute to the growing rates of morbidity and mortality. Whilst the process of fibrosis is widely described and understood, there are no current standard treatments that can reduce or reverse the process effectively, likely due to the continuing knowledge gaps surrounding the cellular mechanisms involved. Several cellular targets have been implicated in the regulation of the fibrotic process including membrane domains, ion channels and more recently mechanosensors, specifically caveolae, particularly since these latter contain various signaling components, such as members of the TGFβ and MAPK/ERK signaling pathways, all of which are key players in the process of fibrosis. This review explores the anti-fibrotic influences of the caveola, and in particular the key underpinning protein, caveolin-1, and its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Waled A Shihata
- Vascular Pharmacology Laboratory, Cardiovascular Disease Program, Department of Pharmacology, Biomedical Discovery Institute, Monash UniversityClayton, VIC, Australia.,Department of Medicine, Monash UniversityClayton, VIC, Australia.,Baker Heart and Diabetes InstituteMelbourne, VIC, Australia
| | - Mohammad R A Putra
- Vascular Pharmacology Laboratory, Cardiovascular Disease Program, Department of Pharmacology, Biomedical Discovery Institute, Monash UniversityClayton, VIC, Australia
| | - Jaye P F Chin-Dusting
- Vascular Pharmacology Laboratory, Cardiovascular Disease Program, Department of Pharmacology, Biomedical Discovery Institute, Monash UniversityClayton, VIC, Australia.,Department of Medicine, Monash UniversityClayton, VIC, Australia.,Baker Heart and Diabetes InstituteMelbourne, VIC, Australia
| |
Collapse
|
13
|
Bondarenko AI, Panasiuk O, Okhai I, Montecucco F, Brandt KJ, Mach F. Direct activation of Ca 2+ and voltage-gated potassium channels of large conductance by anandamide in endothelial cells does not support the presence of endothelial atypical cannabinoid receptor. Eur J Pharmacol 2017; 805:14-24. [PMID: 28327344 PMCID: PMC6520242 DOI: 10.1016/j.ejphar.2017.03.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 11/23/2022]
Abstract
Endocannabinoid anandamide induces endothelium-dependent relaxation commonly attributed to stimulation of the G-protein coupled endothelial anandamide receptor. The study addressed the receptor-independent effect of anandamide on large conductance Ca2+-dependent K+ channels expressed in endothelial cell line EA.hy926. Under resting conditions, 10µM anandamide did not significantly influence the resting membrane potential. In a Ca2+-free solution the cells were depolarized by ~10mV. Further administration of 10µM anandamide hyperpolarized the cells by ~8mV. In voltage-clamp mode, anandamide elicited the outwardly rectifying whole-cell current sensitive to paxilline but insensitive to GDPβS, a G-protein inhibitor. Administration of 70µM Mn2+, an agent used to promote integrin clustering, reversibly stimulated whole-cell current, but failed to further facilitate the anandamide-stimulated current. In an inside-out configuration, anandamide (0.1-30µM) facilitated single BKCa channel activity in a concentration-dependent manner within a physiological Ca2+ range and a wide range of voltages, mainly by reducing mean closed time. The effect is essentially eliminated following chelation of Ca2+ from the cytosolic face and pre-exposure to cholesterol-reducing agent methyl-β-cyclodextrin. O-1918 (3µM), a cannabidiol analog used as a selective antagonist of endothelial anandamide receptor, reduced BKCa channel activity in inside-out patches. These results do not support the existence of endothelial cannabinoid receptor and indicate that anandamide acts as a direct BKCa opener. The action does not require cell integrity or integrins and is caused by direct modification of BKCa channel activity.
Collapse
Affiliation(s)
- Alexander I Bondarenko
- Circulatory Physiology Department, Bogomoletz Institute of Physiology NAS of Ukraine, Bogomoletz Str, 4, Kiev 01024, Ukraine; Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Olga Panasiuk
- Circulatory Physiology Department, Bogomoletz Institute of Physiology NAS of Ukraine, Bogomoletz Str, 4, Kiev 01024, Ukraine
| | - Iryna Okhai
- Circulatory Physiology Department, Bogomoletz Institute of Physiology NAS of Ukraine, Bogomoletz Str, 4, Kiev 01024, Ukraine
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; IRCCS AOU San Martino - IST, Genoa, 10 Largo Benzi, 16132 Genoa, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy
| | - Karim J Brandt
- Division of Cardiology, Foundation for Medical Researches, Department of Internal Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland
| | - Francois Mach
- Division of Cardiology, Foundation for Medical Researches, Department of Internal Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
14
|
Machado RD, Southgate L, Eichstaedt CA, Aldred MA, Austin ED, Best DH, Chung WK, Benjamin N, Elliott CG, Eyries M, Fischer C, Gräf S, Hinderhofer K, Humbert M, Keiles SB, Loyd JE, Morrell NW, Newman JH, Soubrier F, Trembath RC, Viales RR, Grünig E. Pulmonary Arterial Hypertension: A Current Perspective on Established and Emerging Molecular Genetic Defects. Hum Mutat 2015; 36:1113-27. [PMID: 26387786 DOI: 10.1002/humu.22904] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/04/2015] [Indexed: 12/20/2022]
Abstract
Pulmonary arterial hypertension (PAH) is an often fatal disorder resulting from several causes including heterogeneous genetic defects. While mutations in the bone morphogenetic protein receptor type II (BMPR2) gene are the single most common causal factor for hereditary cases, pathogenic mutations have been observed in approximately 25% of idiopathic PAH patients without a prior family history of disease. Additional defects of the transforming growth factor beta pathway have been implicated in disease pathogenesis. Specifically, studies have confirmed activin A receptor type II-like 1 (ACVRL1), endoglin (ENG), and members of the SMAD family as contributing to PAH both with and without associated clinical phenotypes. Most recently, next-generation sequencing has identified novel, rare genetic variation implicated in the PAH disease spectrum. Of importance, several identified genetic factors converge on related pathways and provide significant insight into the development, maintenance, and pathogenetic transformation of the pulmonary vascular bed. Together, these analyses represent the largest comprehensive compilation of BMPR2 and associated genetic risk factors for PAH, comprising known and novel variation. Additionally, with the inclusion of an allelic series of locus-specific variation in BMPR2, these data provide a key resource in data interpretation and development of contemporary therapeutic and diagnostic tools.
Collapse
Affiliation(s)
- Rajiv D Machado
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - Laura Southgate
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Division of Genetics & Molecular Medicine, King's College London, London, United Kingdom
| | - Christina A Eichstaedt
- Centre for Pulmonary Hypertension, Thoraxclinic at the University Hospital Heidelberg, Heidelberg, Germany.,Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Eric D Austin
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - D Hunter Best
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah.,ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University Medical Center, New York, New York
| | - Nicola Benjamin
- Centre for Pulmonary Hypertension, Thoraxclinic at the University Hospital Heidelberg, Heidelberg, Germany
| | - C Gregory Elliott
- Departments of Medicine, Intermountain Medical Center and the University of Utah School of Medicine, Salt Lake City, Utah
| | - Mélanie Eyries
- Unité Mixte de Recherche en Santé (UMR_S 1166), Université Pierre and Marie Curie Université Paris 06 (UPMC) and Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Genetics Department, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Institute for Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Christine Fischer
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Stefan Gräf
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | | | - Marc Humbert
- Université Paris-Sud, Faculté de Médecine, Paris, France.,Département Hospitalo-Universitaire (DHU) Thorax Innovation (TORINO), Service de Pneumologie, Hôpital Bicêtre, AP-HP, Paris, France.,INSERM UMR_S 999, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Centre Chirurgical Marie Lannelongue, Paris, France
| | - Steven B Keiles
- Quest Diagnostics, Action from Insight, San Juan Capistrano, California
| | - James E Loyd
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,Addenbrooke's & Papworth Hospitals, Cambridge, United Kingdom
| | - John H Newman
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Florent Soubrier
- Unité Mixte de Recherche en Santé (UMR_S 1166), Université Pierre and Marie Curie Université Paris 06 (UPMC) and Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Genetics Department, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Institute for Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Richard C Trembath
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Rebecca Rodríguez Viales
- Centre for Pulmonary Hypertension, Thoraxclinic at the University Hospital Heidelberg, Heidelberg, Germany.,Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Ekkehard Grünig
- Centre for Pulmonary Hypertension, Thoraxclinic at the University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
15
|
Al-Brakati AY, Kamishima T, Dart C, Quayle JM. Caveolar disruption causes contraction of rat femoral arteries via reduced basal NO release and subsequent closure of BKCa channels. PeerJ 2015; 3:e966. [PMID: 26038721 PMCID: PMC4451037 DOI: 10.7717/peerj.966] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/29/2015] [Indexed: 12/22/2022] Open
Abstract
Background and Purpose. Caveolae act as signalling hubs in endothelial and smooth muscle cells. Caveolar disruption by the membrane cholesterol depleting agent methyl-β-cyclodextrin (M-β-CD) has various functional effects on arteries including (i) impairment of endothelium-dependent relaxation, and (ii) alteration of smooth muscle cell (SMC) contraction independently of the endothelium. The aim of this study was to explore the effects of M-β-CD on rat femoral arteries. Methods. Isometric force was measured in rat femoral arteries stimulated to contract with a solution containing 20 mM K(+) and 200 nM Bay K 8644 (20 K/Bay K) or with one containing 80 mM K(+)(80 K). Results. Incubation of arteries with M-β-CD (5 mM, 60 min) increased force in response to 20 K/Bay K but not that induced by 80 K. Application of cholesterol saturated M-β-CD (Ch-MCD, 5 mM, 50 min) reversed the effects of M-β-CD. After mechanical removal of endothelial cells M-β-CD caused only a small enhancement of contractions to 20 K/Bay K. This result suggests M-β-CD acts via altering release of an endothelial-derived vasodilator or vasoconstrictor. When nitric oxide synthase was blocked by pre-incubation of arteries with L-NAME (250 µM) the contraction of arteries to 20 K/Bay K was enhanced, and this effect was abolished by pre-treatment with M-β-CD. This suggests M-β-CD is inhibiting endothelial NO release. Inhibition of large conductance voltage- and Ca(2+)-activated (BKCa) channels with 2 mM TEA(+) or 100 nM Iberiotoxin (IbTX) enhanced 20 K/Bay K contractions. L-NAME attenuated the contractile effect of IbTX, as did endothelial removal. Conclusions. Our results suggest caveolar disruption results in decreased release of endothelial-derived nitric oxide in rat femoral artery, resulting in a reduced contribution of BKCa channels to the smooth muscle cell membrane potential, causing depolarisation and contraction.
Collapse
Affiliation(s)
- AY Al-Brakati
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - T Kamishima
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - C Dart
- Department of Biochemistry and Cell Biology, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - JM Quayle
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
16
|
Han B, Tiwari A, Kenworthy AK. Tagging strategies strongly affect the fate of overexpressed caveolin-1. Traffic 2015; 16:417-38. [PMID: 25639341 PMCID: PMC4440517 DOI: 10.1111/tra.12254] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 12/24/2014] [Accepted: 12/24/2014] [Indexed: 01/01/2023]
Abstract
Caveolin-1 (Cav1) is the primary scaffolding protein of caveolae, flask-shaped invaginations of the plasma membrane thought to function in endocytosis, mechanotransduction, signaling and lipid homeostasis. A significant amount of our current knowledge about caveolins and caveolae is derived from studies of transiently overexpressed, C-terminally tagged caveolin proteins. However, how different tags affect the behavior of ectopically expressed Cav1 is still largely unknown. To address this question, we performed a comparative analysis of the subcellular distribution, oligomerization state and detergent resistance of transiently overexpressed Cav1 labeled with three different C-terminal tags (EGFP, mCherry and myc). We show that addition of fluorescent protein tags enhances the aggregation and/or degradation of both wild-type Cav1 and an oligomerization defective P132L mutant. Strikingly, complexes formed by overexpressed Cav1 fusion proteins excluded endogenous Cav1 and Cav2, and the properties of native caveolins were largely preserved even when abnormal aggregates were present in cells. These findings suggest that differences in tagging strategies may be a source of variation in previously published studies of Cav1 and that overexpressed Cav1 may exert functional effects outside of caveolae. They also highlight the need for a critical re-evaluation of current knowledge based on transient overexpression of tagged Cav1.
Collapse
Affiliation(s)
- Bing Han
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of MedicineNashville, TN, USA
| | - Ajit Tiwari
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of MedicineNashville, TN, USA
| | - Anne K Kenworthy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of MedicineNashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashville, TN, USA
- Epithelial Biology Program, Vanderbilt University School of MedicineNashville, TN, USA
- Chemical and Physical Biology Program, Vanderbilt UniversityNashville, TN, USA
| |
Collapse
|
17
|
Nano-Mg(OH)2-induced proliferation inhibition and dysfunction of human umbilical vein vascular endothelial cells through caveolin-1-mediated endocytosis. Cell Biol Toxicol 2015; 31:15-27. [PMID: 25575676 DOI: 10.1007/s10565-014-9291-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 12/22/2014] [Indexed: 12/17/2022]
Abstract
Nano-Mg(OH)2 is efficiently used in pollutant adsorption and removal due to its high adsorption capability, low-cost, and recyclability. A recent research from our group showed that Mg(OH)2 nanoflakes are not evidently internalized by cancer cells and are not cytotoxic. But the biocompatibility and potential toxicity of nano-Mg(OH)2 in a normal biological system are largely unclear. Nanoparticles could affect the function of endothelial cells, and endothelial dysfunction represents an early sign of lesion within the vasculature. Here, we applied the human umbilical vein vascular endothelial cells (HUVECs) as an in vitro model of the endothelium to study the cytotoxicity of nano-Mg(OH)2. Our results showed that nano-Mg(OH)2 at 200 μg/ml impaired proliferation and induced dysfunction of HUVECs, but did not result in cell necrosis and apoptosis. Transmission electron microscopy images and immunofluorescence results showed that the nano-Mg(OH)2 could enter HUVECs through caveolin-1-mediated endocytosis. Nano-Mg(OH)2 at high concentrations decreased the level of caveolin-1 and increased the activity of endothelial nitric oxide synthase (eNOS), thus leading to the production of excess nitric oxide (NO). In this work, we provide the cell damage concentrations of nano-Mg(OH)2 nanoparticles, and we propose a mechanism of injury induced by nano-Mg(OH)2 in HUVECs.
Collapse
|
18
|
Prendergast C, Quayle J, Burdyga T, Wray S. Atherosclerosis differentially affects calcium signalling in endothelial cells from aortic arch and thoracic aorta in Apolipoprotein E knockout mice. Physiol Rep 2014; 2:2/10/e12171. [PMID: 25344475 PMCID: PMC4254096 DOI: 10.14814/phy2.12171] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Apolipoprotein‐E knockout (ApoE−/−) mice develop hypercholesterolemia and are a useful model of atherosclerosis. Hypercholesterolemia alters intracellular Ca2+ signalling in vascular endothelial cells but our understanding of these changes, especially in the early stages of the disease process, is limited. We therefore determined whether carbachol‐mediated endothelial Ca2+ signals differ in plaque‐prone aortic arch compared to plaque‐resistant thoracic aorta, of wild‐type and ApoE−/− mice, and how this is affected by age and the presence of hypercholesterolemia. The extent of plaque development was determined using en‐face staining with Sudan IV. Tissues were obtained from wild‐type and ApoE−/− mice at 10 weeks (pre‐plaques) and 24 weeks (established plaques). We found that even before development of plaques, significantly increased Ca2+ responses were observed in arch endothelial cells. Even with aging and plaque formation, ApoE−/− thoracic responses were little changed, however a significantly enhanced Ca2+ response was observed in arch, both adjacent to and away from lesions. In wild‐type mice of any age, 1–2% of cells had oscillatory Ca2+ responses. In young ApoE−/− and plaque‐free regions of older ApoE−/−, this is unchanged. However a significant increase in oscillations (~13–15%) occurred in thoracic and arch cells adjacent to lesions in older mice. Our data suggest that Ca2+ signals in endothelial cells show specific changes both before and with plaque formation, that these changes are greatest in plaque‐prone aortic arch cells, and that these changes will contribute to the reported deterioration of endothelium in atherosclerosis. We have investigated aortic endothelial cell calcium signalling changes in the Apolipoprotein E knockout mouse model of atherosclerosis. Our data show that calcium signals in endothelial cells undergo specific changes both before and with plaque formation, that these changes are greater in plaque‐prone aortic arch than in plaque‐resistant thoracic aorta, and that these changes will contribute to the reported deterioration of endothelium in atherosclerosis.
Collapse
Affiliation(s)
- Clodagh Prendergast
- Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - John Quayle
- Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Theodor Burdyga
- Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Susan Wray
- Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
19
|
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and fatal disease for which there is an ever-expanding body of genetic and related pathophysiological information on disease pathogenesis. Many germline gene mutations have now been described, including mutations in the gene coding bone morphogenic protein receptor type 2 (BMPR2) and related genes. Recent advanced gene-sequencing methods have facilitated the discovery of additional genes with mutations among those with and those without familial forms of PAH (CAV1, KCNK3, EIF2AK4). The reduced penetrance, variable expressivity, and female predominance of PAH suggest that genetic, genomic, and other factors modify disease expression. These multi-faceted variations are an active area of investigation in the field, including but not limited to common genetic variants and epigenetic processes, and may provide novel opportunities for pharmacological intervention in the near future. They also highlight the need for a systems-oriented multi-level approach to incorporate the multitude of biological variations now associated with PAH. Ultimately, an in-depth understanding of the genetic factors relevant to PAH provides the opportunity for improved patient and family counseling about this devastating disease.
Collapse
Affiliation(s)
- Eric D Austin
- From the Division of Allergy, Pulmonary, and Immunology Medicine, Department of Pediatrics (E.D.A.) and Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine (J.E.L.), Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN.
| | - James E Loyd
- From the Division of Allergy, Pulmonary, and Immunology Medicine, Department of Pediatrics (E.D.A.) and Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine (J.E.L.), Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN
| |
Collapse
|
20
|
Rao H, Ma LX, Xu TT, Li J, Deng ZY, Fan YW, Li HY. Lipid rafts and Fas/FasL pathway may involve in elaidic acid-induced apoptosis of human umbilical vein endothelial cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:798-807. [PMID: 24364735 DOI: 10.1021/jf404834e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Our previous study showed that trans-fatty acids can cause apoptosis of endothelial cells through the caspase pathway and the mitochondrial pathway. The objective of this study was to explore how trans-fatty acids activate the caspase pathway, whether there exist specific receptors induced apoptosis by comparing normal cells and non-rafts cells treated with elaidic acid (9t18:1) and oleic acid (9c18:1), respectively. Compared to normal cells treated with 9t18:1, the cell viability increased by 13% and the number of apoptotic cells decreased by 3% in non-rafts cells treated with 9t18:1 (p < 0.05), and the expression levels of pro-apoptotic proteins such as caspase-3, -8, -9, Bax, and Bid decreased, and expression of antiapoptotic protein Bcl-2 increased (p < 0.05). In addition, Fas/FasL expression in cell membrane decreased significantly (p < 0.05). In conclusion, the lipid rafts and Fas/FasL pathway may involve in 9t18:1-induced apoptosis of human umbilical vein endothelial cells.
Collapse
Affiliation(s)
- Huan Rao
- State Key Laboratory of Food Science and Technology, Institute for Advanced Study, Nanchang University , Nanchang, Jiangxi 330047, P.R. China
| | | | | | | | | | | | | |
Collapse
|
21
|
Berra-Romani R, Avelino-Cruz JE, Raqeeb A, Della Corte A, Cinelli M, Montagnani S, Guerra G, Moccia F, Tanzi F. Ca²⁺-dependent nitric oxide release in the injured endothelium of excised rat aorta: a promising mechanism applying in vascular prosthetic devices in aging patients. BMC Surg 2013; 13 Suppl 2:S40. [PMID: 24266895 PMCID: PMC3851245 DOI: 10.1186/1471-2482-13-s2-s40] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background Nitric oxide is key to endothelial regeneration, but it is still unknown whether endothelial cell (EC) loss results in an increase in NO levels at the wound edge. We have already shown that endothelial damage induces a long-lasting Ca2+ entry into surviving cells though connexin hemichannels (CxHcs) uncoupled from their counterparts on ruptured cells. The physiological outcome of injury-induced Ca2+ inflow is, however, unknown. Methods In this study, we sought to determine whether and how endothelial scraping induces NO production (NOP) in the endothelium of excised rat aorta by exploiting the NO-sensitive fluorochrome, DAF-FM diacetate and the Ca2+-sensitive fluorescent dye, Fura-2/AM. Results We demonstrated that injury-induced NOP at the lesion site is prevented in presence of the endothelial NO synthase inhibitor, L-NAME, and in absence of extracellular Ca2+. Unlike ATP-dependent NO liberation, the NO response to injury is insensitive to BTP-2, which selectively blocks store-operated Ca2+ inflow. However, injury-induced NOP is significantly reduced by classic gap junction blockers, and by connexin mimetic peptides specifically targeting Cx37Hcs, Cx40HCs, and Cx43Hcs. Moreover, disruption of caveolar integrity prevents injury-elicited NO signaling, but not the accompanying Ca2+ response. Conclusions The data presented provide the first evidence that endothelial scraping stimulates NO synthesis at the wound edge, which might both exert an immediate anti-thrombotic and anti-inflammatory action and promote the subsequent re-endothelialization.
Collapse
|
22
|
Austin ED, Loyd JE. Heritable forms of pulmonary arterial hypertension. Semin Respir Crit Care Med 2013; 34:568-80. [PMID: 24037626 DOI: 10.1055/s-0033-1355443] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tremendous progress has been made in understanding the genetics of heritable pulmonary arterial hypertension (HPAH) since its description in the 1950s. Germline mutations in the gene coding bone morphogenetic receptor type 2 (BMPR2) are detectable in the majority of cases of HPAH, and in a small proportion of cases of idiopathic pulmonary arterial hypertension (IPAH). Recent advancements in gene sequencing methods have facilitated the discovery of additional genes with mutations among those with and without familial PAH (CAV1, KCNK3). HPAH is an autosomal dominant disease characterized by reduced penetrance, variable expressivity, and female predominance. These characteristics suggest that genetic and nongenetic factors modify disease expression, highlighting areas of active investigation. The reduced penetrance makes genetic counseling complex, as the majority of carriers of PAH-related mutations will never be diagnosed with the disease. This issue is increasingly important, as clinical testing for BMPR2 and other mutations is now available for the evaluation of patients and their at-risk kin. The possibilities to avoid mutation transmission, such as the rapidly advancing field of preimplantation genetic testing, highlight the need for all clinicians to understand the genetic features of PAH risk.
Collapse
Affiliation(s)
- Eric D Austin
- Division of Pulmonary, Allergy, and Immunology Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | |
Collapse
|
23
|
Mazagova M, Buikema H, Landheer SW, Vavrinec P, Buiten AV, Henning RH, Deelman LE. Growth differentiation factor 15 impairs aortic contractile and relaxing function through altered caveolar signaling of the endothelium. Am J Physiol Heart Circ Physiol 2013; 304:H709-18. [DOI: 10.1152/ajpheart.00543.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Growth differentiation factor 15 (GDF15) is an independent predictor of cardiovascular disease, and increased GDF15 levels have been associated with endothelial dysfunction in selected patients. We therefore investigated whether GDF15 modulates endothelial function in aortas of wild-type (WT) and GDF15 knockout (KO) mice. Vascular contractions to phenylephrine and relaxation to ACh were assessed in aortas obtained from healthy WT and GDF15 KO mice. The effects of GDF15 pretreatment and the involvement of ROS or caveolae were determined. Phenylephrine-induced contractions and ACh-mediated relaxations were similar in WT and GDF15 KO mice. Pretreatment with GDF15 inhibited contraction and relaxation in both groups. Inhibition of contraction by GDF15 was absent in denuded vessels or after blockade of nitric oxide (NO) synthase. Relaxation in WT mice was mediated mainly through NO and an unidentified endothelium-derived hyperpolarizin factor (EDHF), whereas GDF15 KO mice mainly used prostaglandins and EDHF. Pretreatment with GDF15 impaired relaxation in WT mice by decreasing NO; in GDF15 KO mice, this was mediated by decreased action of prostaglandins. Disruption of caveolae resulted in a similar inhibition of vascular responses as GDF15. ROS inhibition did not affect vascular function. In cultured endothelial cells, GDF15 pretreatment caused a dissociation between caveolin-1 and endothelial NO synthase. In conclusion, GDF15 impairs aortic contractile and relaxing function through an endothelium-dependent mechanism involving altered caveolar endothelial NO synthase signaling.
Collapse
Affiliation(s)
- Magdalena Mazagova
- Department of Clinical Pharmacology, University of Groningen, and University Medical Center Groningen, Groningen, The Netherlands
| | - Hendrik Buikema
- Department of Clinical Pharmacology, University of Groningen, and University Medical Center Groningen, Groningen, The Netherlands
| | - Sjoerd W. Landheer
- Department of Clinical Pharmacology, University of Groningen, and University Medical Center Groningen, Groningen, The Netherlands
| | - Peter Vavrinec
- Department of Clinical Pharmacology, University of Groningen, and University Medical Center Groningen, Groningen, The Netherlands
| | - Azuwerus van Buiten
- Department of Clinical Pharmacology, University of Groningen, and University Medical Center Groningen, Groningen, The Netherlands
| | - Robert H. Henning
- Department of Clinical Pharmacology, University of Groningen, and University Medical Center Groningen, Groningen, The Netherlands
| | - Leo E. Deelman
- Department of Clinical Pharmacology, University of Groningen, and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
24
|
Gortan Cappellari G, Losurdo P, Mazzucco S, Panizon E, Jevnicar M, Macaluso L, Fabris B, Barazzoni R, Biolo G, Carretta R, Zanetti M. Treatment with n-3 polyunsaturated fatty acids reverses endothelial dysfunction and oxidative stress in experimental menopause. J Nutr Biochem 2013; 24:371-9. [DOI: 10.1016/j.jnutbio.2012.07.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/12/2012] [Accepted: 07/20/2012] [Indexed: 10/27/2022]
|
25
|
Sellers SL, Trane AE, Bernatchez PN. Caveolin as a potential drug target for cardiovascular protection. Front Physiol 2012; 3:280. [PMID: 22934034 PMCID: PMC3429054 DOI: 10.3389/fphys.2012.00280] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 06/28/2012] [Indexed: 01/12/2023] Open
Abstract
Caveolae and caveolin are key players in a number of disease processes. Current research indicates that caveolins play a significant role in cardiovascular disease and dysfunction. The far-reaching roles of caveolins in disease and dysfunction make them particularly notable therapeutic targets. In particular, caveolin-1 (Cav-1) and caveolin-3 (Cav-3) have been identified as potential regulators of vascular dysfunction and heart disease and might even confer cardiac protection in certain settings. Such a central role in vascular health therefore makes manipulation of Cav-1/3 function or expression levels clear therapeutic targets in a variety of cardiovascular related disease states. Here, we highlight the role of Cav-1 and Cav-3 in cardiovascular health and explore the potential of Cav-1 and Cav-3 derived experimental therapeutics.
Collapse
Affiliation(s)
- Stephanie L Sellers
- Department of Anesthesiology, Pharmacology and Therapeutics and The James Hogg Research Centre, University of British Columbia Vancouver, BC, Canada
| | | | | |
Collapse
|
26
|
Interference in mevalonate pathway ameliorates homocysteine-induced endothelium-dysfunction. Eur J Pharmacol 2012; 692:61-8. [PMID: 22796672 DOI: 10.1016/j.ejphar.2012.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/27/2012] [Accepted: 07/02/2012] [Indexed: 11/22/2022]
Abstract
Homocysteine is a risk factor for atherosclerosis and hypertension and induces endothelium-dysfunction. Accumulation of cholesterol and reactive oxygen species plays a key role in the endothelium-dysfunction. This study investigated the hypothesis of an involvement of mevalonate pathway and oxidative pathway in homocysteine-induced endothelial damage. Homocysteine induced impairment of the endothelium-dependent vasorelaxation of rat aortic rings by isometric tension, while it also reduced the nitric oxide level and the nitric oxide synthase activity in human umbilical vein endothelial cells, followed by accumulation of superoxide anion and cholesterol. However, the level of asymmetric dimethylarginine remained unaffected by homocysteine. The adverse effect of homocysteine on endothelial function was found to be partially enhanced either by squalestatin-reducing cholesterol or by superoxide dismutase-reducing superoxide anion. Moreover, this effect of homocysteine could be completely ameliorated by simvastatin, very similar to that of cotreatment of squalestatin and superoxide dismutase. Respectively, mevalonolactone partly or squalene fully attenuated the effect of simvastatin or squalestatin on homocysteine-induced endothelial dysfunction. In conclusion, our results suggested that the mevalonate pathway mediates homocysteine-induced endothelium dysfunction besides the oxidative pathway. Interference in the mevalonate pathway and oxidative pathway provides effective protection of endothelial function.
Collapse
|
27
|
García IM, Mazzei L, Benardón ME, Oliveros L, Cuello-Carrión FD, Gil Lorenzo A, Manucha W, Vallés PG. Caveolin-1-eNOS/Hsp70 interactions mediate rosuvastatin antifibrotic effects in neonatal obstructive nephropathy. Nitric Oxide 2012; 27:95-105. [PMID: 22683596 DOI: 10.1016/j.niox.2012.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 05/26/2012] [Accepted: 05/29/2012] [Indexed: 11/29/2022]
Abstract
Evidence suggesting that statins may contribute to renoprotection has been provided in experimental and clinical studies. Statins restore endothelial nitric oxide (NO) levels by mechanisms including up-regulation of endothelial NO synthase (eNOS) expression. Caveolin-1/eNOS interaction is essential preventing inadequate NO levels. Here, we evaluated whether caveolin-1 associated with eNOS/Hsp70 expression may be involved in the mechanism by which rosuvastatin exerts tubulointerstitial fibrosis protection in neonatal unilateral ureteral obstruction (UUO). Neonatal rats subjected to UUO within 2 days of birth and controls were treated daily with vehicle or rosuvastatin (10 mg/kg/day) by oral gavage for 14 days. After UUO, morphometric evaluation of interstitial fibrosis showed increased interstitial volume (Vv) associated with reduced NO availability, increased mRNA and protein caveolin-1 expression as well as downregulation eNOS and heat shock protein 70 (Hsp70) expression. Conversely, rosuvastatin treatment attenuated the fibrotic response linked to high NO availability, decreased mRNA and protein caveolin-1 expression, and marked upregulation of eNOS and Hsp70 expression at transcriptional and posttranscriptional levels. Moreover, protein-protein interactions determined by immunoprecipitation and by immunofluorescence co-localization have shown decreased caveolin-1/eNOS as well as increased Hsp70/eNOS interaction, after rosuvastatin treatment. A dose dependent effect of rosuvastatin on decreased caveolin-1 expression was shown in control cortex. In conclusion, our data suggest that statins contribute to the protection against tubulointerstitial fibrosis injury in neonatal early kidney obstruction by increased NO availability, involving interaction of up-regulated eNOS/Hsp70 and down-regulated caveolin-1.
Collapse
Affiliation(s)
- Isabel Mercedes García
- Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Targeting endothelial dysfunction in vascular complications associated with diabetes. Int J Vasc Med 2011; 2012:750126. [PMID: 22013533 PMCID: PMC3195347 DOI: 10.1155/2012/750126] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/04/2011] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular complications associated with diabetes remain a significant health issue in westernized societies. Overwhelming evidence from clinical and laboratory investigations have demonstrated that these cardiovascular complications are initiated by a dysfunctional vascular endothelium. Indeed, endothelial dysfunction is one of the key events that occur during diabetes, leading to the acceleration of cardiovascular mortality and morbidity. In a diabetic milieu, endothelial dysfunction occurs as a result of attenuated production of endothelial derived nitric oxide (EDNO) and augmented levels of reactive oxygen species (ROS). Thus, in this review, we discuss novel therapeutic targets that either upregulate EDNO production or increase antioxidant enzyme capacity in an effort to limit oxidative stress and restore endothelial function. In particular, endogenous signaling molecules that positively modulate EDNO synthesis and mimetics of endogenous antioxidant enzymes will be highlighted. Consequently, manipulation of these unique targets, either alone or in combination, may represent a novel strategy to confer vascular protection, with the ultimate goal of improved outcomes for diabetes-associated vascular complications.
Collapse
|
29
|
Banquet S, Delannoy E, Agouni A, Dessy C, Lacomme S, Hubert F, Richard V, Muller B, Leblais V. Role of G(i/o)-Src kinase-PI3K/Akt pathway and caveolin-1 in β₂-adrenoceptor coupling to endothelial NO synthase in mouse pulmonary artery. Cell Signal 2011; 23:1136-43. [PMID: 21385608 DOI: 10.1016/j.cellsig.2011.02.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 02/16/2011] [Accepted: 02/28/2011] [Indexed: 11/30/2022]
Abstract
Activation of the β₂-adrenoceptor (β₂-AR) elicits an endothelial nitric oxide synthase (eNOS)-dependent relaxation in mouse pulmonary artery, which, contrary to the muscarinic receptor-dependent relaxation, is preserved in hypoxic pulmonary arterial hypertension. We therefore characterized the signaling pathways underlying the β₂-AR-mediated eNOS activation, with special focus on G(i/o) proteins, protein kinases and caveolae. Functional studies (for evaluation of vasorelaxant response), Western blotting (for assessment of eNOS and caveolin-1 phosphorylation) and transmission electron microscopy (for visualization of caveolae) were conducted in pulmonary arteries from wild-type or caveolin-1 knockout mice. In wild-type isolated arteries, relaxation to the selective β₂-AR agonist procaterol was reduced by inhibitors of G(i/o) proteins (pertussis toxin, PTX), phosphatidylinositol 3-kinase (PI3K; wortmannin or LY 294002), Akt (Akt inhibitor X) and Src-kinase (PP2) and by cholesterol depletion (using methyl-β-cyclodextrin). Procaterol induced eNOS phosphorylation at Ser(1177), which was prevented by PTX, PP2 or Akt inhibitor. Procaterol also promoted caveolin-1 phosphorylation at Tyr(14), which was decreased by PTX or PP2. Caveolin-1 gene deletion resulted in endothelial caveolae disruption in mouse pulmonary artery and in potentiation of procaterol-induced relaxation. Unlike procaterol, acetylcholine-induced relaxation was unaffected by PTX, methyl-β-cyclodextrin or caveolin-1 gene deletion. To conclude, the mouse pulmonary endothelial β₂-AR is coupled to a G(i/o)-Src kinase-PI3K/Akt pathway to promote eNOS phosphorylation at Ser(1177) leading to a NO-dependent vasorelaxation. Caveolin-1 exerts a negative control on this response that is abrogated by its phosphorylation at Tyr(14), through a G(i/o)-Src kinase pathway. Since pulmonary β₂-AR- and muscarinic receptor-mediated relaxations differentiate in their respective signaling pathways leading to eNOS activation and sensitivities during hypoxia-induced pulmonary arterial hypertension, mechanisms underlying eNOS activation might be key determinants of pulmonary endothelial dysfunction.
Collapse
Affiliation(s)
- Sébastien Banquet
- INSERM U1045, Centre de recherche cardiothoracique de Bordeaux, Bordeaux, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Majkova Z, Toborek M, Hennig B. The role of caveolae in endothelial cell dysfunction with a focus on nutrition and environmental toxicants. J Cell Mol Med 2011; 14:2359-70. [PMID: 20406324 PMCID: PMC2965309 DOI: 10.1111/j.1582-4934.2010.01064.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Complications of vascular diseases, including atherosclerosis, are the number one cause of death in Western societies. Dysfunction of endothelial cells is a critical underlying cause of the pathology of atherosclerosis. Lipid rafts, and especially caveolae, are enriched in endothelial cells, and down-regulation of the caveolin-1 gene may provide protection against the development of atherosclerosis. There is substantial evidence that exposure to environmental pollution is linked to cardiovascular mortality, and that persistent organic pollutants can markedly contribute to endothelial cell dysfunction and an increase in vascular inflammation. Nutrition can modulate the toxicity of environmental pollutants, and evidence suggests that these affect health and disease outcome associated with chemical insults. Because caveolae can provide a regulatory platform for pro-inflammatory signalling associated with vascular diseases such as atherosclerosis, we suggest a link between atherogenic risk and functional changes of caveolae by environmental factors such as dietary lipids and organic pollutants. For example, we have evidence that endothelial caveolae play a role in uptake of persistent organic pollutants, an event associated with subsequent production of inflammatory mediators. Functional properties of caveolae can be modulated by nutrition, such as dietary lipids (e.g. fatty acids) and plant-derived polyphenols (e.g. flavonoids), which change activation of caveolae-associated signalling proteins. The following review will focus on caveolae providing a platform for pro-inflammatory signalling, and the role of caveolae in endothelial cell functional changes associated with environmental mediators such as nutrients and toxicants, which are known to modulate the pathology of vascular diseases.
Collapse
Affiliation(s)
- Zuzana Majkova
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY, USA
| | | | | |
Collapse
|
31
|
Nanni S, Grasselli A, Benvenuti V, Aiello A, Pantisano V, Re A, Gaetano C, Capogrossi MC, Bacchetti S, Pontecorvi A, Farsetti A. The role of nuclear endothelial nitric oxide synthase in the endothelial and prostate microenvironments. Horm Mol Biol Clin Investig 2011; 5:91-6. [DOI: 10.1515/hmbci.2011.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 02/03/2011] [Indexed: 11/15/2022]
Abstract
AbstractThis review is based on novel observations from our laboratory on the nuclear translocation and functional role of endothelial nitric oxide synthase (eNOS) in endothelial and prostate cancer (PCa) epithelial cells. Nitric oxide (NO), the product of eNOS, is a free radical involved in the physiology and pathophysiology of living organisms and in a variety of biological processes including the maintenance of vascular homeostasis. Of relevance in this context is the role that estrogens play in the apoptotic process and the migration of endothelial cells through the regulation of target genes such as eNOS itself. It has been shown that both estrogen and NO signaling, mediated respectively by the estrogen receptors (ERs) and eNOS, can strongly counteract endothelial senescence through a common effector, the catalytic subunit of human telomerase. Therefore, this protein has been identified as a key molecule in the aging process which, intriguingly, is considered the only risk factor in the development of PCa and one of the major determinants of cardiovascular diseases. Indeed, in both these contexts we have defined a molecular mechanism involving activation of eNOS and hypoxia-inducible factors in association with ERβ that characterizes the most aggressive form of PCa or influences endothelial cell differentiation. Altogether these data led us to postulate that activation of eNOS is a crucial requirement for the delaying of endothelial senescence as well as for the acquisition of androgen-independence and for tumor progression in the prostate microenvironment.
Collapse
|
32
|
|
33
|
Arunachalam G, Yao H, Sundar IK, Caito S, Rahman I. SIRT1 regulates oxidant- and cigarette smoke-induced eNOS acetylation in endothelial cells: Role of resveratrol. Biochem Biophys Res Commun 2010; 393:66-72. [PMID: 20102704 PMCID: PMC2830376 DOI: 10.1016/j.bbrc.2010.01.080] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 01/19/2010] [Indexed: 12/11/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) plays a crucial role in endothelial cell functions. SIRT1, a NAD(+)-dependent deacetylase, is shown to regulate endothelial function and hence any alteration in endothelial SIRT1 will affect normal vascular physiology. Cigarette smoke (CS)-mediated oxidative stress is implicated in endothelial dysfunction. However, the role of SIRT1 in regulation of eNOS by CS and oxidants are not known. We hypothesized that CS-mediated oxidative stress downregulates SIRT1 leading to acetylation of eNOS which results in reduced nitric oxide (NO)-mediated signaling and endothelial dysfunction. Human umbilical vein endothelial cells (HUVECs) exposed to cigarette smoke extract (CSE) and H(2)O(2) showed decreased SIRT1 levels, activity, but increased phosphorylation concomitant with increased eNOS acetylation. Pre-treatment of endothelial cells with resveratrol significantly attenuated the CSE- and oxidant-mediated SIRT1 levels and eNOS acetylation. These findings suggest that CS- and oxidant-mediated reduction of SIRT1 is associated with acetylation of eNOS which have implications in endothelial dysfunction.
Collapse
Affiliation(s)
- Gnanapragasam Arunachalam
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
34
|
Katheria AC, Masliah E, Benirschke K, Jones KL, Kim JH. Idiopathic persistent pulmonary hypertension in an infant with Smith-Lemli-Opitz syndrome. Fetal Pediatr Pathol 2010; 29:373-9. [PMID: 21043560 DOI: 10.3109/15513815.2010.512045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Persistent pulmonary hypertension (PPHN) of the newborn remains a challenging condition to diagnose and treat. It has been reported in infants with Smith-Lemli-Opitz syndrome (SLOS), a rare defect in cholesterol synthesis. Typically, there is evidence of pulmonary hypoplasia. We report the first case of PPHN in the absence of pulmonary hypoplasia or other parenchymal diseases in an infant with SLOS. Perturbations in cholesterol metabolism interrupt key signaling pathways that participate in the normal maintenance of pulmonary vascular tone. We found that caveolae-dependent signaling may be involved in this process since our patient had altered expression of caveolin-1.
Collapse
Affiliation(s)
- Anup C Katheria
- UC San Diego Medical Center, Division of Neonatology, San Diego, California 92130, USA
| | | | | | | | | |
Collapse
|
35
|
Kopkan L, Khan MAH, Lis A, Awayda MS, Majid DSA. Cholesterol induces renal vasoconstriction and anti-natriuresis by inhibiting nitric oxide production in anesthetized rats. Am J Physiol Renal Physiol 2009; 297:F1606-13. [PMID: 19776170 DOI: 10.1152/ajprenal.90743.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although hypercholesterolemia is implicated in the pathophysiology of many renal disorders as well as hypertension, its direct actions in the kidney are not yet clearly understood. In the present study, we evaluated renal responses to administration of cholesterol (8 microg x min(-1).100 g body wt(-1); bound by polyethylene glycol) into the renal artery of anesthetized male Sprague-Dawley rats. Total renal blood flow (RBF) was measured by a Transonic flow probe, and glomerular filtration rate (GFR) was determined by Inulin clearance. In control rats (n = 8), cholesterol induced reductions of 10 +/- 2% in RBF [baseline (b) 7.6 +/- 0.3 microg x min(-1).100 g(-1)], 17 +/- 3% in urine flow (b, 10.6 +/- 0.9 microg x min(-1).100 g(-1)), 29 +/- 3% in sodium excretion (b, 0.96 +/- 0.05 mumol.min(-1).100 g(-1)) and 24 +/- 2% in nitrite/nitrate excretion (b, 0.22 +/- 0.01 nmol.min(-1).100 g(-1)) without an appreciable change in GFR (b, 0.87 +/- 0.03 ml.min(-1).100 g(-1)). These renal vasoconstrictor and anti-natriuretic responses to cholesterol were absent in rats pretreated with nitric oxide (NO) synthase inhibitor, nitro-l-arginine methylester (0.5 microg x min(-1).100 g(-1); n = 6). In rats pretreated with superoxide (O(2)(-)) scavenger tempol (50 microg x min(-1).100 g(-1); n = 6), the cholesterol-induced renal responses remained mostly unchanged, although there was a slight attenuation in anti-natriuretic response. This anti-natriuretic response to cholesterol was abolished in furosemide-pretreated rats (0.3 microg x min(-1).100 g(-1); n = 6) but remained unchanged in amiloride-pretreated rats (0.2 microg x min(-1).100 g(-1); n = 5), indicating that Na(+)/K(+)/2Cl(-) cotransport is the dominant mediator of this effect. These data demonstrate that cholesterol-induced acute renal vasoconstrictor and antinatriuretic responses are mediated by a decrease in NO production. These data also indicate that tubular effect of cholesterol on sodium reabsorption is mediated by the furosemide sensitive Na(+)/K(+)/2Cl(-) cotransporter.
Collapse
Affiliation(s)
- Libor Kopkan
- Physiology, Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | |
Collapse
|
36
|
Hayashi YK, Matsuda C, Ogawa M, Goto K, Tominaga K, Mitsuhashi S, Park YE, Nonaka I, Hino-Fukuyo N, Haginoya K, Sugano H, Nishino I. Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. J Clin Invest 2009; 119:2623-33. [PMID: 19726876 DOI: 10.1172/jci38660] [Citation(s) in RCA: 295] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 06/03/2009] [Indexed: 12/23/2022] Open
Abstract
Caveolae are invaginations of the plasma membrane involved in many cellular processes, including clathrin-independent endocytosis, cholesterol transport, and signal transduction. They are characterized by the presence of caveolin proteins. Mutations that cause deficiency in caveolin-3, which is expressed exclusively in skeletal and cardiac muscle, have been linked to muscular dystrophy. Polymerase I and transcript release factor (PTRF; also known as cavin) is a caveolar-associated protein suggested to play an essential role in the formation of caveolae and the stabilization of caveolins. Here, we identified PTRF mutations in 5 nonconsanguineous patients who presented with both generalized lipodystrophy and muscular dystrophy. Muscle hypertrophy, muscle mounding, mild metabolic complications, and elevated serum creatine kinase levels were observed in these patients. Skeletal muscle biopsies revealed chronic dystrophic changes, deficiency and mislocalization of all 3 caveolin family members, and reduction of caveolae structure. We generated expression constructs recapitulating the human mutations; upon overexpression in myoblasts, these mutations resulted in PTRF mislocalization and disrupted physical interaction with caveolins. Our data confirm that PTRF is essential for formation of caveolae and proper localization of caveolins in human cells and suggest that clinical features observed in the patients with PTRF mutations are associated with a secondary deficiency of caveolins.
Collapse
Affiliation(s)
- Yukiko K Hayashi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- Parveen Yaqoob
- School of Chemistry, Food Biosciences and Pharmacy, The University of Reading, Reading RG6 6AP, United Kingdom;
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Substantial evidence documents the key role of lipid (membrane) rafts and caveolae as microdomains that concentrate a wide variety of receptors and postreceptor components regulated by hormones, neurotransmitters and growth factors. RECENT FINDINGS Recent data document that these microdomains are important in regulating vascular endothelial and smooth muscle cells and renal epithelial cells, and particularly in signal transduction across the plasma membrane. SUMMARY Raft/caveolae domains are cellular regions, including in cardiovascular and renal epithelial cells, which organize a large number of signal transduction components, thereby providing spatially and temporally efficient regulation of cell function.
Collapse
|
39
|
Meijering BDM, Juffermans LJM, van Wamel A, Henning RH, Zuhorn IS, Emmer M, Versteilen AMG, Paulus WJ, van Gilst WH, Kooiman K, de Jong N, Musters RJP, Deelman LE, Kamp O. Ultrasound and microbubble-targeted delivery of macromolecules is regulated by induction of endocytosis and pore formation. Circ Res 2009; 104:679-87. [PMID: 19168443 DOI: 10.1161/circresaha.108.183806] [Citation(s) in RCA: 328] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Contrast microbubbles in combination with ultrasound (US) are promising vehicles for local drug and gene delivery. However, the exact mechanisms behind intracellular delivery of therapeutic compounds remain to be resolved. We hypothesized that endocytosis and pore formation are involved during US and microbubble targeted delivery (UMTD) of therapeutic compounds. Therefore, primary endothelial cells were subjected to UMTD of fluorescent dextrans (4.4 to 500 kDa) using 1 MHz pulsed US with 0.22-MPa peak-negative pressure, during 30 seconds. Fluorescence microscopy showed homogeneous distribution of 4.4- and 70-kDa dextrans through the cytosol, and localization of 155- and 500-kDa dextrans in distinct vesicles after UMTD. After ATP depletion, reduced uptake of 4.4-kDa dextran and no uptake of 500-kDa dextran was observed after UMTD. Independently inhibiting clathrin- and caveolae-mediated endocytosis, as well as macropinocytosis significantly decreased intracellular delivery of 4.4- to 500-kDa dextrans. Furthermore, 3D fluorescence microscopy demonstrated dextran vesicles (500 kDa) to colocalize with caveolin-1 and especially clathrin. Finally, after UMTD of dextran (500 kDa) into rat femoral artery endothelium in vivo, dextran molecules were again localized in vesicles that partially colocalized with caveolin-1 and clathrin. Together, these data indicated uptake of molecules via endocytosis after UMTD. In addition to triggering endocytosis, UMTD also evoked transient pore formation, as demonstrated by the influx of calcium ions and cellular release of preloaded dextrans after US and microbubble exposure. In conclusion, these data demonstrate that endocytosis is a key mechanism in UMTD besides transient pore formation, with the contribution of endocytosis being dependent on molecular size.
Collapse
Affiliation(s)
- Bernadet D M Meijering
- Department of Clinical Pharmacology, University Medical Center Groningen, University of Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
van Dokkum RP, Buikema H. Possible new druggable targets for the treatment of nephrosis. Perhaps we should find them in caveolea? Curr Opin Pharmacol 2009; 9:132-8. [PMID: 19157981 DOI: 10.1016/j.coph.2008.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 12/03/2008] [Accepted: 12/05/2008] [Indexed: 10/21/2022]
Abstract
Nephrosis refers to a condition resulting from proteinuric kidney disease, leading to irreversible renal parenchymal damage and end-stage renal disease when left untreated. Furthermore, nephrosis appears to be a communicable disease carrying risks and complications to other organs such as the heart. Key pathophysiolgical processes involved in initiating and progressing renal damage in nephrosis and its complications may include altered glomerular hemodynamics after initial renal damage and loss of nephrons, nephrotoxicity of increased renal protein traffic enforcing intrinsic 'common pathway' mechanisms of renal scarring, and generalized endothelial dysfunction proceeding CV disease. The reader is first provided a basic overview on key mechanisms, targets and therapies in nephrosis while referred to some excellent updates hereon for more detailed information. The broader purpose of this short review, however, is to highlight caveolae/caveolins and caveolar function as central modulators in all the above key processes of nephrosis. Caveolae - little caves in the plasma membrane that are particularly abundant in endothelial cells, amongst others - are now known to be involved not only in endothelial transcytosis (e.g. of albumin) but also in cholesterol homeostasis (LDL-transport) and, importantly, in signal transduction such as insulin signalling and nitric oxide signalling in endothelial function and regulation of vasomotor tone, as well as signalling by growth factor receptors - such as TGF-beta - which may participate in renal scarring. It is suggested that caveolae may represent crucial sites where possible new druggable targets in nephrosis may be found.
Collapse
Affiliation(s)
- Richard Pe van Dokkum
- Department of Clinical Pharmacology, University of Groningen/University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, Netherlands
| | | |
Collapse
|