1
|
Tok K, Barlas FB, Bayır E, Şenışık AM, Zihnioglu F, Timur S. One step synthesis of tryptophan-isatin carbon nano dots and bio-applications as multifunctional nanoplatforms. Colloids Surf B Biointerfaces 2025; 249:114533. [PMID: 39855082 DOI: 10.1016/j.colsurfb.2025.114533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
The development of natural molecule-derived carbon nano dots (CNDs) marks a significant advancement in biocompatible and sustainable nanomaterials. Tryptophan, capable of crossing the blood-brain barrier (BBB), serves as a precursor to numerous pharmacologically active compounds, while isatin and its derivatives have demonstrated anti-tumor effects, including against brain cancers. This study aimed to synthesize fluorescent CNDs from tryptophan-isatin hybrid precursor and explore their applications in glioblastoma treatment. These CNDs were characterized using techniques such as TEM, SEM-EDS, FTIR, XPS, Raman spectroscopy and UV-Vis spectrophotometry. In vitro tests using the U-87 glioblastoma cell line evaluated cell viability, affinity, and BBB permeability. The CNDs, between 4 and 7 nm in size, exhibited blue and green fluorescence, with no cytotoxic effects observed at concentrations up to 25 µg/mL. The highest BBB permeability rate was determined as 4.3 × 10⁻⁵ cm/s. Additionally, the CNDs demonstrated radiotherapeutic properties, leading to a 51 % reduction in cell viability. This research contributes to nanomedicine by introducing a novel biocompatible material with potential for targeted brain cancer imaging and therapy, while also suggesting broader applications beyond glioblastoma.
Collapse
Affiliation(s)
- Kerem Tok
- Biochemistry Department, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey.
| | - F Baris Barlas
- Istanbul University-Cerrahpasa Institute of Nanotechnology and Biotechnology, Buyukcekmece, Istanbul 34500, Turkey
| | - Ece Bayır
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, 35100 Bornova, Izmir, Turkey
| | - Ahmet Murat Şenışık
- Altinbas University, Vocational School of Health Services, Radiotherapy Program, Istanbul, Turkey
| | - Figen Zihnioglu
- Biochemistry Department, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey
| | - Suna Timur
- Biochemistry Department, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey; Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, 35100 Bornova, Izmir, Turkey.
| |
Collapse
|
2
|
Wang K, Li Y, Wang L. Chaetocin inhibits the progression of neuroblastoma by targeting JAK2/STAT3 signaling pathway in SH-SY5Y cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4237-4246. [PMID: 39446152 DOI: 10.1007/s00210-024-03426-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/30/2024] [Indexed: 10/25/2024]
Abstract
Chaetocin is a fungal mycotoxin that extensively found in various natural products and has anticancer and anti‑inflammatory activities. Herein, the anticancer effects of chaetocin against the progression of neuroblastoma were studied with SHSY-5Y human neuroblastoma cells and examined the underlying molecular mechanisms. The effects of chaetocin on cellular viability, apoptosis, cell migration, and invasion were investigated. The underlying mechanism of anticancer effects of chaetocin was found to mediate via activating JAK2/STAT3 signaling pathway. Furthermore, when SHSY-5Y cells were exposed to a higher concentration of chaetocin, the induction of cell apoptosis significantly increased by enhancing the expression of pro-apoptotic protein Bcl-2, resulting in anticancer activity against neuroblastoma. In addition, chaetocin significantly decreased the SHSY-5Y cell invasion and migration at 50 μM treatment. Moreover, it was shown that increasing chaetocin treatments greatly decreased the activity of proteins connected to the JAK2/STAT3 signaling pathway. In conclusion, chaetocin exhibits a diverse range of actions on neuroblastoma cells, including the inhibition of proliferation, induction of apoptosis, perturbation of cellular morphology, and modulation of critical signaling pathways, with a specific focus on the JAK/STAT3 pathway. These results contribute valuable insights that underscore the potential therapeutic utility of chaetocin in the context of neuroblastoma treatment, suggesting its multifaceted impact on key cellular processes involved in cancer progression.
Collapse
Affiliation(s)
- Ke Wang
- Department of Neurosurgery, 3201 Hospital, Hanzhong, 723000, China
| | - Ye Li
- Department of Oncology, Kunming Children's Hospital, Kunming, 650000, China
| | - Linlin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical College, Xi'an, Shaanxi, 710038, PR China.
| |
Collapse
|
3
|
Wang C, Wang W, Dong J, Li X, Ye T, Zeng F, Jiang M, Shi J, Wang X, Zhang L. Isatin improves oligoasthenospermia caused by busulfan by regulating GSH/GPX4 axis to inhibit ferroptosis. Front Pharmacol 2024; 15:1489956. [PMID: 39545065 PMCID: PMC11561459 DOI: 10.3389/fphar.2024.1489956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024] Open
Abstract
Introduction Ferroptosis, induced by iron overload and an imbalance in redox homeostasis, promotes the generation of reactive oxygen species (ROS), leading to iron-dependent lipid peroxides (LPO) and oxidative stress. Lipid peroxidation induced by reactive oxygen species is essential for the progression of spermatogenesis. However, its imbalance can lead to reproductive system damage and oligoasthenospermia, a critical cause of oligoasthenospermia. Isatin (ISA) is a naturally occurring compound that is widely distributed in lobsters, crustaceans, shellfish and various plants. It exhibits significant antioxidant and anti-aging properties, suggesting its potential as a therapeutic agent for the treatment of oligoasthenospermia. This study aimed to investigate the effects and mechanisms of ISA on oligoasthenospermia and to elucidate the underlying molecular pathways. Methods All mice were divided into normal group, model group and treatment group. Both model group and treatment group received a single intraperitoneal injection of 30 mg/kg BUS to create the model of oligoasthenospermia. After 2 weeks, the treatment group received different doses of 25, 50 and 100 mg/kg ISA by gavage for 28 days, and then mice were sacrificed and tested. Results The results demonstrated that ISA effectively reversed busulfan-induced reproductive system damage in mice. This included the restoration of testicular histomorphology, improvement in sperm concentration and motility, regulation of serum sex hormone levels, and normalization of various oxidative indices in testicular tissue. Furthermore, ISA successfully reversed testicular ferroptosis by restraining the translocation of nuclear factor erythroid 2-related factor 2 (NRF2) into the nucleus and improved oligoasthenospermia through the glutathione (GSH)/glutathione peroxidase 4 (GPX4) axis. Discussion ISA was found to effectively ameliorate oligoasthenospermia in mice, presenting a potential therapeutic option for patients with this condition.
Collapse
Affiliation(s)
- Chengniu Wang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Weizhen Wang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Jin Dong
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Xiaoran Li
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Taowen Ye
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Fanshuo Zeng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Mingyu Jiang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Jianwu Shi
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Xiaorong Wang
- Center for Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, Jiangsu, China
| | - Lei Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, China
| |
Collapse
|
4
|
Medvedev A, Buneeva O. Tryptophan Metabolites as Mediators of Microbiota-Gut-Brain Communication: Focus on Isatin. Front Behav Neurosci 2022; 16:922274. [PMID: 35846785 PMCID: PMC9280024 DOI: 10.3389/fnbeh.2022.922274] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/31/2022] [Indexed: 12/01/2022] Open
Abstract
Isatin (indole-2,3-dione) is an endogenous regulator, exhibiting various behavioral, biological, and pharmacological activities. Synthesis of isatin includes several crucial stages: cleavage of the tryptophan side chain and subsequent oxidation of the indole nucleus. Although these stages require concerted action of bacterial and host enzymes, there are two pathways of isatin formation: the host and bacterial pathways. Isatin acts as a neuroprotector in different experimental models of neurodegeneration. Its effects are realized via up- and downregulation of isatin-responsive genes and via interaction with numerous isatin-binding proteins identified in the brain. The effect of isatin on protein-protein interactions in the brain may be important for realization of weak inhibition of multiple receptor targets.
Collapse
|
5
|
Rahman MM, Junaid M, Hosen SMZ, Mostafa M, Liu L, Benkendorff K. Mollusc-Derived Brominated Indoles for the Selective Inhibition of Cyclooxygenase: A Computational Expedition. Molecules 2021; 26:molecules26216538. [PMID: 34770946 PMCID: PMC8587571 DOI: 10.3390/molecules26216538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Inflammation plays an important role in different chronic diseases. Brominated indoles derived from the Australian marine mollusk Dicathais orbita (D. orbita) are of interest for their anti-inflammatory properties. This study evaluates the binding mechanism and potentiality of several brominated indoles (tyrindoxyl sulfate, tyrindoleninone, 6-bromoisatin, and 6,6′-dibromoindirubin) against inflammatory mediators cyclooxygenases-1/2 (COX-1/2) using molecular docking, followed by molecular dynamics simulation, along with physicochemical, drug-likeness, pharmacokinetic (pk), and toxicokinetic (tk) properties. Molecular docking identified that these indole compounds are anchored, with the main amino acid residues, positioned in the binding pocket of the COX-1/2, required for selective inhibition. Moreover, the molecular dynamics simulation based on root mean square deviation (RMSD), radius of gyration (Rg), solvent accessible surface area (SASA), and root mean square fluctuation (RMSF) analyses showed that these natural brominated molecules transit rapidly to a progressive constant configuration during binding with COX-1/2 and seem to accomplish a consistent dynamic behavior by maintaining conformational stability and compactness. The results were comparable to the Food and Drug Administration (FDA)-approved selective COX inhibitor, aspirin. Furthermore, the free energy of binding for the compounds assessed by molecular mechanics–Poisson–Boltzmann surface area (MM–PBSA) confirmed the binding capacity of indoles towards COX-1/2, with suitable binding energy values except for the polar precursor tyrindoxyl sulfate (with COX-1). The physicochemical and drug-likeness analysis showed zero violations of Lipinski’s rule, and the compounds are predicted to have excellent pharmacokinetic profiles. These indoles are projected to be non-mutagenic and free from hepatotoxicity, with no inhibition of human ether-a-go–go gene (hERG) I inhibitors, and the oral acute toxicity LD50 in rats is predicted to be similar or lower than aspirin. Overall, this work has identified a plausible mechanism for selective COX inhibition by natural marine indoles as potential therapeutic candidates for the mitigation of inflammation.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Marine Ecology Research Centre, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Md. Junaid
- Molecular Modeling Drug-design and Discovery Laboratory, Pharmacology Research Division, BCSIR Laboratories Chattogram, Bangladesh Council of Scientific and Industrial Research, Chattogram 4217, Bangladesh; (M.J.); (S.M.Z.H.); (M.M.)
| | - S. M. Zahid Hosen
- Molecular Modeling Drug-design and Discovery Laboratory, Pharmacology Research Division, BCSIR Laboratories Chattogram, Bangladesh Council of Scientific and Industrial Research, Chattogram 4217, Bangladesh; (M.J.); (S.M.Z.H.); (M.M.)
- Pancreatic Research Group, South Western Sydney Clinical School, and Ingham Institute for AppliedMedical Research, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mohammad Mostafa
- Molecular Modeling Drug-design and Discovery Laboratory, Pharmacology Research Division, BCSIR Laboratories Chattogram, Bangladesh Council of Scientific and Industrial Research, Chattogram 4217, Bangladesh; (M.J.); (S.M.Z.H.); (M.M.)
| | - Lei Liu
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Kirsten Benkendorff
- Marine Ecology Research Centre, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW 2450, Australia
- Correspondence:
| |
Collapse
|
6
|
Sahin K, Saripinar E, Durdagi S. Combined 4D-QSAR and target-based approaches for the determination of bioactive Isatin derivatives. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:769-792. [PMID: 34530651 DOI: 10.1080/1062936x.2021.1971760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
The hybrid method of the Electron-Conformational Genetic Algorithm (EC-GA) was used to determine the pharmacophore groups and to estimate anticancer activity in isatin derivatives using a robust 4D-QSAR software (EMRE). To build the model, each compound is represented by a set of conformers rather than a single conformation. The Electron Conformational Matrix of Congruity (ECMC) is composed via EMRE software. Electron Conformational Submatrix of Activity (ECSA) was calculated by the comparison of these matrices. Genetic algorithm was used to select important variables to predict theoretical activity. The model with the best seven parameters produced satisfactory results. The E statistics technique was applied to the generated EC-GA model to evaluate the individual contribution of each of the descriptors on biological activity. The r2 and q2 values of the training set compounds were found to be 0.95 and 0.93, respectively. Because no previous 4D-QSAR studies on isatin derivatives have been conducted, this study is important in the development of new isatin derivatives. In this study, 27 isatin derivatives whose activities were estimated using the hybrid EC-GA method were also investigated through molecular docking and molecular dynamics simulations for their BCL-2 inhibitory activity.
Collapse
Affiliation(s)
- K Sahin
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - E Saripinar
- Faculty of Science, Department of Chemistry, Erciyes University, Kayseri, Turkey
| | - S Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
7
|
Kiani A, Shahlaei M, Rahpeyma M, Adibi H. Synthesis of (Z)-3-((5-(benzylthio)-4H-1,2,4-triazol-3-yl)imino)-5-haloindolin-2-one derivatives: combined spectroscopic and computational investigations on the level and activity of matrix metalloproteinases 2 and 9 in cancer cell lines. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021; 18:1781-1800. [DOI: 10.1007/s13738-020-02150-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 12/22/2020] [Indexed: 02/04/2025]
|
8
|
Bioactive isatin (oxime)-triazole-thiazolidinedione ferrocene molecular conjugates: Design, synthesis and antimicrobial activities. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Deepa A, Srinivasadesikan V, Lee SL, Padmini V. Highly selective detection of isatin using curcumin analogue and its application in real samples. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Medvedev A, Kopylov A, Buneeva O, Kurbatov L, Tikhonova O, Ivanov A, Zgoda V. A Neuroprotective Dose of Isatin Causes Multilevel Changes Involving the Brain Proteome: Prospects for Further Research. Int J Mol Sci 2020; 21:ijms21114187. [PMID: 32545384 PMCID: PMC7313464 DOI: 10.3390/ijms21114187] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022] Open
Abstract
Isatin (indole-2,3-dione) is an endogenous regulator, exhibiting a wide range of biological and pharmacological activities. At doses of 100 mg/kg and above, isatin is neuroprotective in different experimental models of neurodegeneration. Good evidence exists that its effects are realized via interaction with numerous isatin-binding proteins identified in the brain and peripheral tissues studied. In this study, we investigated the effect of a single dose administration of isatin to mice (100 mg/kg, 24 h) on differentially expressed proteins and a profile of the isatin-binding proteins in brain hemispheres. Isatin administration to mice caused downregulation of 31 proteins. However, these changes cannot be attributed to altered expression of corresponding genes. Although at this time point isatin influenced the expression of more than 850 genes in brain hemispheres (including 433 upregulated and 418 downregulated genes), none of them could account for the changes in the differentially expressed proteins. Comparative proteomic analysis of brain isatin-binding proteins of control and isatin-treated mice revealed representative groups of proteins sensitive to isatin administration. Control-specific proteins (n = 55) represent specific targets that interact directly with isatin. Appearance of brain isatin-binding proteins specific to isatin-treated mice (n = 94) may be attributed to the formation of new clusters of protein–protein interactions and/or novel binding sites induced by a high concentration of this regulator (ligand-induced binding sites). Thus, isatin administration produces multiple effects in the brain, which include changes in gene expression and also profiles of isatin-binding proteins and their interactomes. Further studies are needed for deeper insight into the mechanisms of the multilevel changes in the brain proteome induced by isatin. In the context of the neuroprotective action, these changes may be aimed at interruption of pathological links that begin to form after initiation of pathological processes.
Collapse
|
11
|
Hussain SS, Faizi S, Rafi K, Simjee SU. Novel Mannich base 3FB3FA8H induces apoptosis by upregulating P53 pathway in neuroblastoma cells. Mol Cell Biochem 2020; 471:29-39. [PMID: 32472321 DOI: 10.1007/s11010-020-03755-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 05/16/2020] [Indexed: 10/24/2022]
Abstract
P53 plays an important role in maintaining genetic stability and development of resistance against tumors. Dysregulation of P53 gene is one of the key factors contributing to the etiology of neuroblastoma which causes cells to evade apoptosis. Activating P53 pathway can be a therapeutic alternative to the currently available medicinal strategies. Mannich bases have been known to possess various biological activities including the anticancer activity. In this study, we have targeted the P53 pathway by novel Mannich base (3FB3FA8H) which can be a future prospect to cure neuroblastoma. 3FB3FA8H has shown modulation of P53 pathway leading to apoptosis of neuroblastoma cells. Mitochondrial membrane permeability is also increased by 3FB3FA8H which may be a consequence of P53 pathway modulation. 3FB3FA8H increases the mRNA levels of P53 leading to activation of BAX. Inclining BAX/BCL2 ratio towards apoptotic BAX leads to cleavage of caspase 3, ultimately, causing apoptosis. Series of experiments provide the evidence that Mannich base 3FB3FA8H leads to P53-mediated apoptosis. Inducing apoptosis by this mechanism could be of central importance in reducing tumor burden which can be a good prospect for neuroblastoma patients.
Collapse
Affiliation(s)
- Syed Saad Hussain
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Shaheen Faizi
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Kinza Rafi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Shabana U Simjee
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan. .,Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
12
|
Streeter CC, Lin Q, Firestine SM. Isatins Inhibit N 5-CAIR Synthetase by a Substrate Depletion Mechanism. Biochemistry 2019; 58:2260-2268. [PMID: 30964980 DOI: 10.1021/acs.biochem.8b00939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The continued rise of antibiotic-resistant infections coupled with the limited pipeline of new antimicrobials highlights the pressing need for the development of new antibacterial agents. One potential pathway for new agents is de novo purine biosynthesis as studies have shown that bacteria and lower eukaryotes synthesize purines differently than humans. Microorganisms utilize two enzymes, N5-CAIR synthetase and N5-CAIR mutase, to convert 5-aminoimidazole ribonucleotide (AIR) into 4-carboxy-5-aminoimidazole ribonucleotide (CAIR) through the intermediate N5-carboxy-5-aminoimidazole ribonucleotide (N5-CAIR). In contrast, vertebrates directly convert AIR to CAIR via the enzyme AIR carboxylase. A high-throughput screen against N5-CAIR synthetase identified a group of compounds with a 2,3-indolinedione (isatin) core that inhibited the enzyme. While initial studies suggested that isatins inhibited the enzyme by a noncompetitive mechanism, here we show that isatins inhibit N5-CAIR synthetase by a substrate depletion mechanism. Unexpectedly, we found that isatin reacts rapidly and reversibly with the substrate AIR. The rate of the reaction is dependent upon the substituents on the phenyl moiety of isatin, with 5- and 7-bromoisatin being faster than 4-bromoisatin. These studies suggest that care should be taken when exploring isatin compounds because the biological activity could be a result of their reactivity.
Collapse
Affiliation(s)
- Cale C Streeter
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences , Wayne State University , Detroit , Michigan 48201 , United States
| | - Qian Lin
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences , Wayne State University , Detroit , Michigan 48201 , United States
| | - Steven M Firestine
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences , Wayne State University , Detroit , Michigan 48201 , United States
| |
Collapse
|
13
|
Medvedev A, Buneeva O, Gnedenko O, Ershov P, Ivanov A. Isatin, an endogenous nonpeptide biofactor: A review of its molecular targets, mechanisms of actions, and their biomedical implications. Biofactors 2018; 44:95-108. [PMID: 29336068 DOI: 10.1002/biof.1408] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 11/10/2022]
Abstract
Isatin (indole-2,3-dione) is an oxidized indole. It is widely distributed in mammalian tissues and body fluids, where isatin concentrations vary significantly from <0.1 to > 10 µM. Isatin output is increased under conditions of stress. Exogenously administered isatin is characterized by low toxicity, mutagenicity, and genotoxicity in vivo. Cytotoxic effects of isatin on various cell cultures are usually observed at concentrations exceeding 100 µM. Binding of [3 H]isatin to rat brain sections is consistent with its physiological concentrations. Proteomic analysis of mouse and rat brain isatin-binding proteins revealed about 90 individual proteins, which demonstrated significant interspecies differences (rat versus mouse). Certain evidence exist that redox state(s) and possibly other types of posttranslational modifications regulate affinity of target proteins to isatin. Recent data suggest that interacting with numerous intracellular isatin binding proteins, isatin can act as a regulator of complex protein networks in norm and pathology. Physiological concentrations of isatin in vitro inhibit monoamine oxidase B and natriuretic peptide receptor guanylate cyclase, higher (neuroprotective) concentrations (50-400 μM) cause apoptosis of various (including malignant tumor) cell lines and influence expression of certain apoptosis-related genes. Being administered in vivo, isatin exhibits various behavioral effects; it attenuates manifestations of MPTP-induced parkinsonism and tumor growth in experimental animal models. © 2017 BioFactors, 44(2):95-108, 2018.
Collapse
Affiliation(s)
- Alexei Medvedev
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry, Moscow, Russia
| | - Olga Buneeva
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry, Moscow, Russia
| | - Oksana Gnedenko
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry, Moscow, Russia
| | - Pavel Ershov
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry, Moscow, Russia
| | - Alexis Ivanov
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
14
|
Isatin 1-morpholinomethyl, 1-hydroxymethyl, 1-methyl, and their halogenated derivatives, redox behaviour. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.05.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Ensch M, Maldonado VY, Swain GM, Rechenberg R, Becker MF, Schuelke T, Rusinek CA. Isatin Detection Using a Boron-Doped Diamond 3-in-1 Sensing Platform. Anal Chem 2018; 90:1951-1958. [PMID: 29298039 DOI: 10.1021/acs.analchem.7b04045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Boron-doped diamond (BDD) is a promising electrochemical tool that exhibits excellent chemical sensitivity and stability. These intrinsic advantages coupled with the material's vast microfabrication flexibility make BDD an attractive sensing device. In this study, two different 3-in-1 BDD electrode sensors were fabricated, characterized, and investigated for their capability to detect isatin, an anxiogenic indole that possesses anticonvulsant activity. Each device was comprised of a working, reference, and auxiliary electrode, all made of BDD. Two different working electrode geometries were studied, a 2 mm diameter macroelectrode (MAC) and a microelectrode array (MEA). The BDD quasi-reference electrode was studied by measuring its potential against a traditional Ag/AgCl reference electrode. While the potential shifted as a function of solution pH, a miniscule potential drift was observed when holding the solution pH constant. Specifically, the BDD quasi-reference electrode had a potential of -0.2 V (vs Ag/AgCl) in a pH 7 solution, and this remained stable for a 30-h time period. For the detection of isatin, solutions were analyzed using both sensors in pH 7.4 phosphate buffered saline (PBS). Using the MEA sensor, the limit of detection (LOD, (3σ)/m) for isatin was found to be 0.04 μM; an increase to 0.22 μM was observed with the MAC sensor. These results were compared to those obtained from UV-vis spectrophotometry, where a 0.57 μM LOD was observed. The feasibility for use in a complex sample matrix was also examined by completing measurements in urine simulant. The results presented herein indicate that both 3-in-1 BDD sensors are applicable at low limits of detection with potential application as an electrochemical detector for chromatographic methods.
Collapse
Affiliation(s)
- Mary Ensch
- Fraunhofer USA, Inc. Center for Coatings and Diamond Technologies, East Lansing, Michigan 48824-1226, United States.,Michigan State University , Department of Chemical Engineering, East Lansing, Michigan 48824-1226, United States
| | - Vanessa Y Maldonado
- Escuela Politecnica Nacional (EPN) , Department of Chemical Engineering, Quito, 170517, Ecuador.,Michigan State University , Department of Chemistry, East Lansing, Michigan 48824-1226, United States
| | - Greg M Swain
- Michigan State University , Department of Chemistry, East Lansing, Michigan 48824-1226, United States
| | - Robert Rechenberg
- Fraunhofer USA, Inc. Center for Coatings and Diamond Technologies, East Lansing, Michigan 48824-1226, United States
| | - Michael F Becker
- Fraunhofer USA, Inc. Center for Coatings and Diamond Technologies, East Lansing, Michigan 48824-1226, United States
| | - Thomas Schuelke
- Fraunhofer USA, Inc. Center for Coatings and Diamond Technologies, East Lansing, Michigan 48824-1226, United States.,Michigan State University , Department of Chemical Engineering, East Lansing, Michigan 48824-1226, United States.,Michigan State University , Department Electrical and Computer Engineering, East Lansing, Michigan 48824-1226, United States
| | - Cory A Rusinek
- Fraunhofer USA, Inc. Center for Coatings and Diamond Technologies, East Lansing, Michigan 48824-1226, United States
| |
Collapse
|
16
|
Fogaça MV, Cândido-Bacani PDM, Benicio LM, Zapata LM, Cardoso PDF, de Oliveira MT, Calvo TR, Varanda EA, Vilegas W, de Syllos Cólus IM. Effects of indirubin and isatin on cell viability, mutagenicity, genotoxicity and BAX/ERCC1 gene expression. PHARMACEUTICAL BIOLOGY 2017; 55:2005-2014. [PMID: 28738722 PMCID: PMC7011876 DOI: 10.1080/13880209.2017.1354387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
CONTEXT Indigofera suffruticosa Miller (Fabaceae) and I. truxillensis Kunth produce compounds, such as isatin (ISA) and indirubin (IRN), which possess antitumour properties. Their effects in mammalian cells are still not very well understood. OBJECTIVE We evaluated the activities of ISA and/or IRN on cell viability and apoptosis in vitro, their genotoxic potentials in vitro and in vivo, and the IRN- and ISA-induced expression of ERCC1 or BAX genes. MATERIALS AND METHODS HeLa and/or CHO-K1 cell lines were tested (3 or 24 h) in the MTT, Trypan blue exclusion, acridine orange/ethidium bromide, cytokinesis-blocked micronucleus (CBMN) and comet (36, 24 and 72 h) tests after treatment with IRN (0.1 to 200 μM) or ISA (0.5 to 50 μM). Gene expression was measured by RT-qPCR in HeLa cells. Swiss albino mice received IRN (3, 4 or 24 h) by gavage (50, 100 and 150 mg/kg determined from the LD50 - 1 g/kg b.w.) and submitted to comet assay in vivo. RESULTS IRN reduced the viability of CHO-K1 (24 h; 5 to 200 μM) and HeLa cells (10 to 200 μM), and was antiproliferative in the CBMN test (CHO-K1: 0.5 to 10 μM; HeLa: 5 and 10 μM). The drug did not induce apoptosis, micronucleus neither altered gene expression. IRN and ISA were genotoxic for HeLa cells (3 and 24 h) at all doses tested. IRN (100 and 150 mg/kg) also induced genotoxicity in vivo (4 h). CONCLUSION IRN and ISA have properties that make them candidates as chemotherapeutics for further pharmacological investigations.
Collapse
Affiliation(s)
- Manoela Viar Fogaça
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | | | - Lucas Milanez Benicio
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Lara Martinelli Zapata
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | | | | | - Tamara Regina Calvo
- Araraquara Institute of Chemistry, São Paulo State University, Araraquara, Brazil
| | - Eliana Aparecida Varanda
- Araraquara Faculty of Pharmaceutical Sciences, Department of Biological Sciences, São Paulo State University, Araraquara, Brazil
| | - Wagner Vilegas
- Araraquara Institute of Chemistry, São Paulo State University, Araraquara, Brazil
- Experimental Campus of the Paulista Coast, São Paulo State University, São Vicente, Brazil
| | - Ilce Mara de Syllos Cólus
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| |
Collapse
|
17
|
Zhu R, Wang Z, Liang P, He X, Zhuang X, Huang R, Wang M, Wang Q, Qian Y, Wang S. Efficient VEGF targeting delivery of DOX using Bevacizumab conjugated SiO 2@LDH for anti-neuroblastoma therapy. Acta Biomater 2017; 63:163-180. [PMID: 28923539 DOI: 10.1016/j.actbio.2017.09.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 12/25/2022]
Abstract
Vascular endothelial growth factor (VEGF) plays an important role in angiogenesis and is highly expressed in carcinoma, which make it an important target for tumor targeting therapy. Neuroblastoma is the main cause for cancer-related death in children. Like most solid tumors, it is also accompanied with the overexpression of VEGF. Doxorubicin Hydrochloride (DOX), a typical chemotherapeutic agent, exhibits efficient anticancer activities for various cancers. However, DOX, without targeting ability, usually causes severe damage to normal tissues. To overcome the shortages, we designed a novel nano-composite, which is Bevacizumab (Bev) modified SiO2@LDH nanoparticles (SiO2@LDH-Bev), loading with DOX to achieve targeting ability and curative efficiency. SiO2@LDH-DOX and SiO2@LDH-Bev-DOX nanoparticles were synthesized and the physicochemical properties were characterized by TEM detection, Zeta potential analysis, FTIR, Raman and XPS analysis. Then in vitro and in vivo anti-neuroblastoma efficiency, targeting ability and mechanisms of anti-carcinoma and anti-angiogenesis of SiO2@LDH-Bev-DOX were explored. Our results indicated that we obtained the core-shell structure SiO2@LDH-Bev with an average diameter of 253±10nm and the amount of conjugated Bev was 4.59±0.38μg/mg SiO2@LDH-Bev. SiO2@LDH-Bev-DOX could improve the cellular uptake and the targeting effect of DOX to brain and tumor, enhance the anti-neuroblastoma and anti-angiogenesis efficiency both in vitro and in vivo, and alleviate side effects of DOX sharply, especially hepatic injury. In addition, we also demonstrated that angiogenesis inhibitory effect was mediated by DOX and VEGF triggered signal pathways, including PI3K/Akt, Raf/MEK/ERK, and adhesion related pathways. In summary, SiO2@LDH-Bev could be a potential VEGF targeting nanocarrier applied in VEGF positive cancer therapy. STATEMENT OF SIGNIFICANCE This paper explored that a novel core-shell structure nanomaterial SiO2@LDH and modified SiO2@LDH with Bevacizumab (Bev) to form a new tumor vasculature targeting nanocarrier SiO2@LDH-Bev as vector of DOX, which was not reported before. The results indicated that SiO2@LDH-Bev could improve the VEGF targeting ability, anti-neuroblastoma and anti-angiogenesis efficiency of DOX. At the same time, SiO2@LDH-Bev-DOX could erase the cardiac toxicity and hepatic injury coming from DOX. Tube formation showed SiO2@LDH-Bev-DOX had the strongest effect on inhibiting angiogenesis among all the four formulations. SiO2@LDH-Bev-DOX could downregulate expression of p-VEGFR and inhibit activation of the Raf/MEK/ERK, p38MAPK, PI3K/Akt and FAK signaling pathways to achieve the goal of anti-angiogenesis. This work provides a novel system for the safe and efficient use of Bev and DOX on Neuroblastoma and explores the mechanism of the function of nano carrier in cancer therapy both in vitro and in vivo.
Collapse
|
18
|
Isatin inhibits SH-SY5Y neuroblastoma cell invasion and metastasis through MAO/HIF-1α/CXCR4 signaling. Anticancer Drugs 2017; 28:645-653. [PMID: 28379899 DOI: 10.1097/cad.0000000000000505] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Isatin was reported to possess anticancer activities through its effect on tumor proliferation, apoptosis, and metastasis in vitro and in vivo. This study aimed to elucidate the underlying mechanism behind isatin's ability to inhibit neuroblastoma cell metastasis. Our results demonstrated that isatin could inhibit neuroblastoma cell proliferation, invasion, and migration in a dose-dependent manner. Moreover, isatin inhibited the expression level of monoamine oxidase A as well as that of its downstream protein hypoxia-inducible factor 1α. Further study indicated that isatin inhibited reactive oxygen species production, extracellular signal-regulated kinase activation, vascular endothelial growth factor receptor-1 phosphorylation, and chemokine receptor type 4 expression. All results support the potential antimetastatic effect of isatin in neuroblatoma cells.
Collapse
|
19
|
Yu B, Wang SQ, Qi PP, Yang DX, Tang K, Liu HM. Design and synthesis of isatin/triazole conjugates that induce apoptosis and inhibit migration of MGC-803 cells. Eur J Med Chem 2016; 124:350-360. [DOI: 10.1016/j.ejmech.2016.08.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022]
|
20
|
Shahbazy M, Pakravan P, Kompany-Zareh M. Multivariate spectrochemical analysis of interactions of three common Isatin derivatives to calf thymus DNA in vitro. J Biomol Struct Dyn 2016; 35:2539-2556. [DOI: 10.1080/07391102.2016.1225604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mohammad Shahbazy
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Parvaneh Pakravan
- Department of Chemistry, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Mohsen Kompany-Zareh
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
21
|
Efficient synthesis of new antiproliferative steroidal hybrids using the molecular hybridization approach. Eur J Med Chem 2016; 117:241-55. [DOI: 10.1016/j.ejmech.2016.04.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/14/2016] [Accepted: 04/08/2016] [Indexed: 11/20/2022]
|
22
|
Isatin inhibits the proliferation and invasion of SH-SY5Y neuroblastoma cells. Mol Med Rep 2016; 13:2757-62. [DOI: 10.3892/mmr.2016.4850] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 11/17/2015] [Indexed: 11/05/2022] Open
|
23
|
Debnath B, Ganguly S. Synthesis, biological evaluation, in silico docking, and virtual ADME studies of 2-[2-Oxo-3-(arylimino)indolin-1-yl]-N-arylacetamides as potent anti-breast cancer agents. MONATSHEFTE FUR CHEMIE 2015. [DOI: 10.1007/s00706-015-1566-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Shao P, Chen X, Sun P. Chemical characterization, antioxidant and antitumor activity of sulfated polysaccharide from Sargassum horneri. Carbohydr Polym 2014; 105:260-9. [PMID: 24708979 DOI: 10.1016/j.carbpol.2014.01.073] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 01/17/2014] [Accepted: 01/21/2014] [Indexed: 11/20/2022]
Abstract
Three water-soluble polysaccharide fractions (SHP30, SHP60, and SHP80) extracted from the Sargassum horneri were obtained by water extraction and radial flow chromatography. The high-performance gel-permeation chromatography analysis showed that the average molecular weight (Mw) of three polysaccharides were approximately 1.58×10(3), 1.92×10(3) and 11.2KDa, respectively. Their in vitro antioxidant activities, antitumor activities were investigated and compared. Among these three polysaccharides, SHP30 with the highest sulfate content and intermediate molecular weight exhibited excellent antioxidant and antitumor activities in the superoxide radical assay, hydroxyl radical assay, reducing power assay, and MTT assay. Then, flow cytometry assay and quantitative real-time reverse transcription-PCR analysis suggested that the accumulation of cells in G0/G1 and S phase effecting apoptosis-associated gene expressions such as Bcl-2 and Bax might account for the growth inhibition of DLD cells by SHP30. Based on these results, we have inferred that sulfate content and molecular weight were the factors influencing antioxidant and antitumor activities.
Collapse
Affiliation(s)
- Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang Hangzhou 310014, PR China
| | - Xiaoxiao Chen
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang Hangzhou 310014, PR China
| | - Peilong Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang Hangzhou 310014, PR China.
| |
Collapse
|
25
|
Ding X, Zhu F, Yang Y, Li M. Purification, antitumor activity in vitro of steroidal glycoalkaloids from black nightshade (Solanum nigrum L.). Food Chem 2013; 141:1181-6. [DOI: 10.1016/j.foodchem.2013.03.062] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 02/15/2013] [Accepted: 03/18/2013] [Indexed: 10/27/2022]
|
26
|
Isatin inhibits proliferation and induces apoptosis of SH-SY5Y neuroblastoma cells in vitro and in vivo. Eur J Pharmacol 2013; 702:235-41. [PMID: 23376416 DOI: 10.1016/j.ejphar.2013.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 01/17/2013] [Accepted: 01/17/2013] [Indexed: 11/20/2022]
Abstract
The purpose of this study was to investigate the anti-tumor effects of the isatin in vitro and in vivo. Human neuroblastoma cells (SH-SY5Y) were exposed to isatin at various concentrations (0, 50, 100, 200 μmol/l) for 48 h. Bcl-2 and Bax mRNA were analyzed via RT-PCR. Bcl-2, Bax, the inhibitor of caspase-activated DNase (ICAD) and cytochrome c protein were analyzed via western blot. Apoptosis, caspase-9, 3 activation and mitochondrial depolarization were assayed by flow cytometry. SH-SY5Y cells were injected into the right side of the mouse armpit. When the neoplasm was detected, the nude mice were randomly divided into four groups and received an injection of DMEM (negative control), 25 or 50mg/kg isatin, or cyclophosphamide (positive control). The inhibitory effects of isatin on the murine xenograft were determined using a growth curve and Bcl-2 and Bax mRNA and protein were studied using RT-PCR and western blot, respectively. The results showed that apoptosis of SH-SY5Y cells was induced by isatin. Furthermore, Bcl-2 expression was decreased and the ratio of Bcl-2 to Bax was significantly decreased by isatin. The mitochondrial transmembrane potential was markedly reduced and the release of cytochrome c into the cytosol was increased after treatment with isatin. Simultaneously, caspase-9, 3 was activated, followed by degradation of ICAD, a caspase-3 substrate. Finally, tumor xenograft growth was markedly suppressed and a decrease was found in Bcl-2 and Bax expression in vivo. These results suggest that isatin can induce apoptosis and inhibit the growth of neuroblastoma cells via the mitochondrial pathway.
Collapse
|
27
|
Cândido-Bacani PDM, Mori MP, Calvo TR, Vilegas W, Varanda EA, Cólus IMDS. In vitro assessment of the cytotoxic, apoptotic, and mutagenic potentials of isatin. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:354-362. [PMID: 23557234 DOI: 10.1080/15287394.2012.755941] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Isatin (1H-indole-2,3-dione) is a chemical found in various medicinal plant species and responsible for a broad spectrum of pharmacological and biological properties that may be beneficial to human health, as an anticonvulsant, antibacterial, antifungal, antiviral, and anticancer agent. The aim of the present study was to determine in vitro the cytotoxic, mutagenic, and apoptotic effects of isatin on CHO-K1 and HeLa cells using the MTT viability assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide), micronucleus (MN) test, apoptosis index, and nuclear division index (NDI). The 5 isatin concentrations evaluated in the mutagenicity and apoptosis tests were 0.5, 1, 5, 10, and 50 μM, selected through a preliminary MTT assay. Positive (doxorubicin, DXR) and negative (phosphate buffered saline, PBS) control groups were also included in the analysis. Isatin did not exert a mutagenic effect on CHO-K1 after 3 and 24 h of treatment or on HeLa cells after 24 h. However, 10 and 50 μM concentrations inhibited cell proliferation and promoted apoptosis in both CHO-K1 and HeLa cells. Data indicate that the cytotoxic, apoptotic, and antiproliferative effects of isatin were concentration independent and cell line independent.
Collapse
|
28
|
Wang YH, Xuan ZH, Tian S, He GR, Du GH. Myricitrin attenuates 6-hydroxydopamine-induced mitochondrial damage and apoptosis in PC12 cells via inhibition of mitochondrial oxidation. J Funct Foods 2013. [DOI: 10.1016/j.jff.2012.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
29
|
Hussein BH, Azab HA, El-Azab MF, El-Falouji AI. A novel anti-tumor agent, Ln(III) 2-thioacetate benzothiazole induces anti-angiogenic effect and cell death in cancer cell lines. Eur J Med Chem 2012; 51:99-109. [PMID: 22424613 DOI: 10.1016/j.ejmech.2012.02.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 02/11/2012] [Accepted: 02/13/2012] [Indexed: 10/28/2022]
|
30
|
Seed Oil of Brucea javanica Induces Apoptotic Death of Acute Myeloid Leukemia Cells via Both the Death Receptors and the Mitochondrial-Related Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:965016. [PMID: 21760826 PMCID: PMC3132896 DOI: 10.1155/2011/965016] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 03/21/2011] [Indexed: 11/17/2022]
Abstract
Seed oil of Brucea javanica (BJO) is extracted from the seeds of herb medicine Brucea javanica (L.), and its emulsion formulation (BJOE) has been used clinically to treat carcinomas for many years in China. The antileukemia potential of BJO was investigated in human acute myeloid leukemia cell lines (AML) U937 and HL-60 in vitro and in a mouse U937 xenograft tumor model. BJO induced AML cell apoptosis through activation of caspase-8 and modulation of apoptosis-related proteins. Meanwhile, the inhibition of survivin and XIAP increased the cytotoxicity of BJO. Consistent with these findings, BJO also increased subG(1) phase cells and cause PARP cleavage in AML patients' leukemia cells. In contrast, only weak cytotoxicity of BJO was found in peripheral blood lymphocytes (PBLs) of healthy volunteers. Moreover, oleic acid and linoleic acid were found to be the active components of BJO. Our study provided strong evidence for the first time that BJO induced apoptosis of both cultured and primary AML cells. Furthermore, intravenous injection of BJO significantly inhibited U937 tumor growth in the xenograft mouse model. These results suggest that BJO may have a therapeutic role in the treatment of human leukemia.
Collapse
|
31
|
Mutagenicity and genotoxicity of isatin in mammalian cells in vivo. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 719:47-51. [DOI: 10.1016/j.mrgentox.2010.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/09/2010] [Accepted: 11/18/2010] [Indexed: 11/22/2022]
|
32
|
Kashanian S, Khodaei MM, Pakravan P. Spectroscopic Studies on the Interaction of Isatin with Calf Thymus DNA. DNA Cell Biol 2010; 29:639-46. [DOI: 10.1089/dna.2010.1054] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Soheila Kashanian
- Department of Chemistry, Faculty of Science, Sensor and Biosensor Research Center (SBRC) & Nanoscience and Nanotechnology Research Center (NNRC), Razi University, Kermanshah, Iran
| | - Mohammad Mehdi Khodaei
- Department of Chemistry, Faculty of Science, Sensor and Biosensor Research Center (SBRC) & Nanoscience and Nanotechnology Research Center (NNRC), Razi University, Kermanshah, Iran
| | - Parvaneh Pakravan
- Department of Chemistry, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|