1
|
李 雨, 王 瑗, 袁 泉. [Latest Findings on the Role of α-Ketoglutarate in Metabolic Syndrome]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:783-792. [PMID: 38948289 PMCID: PMC11211801 DOI: 10.12182/20240560302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Indexed: 07/02/2024]
Abstract
Alpha-ketoglutarate (α-KG), an endogenous intermediate of the tricarboxylic acid cycle, is involved in a variety of cellular metabolic pathways. It serves as an energy donor, a precursor of amino acid biosynthesis, and an epigenetic regulator. α-KG plays physiological functions in immune regulation, oxidative stress, and anti-aging as well. In recent years, it has been reported that the level of α-KG in the body is closely associated with metabolic syndrome, including obesity, hyperglycemia, and other pathological factors. Exogenous supplementation of α-KG improves obesity, blood glucose levels, and cardiovascular disease risks associated with metabolic syndrome. Furthermore, α-KG regulates the common pathological mechanisms of metabolic syndrome, suggesting the potential application prospect of α-KG in metabolic syndrome. In order to provide a theoretical basis for further exploration of the application of α-KG in metabolic syndrome, we focused on α-KG and metabolic syndrome in this article and summarized the latest research progress in the role of α-KG in improving the pathological condition and disease progression of metabolic syndrome. For the next step, researchers may focus on the co-pathogenesis of metabolic syndrome and investigate whether α-KG can be used to achieve the therapeutic goal of "homotherapy for heteropathy" in the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- 雨含 李
- 口腔疾病防治全国重点实验室 国家口腔医学中心 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 种植科 (成都 610041)State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Dental Implant, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 瑗 王
- 口腔疾病防治全国重点实验室 国家口腔医学中心 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 种植科 (成都 610041)State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Dental Implant, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 泉 袁
- 口腔疾病防治全国重点实验室 国家口腔医学中心 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 种植科 (成都 610041)State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Dental Implant, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Yamamoto T, Hayashida T, Masugi Y, Oshikawa K, Hayakawa N, Itoh M, Nishime C, Suzuki M, Nagayama A, Kawai Y, Hishiki T, Matsuura T, Naito Y, Kubo A, Yamamoto A, Yoshioka Y, Kurahori T, Nagasaka M, Takizawa M, Takano N, Kawakami K, Sakamoto M, Wakui M, Yamamoto T, Kitagawa Y, Kabe Y, Horisawa K, Suzuki A, Matsumoto M, Suematsu M. PRMT1 Sustains De Novo Fatty Acid Synthesis by Methylating PHGDH to Drive Chemoresistance in Triple-Negative Breast Cancer. Cancer Res 2024; 84:1065-1083. [PMID: 38383964 PMCID: PMC10982647 DOI: 10.1158/0008-5472.can-23-2266] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/20/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
Triple-negative breast cancer (TNBC) chemoresistance hampers the ability to effectively treat patients. Identification of mechanisms driving chemoresistance can lead to strategies to improve treatment. Here, we revealed that protein arginine methyltransferase-1 (PRMT1) simultaneously methylates D-3-phosphoglycerate dehydrogenase (PHGDH), a critical enzyme in serine synthesis, and the glycolytic enzymes PFKFB3 and PKM2 in TNBC cells. 13C metabolic flux analyses showed that PRMT1-dependent methylation of these three enzymes diverts glucose toward intermediates in the serine-synthesizing and serine/glycine cleavage pathways, thereby accelerating the production of methyl donors in TNBC cells. Mechanistically, PRMT1-dependent methylation of PHGDH at R54 or R20 activated its enzymatic activity by stabilizing 3-phosphoglycerate binding and suppressing polyubiquitination. PRMT1-mediated PHGDH methylation drove chemoresistance independently of glutathione synthesis. Rather, activation of the serine synthesis pathway supplied α-ketoglutarate and citrate to increase palmitate levels through activation of fatty acid synthase (FASN). Increased palmitate induced protein S-palmitoylation of PHGDH and FASN to further enhance fatty acid synthesis in a PRMT1-dependent manner. Loss of PRMT1 or pharmacologic inhibition of FASN or protein S-palmitoyltransferase reversed chemoresistance in TNBC. Furthermore, IHC coupled with imaging MS in clinical TNBC specimens substantiated that PRMT1-mediated methylation of PHGDH, PFKFB3, and PKM2 correlates with chemoresistance and that metabolites required for methylation and fatty acid synthesis are enriched in TNBC. Together, these results suggest that enhanced de novo fatty acid synthesis mediated by coordinated protein arginine methylation and protein S-palmitoylation is a therapeutic target for overcoming chemoresistance in TNBC. SIGNIFICANCE PRMT1 promotes chemoresistance in TNBC by methylating metabolic enzymes PFKFB3, PKM2, and PHGDH to augment de novo fatty acid synthesis, indicating that targeting this axis is a potential treatment strategy.
Collapse
Affiliation(s)
- Takehiro Yamamoto
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Tetsu Hayashida
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Masugi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Kiyotaka Oshikawa
- Department of Omics and Systems Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Noriyo Hayakawa
- Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| | - Mai Itoh
- Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| | - Chiyoko Nishime
- Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| | - Masami Suzuki
- Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| | - Aiko Nagayama
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kawai
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Takako Hishiki
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Tomomi Matsuura
- Clinical Translational Research Center, Keio University Hospital, Tokyo, Japan
| | - Yoshiko Naito
- Clinical Translational Research Center, Keio University Hospital, Tokyo, Japan
| | - Akiko Kubo
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Arisa Yamamoto
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Yujiro Yoshioka
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Tomokazu Kurahori
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Misa Nagasaka
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Minako Takizawa
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Naoharu Takano
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Koji Kawakami
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Masatoshi Wakui
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takushi Yamamoto
- Solutions COE Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Kenichi Horisawa
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Atsushi Suzuki
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Masaki Matsumoto
- Department of Omics and Systems Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Makoto Suematsu
- Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
- Keio University WPI-Bio2Q Research Center, Tokyo, Japan
| |
Collapse
|
3
|
Pang Y, Li C, Wang Y, Liu J, Su G, Duan C, Fang L, Zhou Y, Xiao S. Porcine reproductive and respiratory syndrome virus infection manipulates central carbon metabolism. Vet Microbiol 2023; 279:109674. [PMID: 36739813 DOI: 10.1016/j.vetmic.2023.109674] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
The metabolic pathways of central carbon metabolism (CCM), glycolysis and the tricarboxylic acid (TCA) cycle, are important host factors determining the outcome of viral infection. Thus, it is not surprising that viruses easily manipulate CCM for optimized replication. Porcine reproductive and respiratory syndrome virus (PRRSV) is an Arterivirus that has devastated the swine industry worldwide for over 30 years. However, whether PRRSV reprograms CCM is still unclear. In this study, we found that PRRSV infection increased the intensity of cellular uptake of glucose and glutamine, two main carbon sources for mammalian cells. Deprivation of glucose and/or glutamine significantly reduced PRRSV replication; restricted entry of glucose and glutamine into CCM inhibited PRRSV proliferation. We further found that PRRSV infection elevated glycolysis and maintained the TCA cycle flux. Furthermore, preventing the flow of glycolysis or the TCA cycle led to a reduction in PRRSV proliferation. The anaplerotic usage of glutamine in the TCA cycle partially rescued PRRSV growth by replacing glutamine with α-ketoglutarate (α-KG), an intermediate of the TCA cycle. Interestingly, the addition of α-KG in replete medium also promoted PRRSV proliferation. Taken together, these results reveal that PRRSV infection promotes cellular uptake of glucose and glutamine to provide the energy and macromolecules required for PRRSV replication, and optimal PRRSV replication occurs in cells dependent on glycolysis and the TCA cycle.
Collapse
Affiliation(s)
- Yu Pang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chenyu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yuchen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jiao Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Guanning Su
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chenrui Duan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
4
|
Yuan Y, Zhu C, Wang Y, Sun J, Feng J, Ma Z, Li P, Peng W, Yin C, Xu G, Xu P, Jiang Y, Jiang Q, Shu G. α-Ketoglutaric acid ameliorates hyperglycemia in diabetes by inhibiting hepatic gluconeogenesis via serpina1e signaling. SCIENCE ADVANCES 2022; 8:eabn2879. [PMID: 35507647 PMCID: PMC9067931 DOI: 10.1126/sciadv.abn2879] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/17/2022] [Indexed: 05/13/2023]
Abstract
Previously, we found that α-ketoglutaric acid (AKG) stimulates muscle hypertrophy and fat loss through 2-oxoglutarate receptor 1 (OXGR1). Here, we demonstrated the beneficial effects of AKG on glucose homeostasis in a diet-induced obesity (DIO) mouse model, which are independent of OXGR1. We also showed that AKG effectively decreased blood glucose and hepatic gluconeogenesis in DIO mice. By using transcriptomic and liver-specific serpina1e deletion mouse model, we further demonstrated that liver serpina1e is required for the inhibitory effects of AKG on hepatic gluconeogenesis. Mechanistically, we supported that extracellular AKG binds with a purinergic receptor, P2RX4, to initiate the solute carrier family 25 member 11 (SLC25A11)-dependent nucleus translocation of intracellular AKG and subsequently induces demethylation of lysine 27 on histone 3 (H3K27) in the seprina1e promoter region to decrease hepatic gluconeogenesis. Collectively, these findings reveal an unexpected mechanism for control of hepatic gluconeogenesis using circulating AKG as a signal molecule.
Collapse
Affiliation(s)
- Yexian Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Canjun Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Yongliang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jia Sun
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jinlong Feng
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Zewei Ma
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Penglin Li
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Wentong Peng
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Cong Yin
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Guli Xu
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Pingwen Xu
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Qingyan Jiang
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Gang Shu
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| |
Collapse
|
5
|
Hao Y, Wang J, Ren J, Liu Z, Bai Z, Liu G, Dai Y. Effect of dimethyl alpha-ketoglutarate supplementation on the in vitro developmental competences of ovine oocytes. Theriogenology 2022; 184:171-184. [DOI: 10.1016/j.theriogenology.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/19/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
|
6
|
Parker SJ, Encarnación-Rosado J, Hollinshead KER, Hollinshead DM, Ash LJ, Rossi JAK, Lin EY, Sohn ASW, Philips MR, Jones DR, Kimmelman AC. Spontaneous hydrolysis and spurious metabolic properties of α-ketoglutarate esters. Nat Commun 2021; 12:4905. [PMID: 34385458 PMCID: PMC8361106 DOI: 10.1038/s41467-021-25228-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 07/27/2021] [Indexed: 12/19/2022] Open
Abstract
α-ketoglutarate (KG), also referred to as 2-oxoglutarate, is a key intermediate of cellular metabolism with pleiotropic functions. Cell-permeable esterified analogs are widely used to study how KG fuels bioenergetic and amino acid metabolism and DNA, RNA, and protein hydroxylation reactions, as cellular membranes are thought to be impermeable to KG. Here we show that esterified KG analogs rapidly hydrolyze in aqueous media, yielding KG that, in contrast to prevailing assumptions, imports into many cell lines. Esterified KG analogs exhibit spurious KG-independent effects on cellular metabolism, including extracellular acidification, arising from rapid hydrolysis and de-protonation of α-ketoesters, and significant analog-specific inhibitory effects on glycolysis or mitochondrial respiration. We observe that imported KG decarboxylates to succinate in the cytosol and contributes minimally to mitochondrial metabolism in many cell lines cultured in normal conditions. These findings demonstrate that nuclear and cytosolic KG-dependent reactions may derive KG from functionally distinct subcellular pools and sources.
Collapse
Affiliation(s)
- Seth J Parker
- Department of Radiation Oncology, New York University School of Medicine, New York, NY, USA. .,Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA. .,Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| | - Joel Encarnación-Rosado
- Department of Radiation Oncology, New York University School of Medicine, New York, NY, USA.,Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Kate E R Hollinshead
- Department of Radiation Oncology, New York University School of Medicine, New York, NY, USA.,Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | | | - Leonard J Ash
- Division of Advanced Research Technologies, New York University School of Medicine, New York, NY, USA
| | - Juan A K Rossi
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Elaine Y Lin
- Department of Radiation Oncology, New York University School of Medicine, New York, NY, USA.,Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Albert S W Sohn
- Department of Radiation Oncology, New York University School of Medicine, New York, NY, USA.,Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Mark R Philips
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Drew R Jones
- Division of Advanced Research Technologies, New York University School of Medicine, New York, NY, USA.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Alec C Kimmelman
- Department of Radiation Oncology, New York University School of Medicine, New York, NY, USA. .,Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Gándara L, Durrieu L, Behrensen C, Wappner P. A genetic toolkit for the analysis of metabolic changes in Drosophila provides new insights into metabolic responses to stress and malignant transformation. Sci Rep 2019; 9:19945. [PMID: 31882718 PMCID: PMC6934733 DOI: 10.1038/s41598-019-56446-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022] Open
Abstract
Regulation of the energetic metabolism occurs fundamentally at the cellular level, so analytical strategies must aim to attain single cell resolution to fully embrace its inherent complexity. We have developed methods to utilize a toolset of metabolic FRET sensors for assessing lactate, pyruvate and 2-oxoglutarate levels of Drosophila tissues in vivo by imaging techniques. We show here how the energetic metabolism is altered by hypoxia: While some larval tissues respond to low oxygen levels by executing a metabolic switch towards lactic fermentation, the fat body and salivary glands do not alter their energetic metabolism. Analysis of tumor metabolism revealed that depending on the genetic background, some tumors undergo a lactogenic switch typical of the Warburg effect, while other tumors do not. This toolset allows for developmental and physiologic studies in genetically manipulated Drosophila individuals in vivo.
Collapse
Affiliation(s)
- L Gándara
- Instituto Leloir, Ciudad de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - L Durrieu
- Instituto Leloir, Ciudad de Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular, y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - C Behrensen
- Instituto Leloir, Ciudad de Buenos Aires, Argentina
| | - P Wappner
- Instituto Leloir, Ciudad de Buenos Aires, Argentina.
- Departamento de Fisiología, Biología Molecular, y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
8
|
Lundquist MR, Goncalves MD, Loughran RM, Possik E, Vijayaraghavan T, Yang A, Pauli C, Ravi A, Verma A, Yang Z, Johnson JL, Wong JCY, Ma Y, Hwang KSK, Weinkove D, Divecha N, Asara JM, Elemento O, Rubin MA, Kimmelman AC, Pause A, Cantley LC, Emerling BM. Phosphatidylinositol-5-Phosphate 4-Kinases Regulate Cellular Lipid Metabolism By Facilitating Autophagy. Mol Cell 2019; 70:531-544.e9. [PMID: 29727621 DOI: 10.1016/j.molcel.2018.03.037] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/13/2018] [Accepted: 03/29/2018] [Indexed: 01/21/2023]
Abstract
While the majority of phosphatidylinositol-4, 5-bisphosphate (PI-4, 5-P2) in mammalian cells is generated by the conversion of phosphatidylinositol-4-phosphate (PI-4-P) to PI-4, 5-P2, a small fraction can be made by phosphorylating phosphatidylinositol-5-phosphate (PI-5-P). The physiological relevance of this second pathway is not clear. Here, we show that deletion of the genes encoding the two most active enzymes in this pathway, Pip4k2a and Pip4k2b, in the liver of mice causes a large enrichment in lipid droplets and in autophagic vesicles during fasting. These changes are due to a defect in the clearance of autophagosomes that halts autophagy and reduces the supply of nutrients salvaged through this pathway. Similar defects in autophagy are seen in nutrient-starved Pip4k2a-/-Pip4k2b-/- mouse embryonic fibroblasts and in C. elegans lacking the PI5P4K ortholog. These results suggest that this alternative pathway for PI-4, 5-P2 synthesis evolved, in part, to enhance the ability of multicellular organisms to survive starvation.
Collapse
Affiliation(s)
- Mark R Lundquist
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Marcus D Goncalves
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ryan M Loughran
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Metabolism and Signaling Networks Program, La Jolla, CA 92037, USA
| | - Elite Possik
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada; Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Tarika Vijayaraghavan
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada; Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Annan Yang
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Chantal Pauli
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY 10065, USA
| | - Archna Ravi
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Metabolism and Signaling Networks Program, La Jolla, CA 92037, USA
| | - Akanksha Verma
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Zhiwei Yang
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jared L Johnson
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jenny C Y Wong
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yilun Ma
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Katie Seo-Kyoung Hwang
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - David Weinkove
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK
| | - Nullin Divecha
- The Inositide Laboratory, Centre for Biological Sciences, Southampton University, Southampton, SO17 1BJ, UK
| | - John M Asara
- Department of Medicine, Division of Signal Transduction, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Olivier Elemento
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Mark A Rubin
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY 10065, USA
| | - Alec C Kimmelman
- Perlmutter Cancer Center, Department of Radiation Oncology, NYU Medical School, New York, NY 10016, USA
| | - Arnim Pause
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada; Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Brooke M Emerling
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Metabolism and Signaling Networks Program, La Jolla, CA 92037, USA.
| |
Collapse
|
9
|
Schulze T, Mattern K, Früh E, Hecht L, Rustenbeck I, Dietzel A. A 3D microfluidic perfusion system made from glass for multiparametric analysis of stimulus-secretioncoupling in pancreatic islets. Biomed Microdevices 2018; 19:47. [PMID: 28540469 DOI: 10.1007/s10544-017-0186-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microfluidic perfusion systems (MPS) are well suited to perform multiparametric measurements with small amounts of tissue to function as an Organ on Chip device (OOC). Such microphysiolgical characterization is particularly valuable in research on the stimulus-secretion-coupling of pancreatic islets. Pancreatic islets are fully functional competent mini-organs, which serve as fuel sensors and transduce metabolic activity into rates of hormone secretion. To enable the simultaneous measurement of fluorescence and oxygen consumption we designed a microfluidic perfusion system from borosilicate glass by 3D femtosecond laser ablation. Retention of islets was accomplished by a plain well design. The characteristics of flow and shear force in the microchannels and wells were simulated and compared with the measured exchange of the perfusion media. Distribution of latex beads, MIN6 cell pseudo islets and isolated mouse islets in the MPS was characterized in dependence of flow rate and well depth. Overall, the observations suggested that a sufficient retention of the islets at low shear stress, together with sufficient exchange of test medium, was achieved at a well depth of 300 μm and perfusion rates between 40 and 240 μl/min. This enabled multiparametric measurement of oxygen consumption, NAD(P)H autofluorescence, cytosolic Ca2+ concentration, and insulin secretion by isolated mouse islets. After appropriate correction for different lag times, kinetics of these processes could be compared. Such measurements permit a more precise insight into metabolic changes underlying the regulation of insulin secretion. Thus, rapid prototyping using laser ablation enables flexible adaption of borosilicate MPS designs to different demands of biomedical research.
Collapse
Affiliation(s)
- Torben Schulze
- Institute of Pharmacology and Toxicology, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Kai Mattern
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106, Braunschweig, Germany.,Institute of Microtechnology, Technische Universität Braunschweig, Alte Salzdahlumer Str. 203, 38124, Braunschweig, Germany
| | - Eike Früh
- Institute of Pharmacology and Toxicology, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106, Braunschweig, Germany
| | - Lars Hecht
- Institute of Microtechnology, Technische Universität Braunschweig, Alte Salzdahlumer Str. 203, 38124, Braunschweig, Germany
| | - Ingo Rustenbeck
- Institute of Pharmacology and Toxicology, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106, Braunschweig, Germany. .,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106, Braunschweig, Germany.
| | - Andreas Dietzel
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106, Braunschweig, Germany. .,Institute of Microtechnology, Technische Universität Braunschweig, Alte Salzdahlumer Str. 203, 38124, Braunschweig, Germany.
| |
Collapse
|
10
|
Edwards DN, Ngwa VM, Wang S, Shiuan E, Brantley-Sieders DM, Kim LC, Reynolds AB, Chen J. The receptor tyrosine kinase EphA2 promotes glutamine metabolism in tumors by activating the transcriptional coactivators YAP and TAZ. Sci Signal 2017; 10:eaan4667. [PMID: 29208682 PMCID: PMC5819349 DOI: 10.1126/scisignal.aan4667] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malignant tumors reprogram cellular metabolism to support cancer cell proliferation and survival. Although most cancers depend on a high rate of aerobic glycolysis, many cancer cells also display addiction to glutamine. Glutamine transporters and glutaminase activity are critical for glutamine metabolism in tumor cells. We found that the receptor tyrosine kinase EphA2 activated the TEAD family transcriptional coactivators YAP and TAZ (YAP/TAZ), likely in a ligand-independent manner, to promote glutamine metabolism in cells and mouse models of HER2-positive breast cancer. Overexpression of EphA2 induced the nuclear accumulation of YAP and TAZ and increased the expression of YAP/TAZ target genes. Inhibition of the GTPase Rho or the kinase ROCK abolished EphA2-dependent YAP/TAZ nuclear localization. Silencing YAP or TAZ substantially reduced the amount of intracellular glutamate through decreased expression of SLC1A5 and GLS, respectively, genes that encode proteins that promote glutamine uptake and metabolism. The regulatory DNA elements of both SLC1A5 and GLS contain TEAD binding sites and were bound by TEAD4 in an EphA2-dependent manner. In patient breast cancer tissues, EphA2 expression positively correlated with that of YAP and TAZ, as well as that of GLS and SLC1A5 Although high expression of EphA2 predicted enhanced metastatic potential and poor patient survival, it also rendered HER2-positive breast cancer cells more sensitive to glutaminase inhibition. The findings define a previously unknown mechanism of EphA2-mediated glutaminolysis through YAP/TAZ activation in HER2-positive breast cancer and identify potential therapeutic targets in patients.
Collapse
Affiliation(s)
- Deanna N Edwards
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Verra M Ngwa
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Shan Wang
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Eileen Shiuan
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN 37232, USA
| | - Dana M Brantley-Sieders
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Laura C Kim
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Albert B Reynolds
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jin Chen
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| |
Collapse
|
11
|
Asanagi M, Yamada S, Hirata N, Itagaki H, Kotake Y, Sekino Y, Kanda Y. Tributyltin induces G2/M cell cycle arrest via NAD(+)-dependent isocitrate dehydrogenase in human embryonic carcinoma cells. J Toxicol Sci 2016; 41:207-15. [PMID: 26961604 DOI: 10.2131/jts.41.207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Organotin compounds, such as tributyltin (TBT), are well-known endocrine-disrupting chemicals (EDCs). We have recently reported that TBT induces growth arrest in the human embryonic carcinoma cell line NT2/D1 at nanomolar levels by inhibiting NAD(+)-dependent isocitrate dehydrogenase (NAD-IDH), which catalyzes the irreversible conversion of isocitrate to α-ketoglutarate. However, the molecular mechanisms by which NAD-IDH mediates TBT toxicity remain unclear. In the present study, we examined whether TBT at nanomolar levels affects cell cycle progression in NT2/D1 cells. Propidium iodide staining revealed that TBT reduced the ratio of cells in the G1 phase and increased the ratio of cells in the G2/M phase. TBT also reduced cell division cycle 25C (cdc25C) and cyclin B1, which are key regulators of G2/M progression. Furthermore, apigenin, an inhibitor of NAD-IDH, mimicked the effects of TBT. The G2/M arrest induced by TBT was abolished by NAD-IDHα knockdown. Treatment with a cell-permeable α-ketoglutarate analogue recovered the effect of TBT, suggesting the involvement of NAD-IDH. Taken together, our data suggest that TBT at nanomolar levels induced G2/M cell cycle arrest via NAD-IDH in NT2/D1 cells. Thus, cell cycle analysis in embryonic cells could be used to assess cytotoxicity associated with nanomolar level exposure of EDCs.
Collapse
Affiliation(s)
- Miki Asanagi
- Division of Pharmacology, National Institute of Health Sciences
| | | | | | | | | | | | | |
Collapse
|
12
|
Yamada S, Kotake Y, Nakano M, Sekino Y, Kanda Y. Tributyltin induces mitochondrial fission through NAD-IDH dependent mitofusin degradation in human embryonic carcinoma cells. Metallomics 2015; 7:1240-6. [PMID: 25909344 DOI: 10.1039/c5mt00033e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Organotin compounds, such as tributyltin (TBT), are well-known endocrine disruptors. TBT acts at the nanomolar level through genomic pathways via the peroxisome proliferator activated receptor (PPAR)/retinoid X receptor (RXR). We recently reported that TBT inhibits cell growth and the ATP content in the human embryonic carcinoma cell line NT2/D1 via a non-genomic pathway involving NAD(+)-dependent isocitrate dehydrogenase (NAD-IDH), which metabolizes isocitrate to α-ketoglutarate. However, the molecular mechanisms by which NAD-IDH mediates TBT toxicity remain unclear. In the present study, we evaluated the effects of TBT on mitochondrial NAD-IDH and energy production. Staining with MitoTracker revealed that nanomolar TBT levels induced mitochondrial fragmentation. TBT also degraded the mitochondrial fusion proteins, mitofusins 1 and 2. Interestingly, apigenin, an inhibitor of NAD-IDH, mimicked the effects of TBT. Incubation with an α-ketoglutarate analogue partially recovered TBT-induced mitochondrial dysfunction, supporting the involvement of NAD-IDH. Our data suggest that nanomolar TBT levels impair mitochondrial quality control via NAD-IDH in NT2/D1 cells. Thus, mitochondrial function in embryonic cells could be used to assess cytotoxicity associated with metal exposure.
Collapse
Affiliation(s)
- Shigeru Yamada
- Division of Pharmacology, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya-ku 158-8501, Japan.
| | | | | | | | | |
Collapse
|
13
|
Mariño G, Pietrocola F, Eisenberg T, Kong Y, Malik SA, Andryushkova A, Schroeder S, Pendl T, Harger A, Niso-Santano M, Zamzami N, Scoazec M, Durand S, Enot DP, Fernández ÁF, Martins I, Kepp O, Senovilla L, Bauvy C, Morselli E, Vacchelli E, Bennetzen M, Magnes C, Sinner F, Pieber T, López-Otín C, Maiuri MC, Codogno P, Andersen JS, Hill JA, Madeo F, Kroemer G. Regulation of autophagy by cytosolic acetyl-coenzyme A. Mol Cell 2014; 53:710-25. [PMID: 24560926 DOI: 10.1016/j.molcel.2014.01.016] [Citation(s) in RCA: 389] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/17/2013] [Accepted: 01/17/2014] [Indexed: 01/22/2023]
Abstract
Acetyl-coenzyme A (AcCoA) is a major integrator of the nutritional status at the crossroads of fat, sugar, and protein catabolism. Here we show that nutrient starvation causes rapid depletion of AcCoA. AcCoA depletion entailed the commensurate reduction in the overall acetylation of cytoplasmic proteins, as well as the induction of autophagy, a homeostatic process of self-digestion. Multiple distinct manipulations designed to increase or reduce cytosolic AcCoA led to the suppression or induction of autophagy, respectively, both in cultured human cells and in mice. Moreover, maintenance of high AcCoA levels inhibited maladaptive autophagy in a model of cardiac pressure overload. Depletion of AcCoA reduced the activity of the acetyltransferase EP300, and EP300 was required for the suppression of autophagy by high AcCoA levels. Altogether, our results indicate that cytosolic AcCoA functions as a central metabolic regulator of autophagy, thus delineating AcCoA-centered pharmacological strategies that allow for the therapeutic manipulation of autophagy.
Collapse
Affiliation(s)
- Guillermo Mariño
- Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, 94805 Villejuif, France; Université Paris Descartes/Paris 5, Sorbonne Paris Cité, 75006 Paris, France
| | - Federico Pietrocola
- Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, 94805 Villejuif, France; Université Paris Descartes/Paris 5, Sorbonne Paris Cité, 75006 Paris, France
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, University of Graz, 8036 Graz, Austria
| | - Yongli Kong
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shoaib Ahmad Malik
- Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, 94805 Villejuif, France; Université Paris Descartes/Paris 5, Sorbonne Paris Cité, 75006 Paris, France
| | | | - Sabrina Schroeder
- Institute of Molecular Biosciences, University of Graz, 8036 Graz, Austria
| | - Tobias Pendl
- Institute of Molecular Biosciences, University of Graz, 8036 Graz, Austria
| | - Alexandra Harger
- Institute of Medical Technologies and Health Management, Joanneum Research, 8036 Graz, Austria
| | - Mireia Niso-Santano
- Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, 94805 Villejuif, France; Université Paris Descartes/Paris 5, Sorbonne Paris Cité, 75006 Paris, France
| | - Naoufal Zamzami
- Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, 94805 Villejuif, France; Université Paris Descartes/Paris 5, Sorbonne Paris Cité, 75006 Paris, France
| | - Marie Scoazec
- Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, 94805 Villejuif, France
| | - Silvère Durand
- Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, 94805 Villejuif, France
| | - David P Enot
- Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, 94805 Villejuif, France
| | - Álvaro F Fernández
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo 33006, Spain
| | - Isabelle Martins
- Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, 94805 Villejuif, France; Université Paris Descartes/Paris 5, Sorbonne Paris Cité, 75006 Paris, France
| | - Oliver Kepp
- Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, 94805 Villejuif, France; Université Paris Descartes/Paris 5, Sorbonne Paris Cité, 75006 Paris, France
| | - Laura Senovilla
- Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, 94805 Villejuif, France; Université Paris Descartes/Paris 5, Sorbonne Paris Cité, 75006 Paris, France
| | - Chantal Bauvy
- Université Paris Descartes/Paris 5, Sorbonne Paris Cité, 75006 Paris, France; INSERM U845, 75014 Paris, France
| | - Eugenia Morselli
- Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, 94805 Villejuif, France; Université Paris Descartes/Paris 5, Sorbonne Paris Cité, 75006 Paris, France
| | - Erika Vacchelli
- Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, 94805 Villejuif, France; Université Paris Descartes/Paris 5, Sorbonne Paris Cité, 75006 Paris, France
| | - Martin Bennetzen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Christoph Magnes
- Institute of Medical Technologies and Health Management, Joanneum Research, 8036 Graz, Austria
| | - Frank Sinner
- Institute of Medical Technologies and Health Management, Joanneum Research, 8036 Graz, Austria
| | - Thomas Pieber
- Institute of Medical Technologies and Health Management, Joanneum Research, 8036 Graz, Austria; Medical University of Graz, Division of Endocrinology and Metabolism, Department of Internal Medicine, 8036 Graz, Austria
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo 33006, Spain
| | - Maria Chiara Maiuri
- Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, 94805 Villejuif, France; Université Paris Descartes/Paris 5, Sorbonne Paris Cité, 75006 Paris, France
| | - Patrice Codogno
- Université Paris Descartes/Paris 5, Sorbonne Paris Cité, 75006 Paris, France; INSERM U845, 75014 Paris, France
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Frank Madeo
- Institute of Molecular Biosciences, University of Graz, 8036 Graz, Austria.
| | - Guido Kroemer
- Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, 94805 Villejuif, France; Université Paris Descartes/Paris 5, Sorbonne Paris Cité, 75006 Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France.
| |
Collapse
|
14
|
Panten U, Willenborg M, Schumacher K, Hamada A, Ghaly H, Rustenbeck I. Acute metabolic amplification of insulin secretion in mouse islets is mediated by mitochondrial export of metabolites, but not by mitochondrial energy generation. Metabolism 2013; 62:1375-86. [PMID: 23790612 DOI: 10.1016/j.metabol.2013.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/22/2013] [Accepted: 05/08/2013] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The β-cell metabolism of glucose and of some other fuels (e.g. α-ketoisocaproate) generates signals triggering and acutely amplifying insulin secretion. As the pathway coupling metabolism with amplification is largely unknown, we aimed to narrow down the putative amplifying signals. MATERIALS/METHODS An experimental design was used which previously prevented glucose-induced, but not α-ketoisocaproate-induced insulin secretion. Isolated mouse islets were pretreated for one hour with medium devoid of fuels and containing the sulfonylurea glipizide in high concentration which closed all ATP-sensitive K(+) channels. This concentration was also applied during the subsequent examination of fuel-induced effects. In perifused or incubated islets, insulin secretion and metabolic parameters were measured. RESULTS The pretreatment decreased the islet ATP/ADP ratio. Whereas glucose and α-ketoisovalerate were ineffective or weakly effective, respectively, when tested separately, their combination strongly enhanced the insulin secretion. Compared with glucose, the strong amplifier α-ketoisocaproate caused less increase in NAD(P)H-fluorescence and less mitochondrial hyperpolarization. Compared with α-ketoisovalerate, α-ketoisocaproate caused greater increase in NAD(P)H-fluorescence and greater mitochondrial hyperpolarization. Neither α-ketoacid anion enhanced the islet ATP/ADP ratio during onset of the insulin secretion. α-Ketoisocaproate induced a higher pyruvate content than glucose, slowly elevated the citrate content which was not changed by glucose and generated a much higher acetoacetate content than other fuels. α-Ketoisovalerate alone or in combination with glucose did not increase the citrate content. CONCLUSIONS In β-cells, mitochondrial energy generation does not mediate acute metabolic amplification, but mitochondrial production of acetyl-CoA and supplemental acetoacetate supplies cytosolic metabolites which induce the generation of specific amplifying signals.
Collapse
Affiliation(s)
- Uwe Panten
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technical University of Braunschweig, Mendelssohnstrasse 1, D-38106 Braunschweig, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Feldmann N, del Rio RM, Gjinovci A, Tamarit-Rodriguez J, Wollheim CB, Wiederkehr A. Reduction of plasma membrane glutamate transport potentiates insulin but not glucagon secretion in pancreatic islet cells. Mol Cell Endocrinol 2011; 338:46-57. [PMID: 21371522 DOI: 10.1016/j.mce.2011.02.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/21/2011] [Accepted: 02/21/2011] [Indexed: 11/29/2022]
Abstract
Glutamate is generated during nutrient stimulation of pancreatic islets and has been proposed to act both as an intra- and extra-cellular messenger molecule. We demonstrate that glutamate is not co-secreted with the hormones from intact islets or purified α- and β-cells. Fractional glutamate release was 5-50 times higher than hormone secretion. Furthermore, various hormone secretagogues did not elicit glutamate efflux. Interestingly, epinephrine even decreased glutamate release while increasing glucagon secretion. Rather than being co-secreted with hormones, we show that glutamate is mainly released via plasma membrane excitatory amino acid transporters (EAAT) by uptake reversal. Transcripts for EAAT1, 2 and 3 were present in both rat α- and β-cells. Inhibition of EAATs by L-trans-pyrrolidine-2,4-dicarboxylate augmented intra-cellular glutamate and α-ketoglutarate contents and potentiated glucose-stimulated insulin secretion from islets and purified β-cells without affecting glucagon secretion from α-cells. In conclusion, intra-cellular glutamate-derived metabolite pools are linked to glucose-stimulated insulin but not glucagon secretion.
Collapse
Affiliation(s)
- Nicole Feldmann
- Department of Cell Physiology and Metabolism, University Medical Centre, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|