1
|
Zheng P, Pan C, Zhou C, Liu B, Wang L, Duan S, Ding Y. Contribution of Nischarin/IRAS in CNS development, injury and diseases. J Adv Res 2023; 54:43-57. [PMID: 36716956 DOI: 10.1016/j.jare.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/28/2022] [Accepted: 01/24/2023] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Murine Nischarin and its human homolog IRAS are scaffold proteins highly expressed in the central nervous system (CNS). Nischarin was initially discovered as a tumor suppressor protein, and recent studies have also explored its potential value in the CNS. Research on IRAS has largely focused on its effect on opioid dependence. Although the role of Nischarin/IRAS in the physiological function and pathological process of the CNS has gradually attracted attention and the related research results are expected to be applied in clinical practice, there is no systematic review of the role and mechanisms of Nischarin/IRAS in the CNS so far. AIM OF REVIEW This review will systematically analyze the role and mechanism of Nischarin/IRAS in the CNS, and provide necessary references and possible targets for the treatment of neurological diseases, thereby broadening the direction of Nischarin/IRAS research and facilitating clinical translation. KEY SCIENTIFIC CONCEPTS OF REVIEW The pathophysiological processes affected by dysregulation of Nischarin/IRAS expression in the CNS are mainly introduced, including spinal cord injury (SCI), opioid dependence, anxiety, depression, and autism. The molecular mechanisms such as factors regulating Nischarin/IRAS expression and signal transduction pathways regulated by Nischarin/IRAS are systematically summarized. Finally, the clinical application of Nischarin/IRAS has been prospected.
Collapse
Affiliation(s)
- Peijie Zheng
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Chenshu Pan
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Chuntao Zhou
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Bin Liu
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Linlin Wang
- Department of Basic Medicine Sciences, and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shiwei Duan
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China; Institute of Translational Medicine, Zhejiang University City College, Hangzhou 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Zhejiang University City College, Hangzhou 310015, China.
| | - Yuemin Ding
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China; Institute of Translational Medicine, Zhejiang University City College, Hangzhou 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Zhejiang University City College, Hangzhou 310015, China.
| |
Collapse
|
2
|
Cao DN, Li F, Wu N, Li J. Insights into the mechanisms underlying opioid use disorder and potential treatment strategies. Br J Pharmacol 2023; 180:862-878. [PMID: 34128238 DOI: 10.1111/bph.15592] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/19/2022] Open
Abstract
Opioid use disorder is a worldwide societal problem and public health burden. Strategies for treating opioid use disorder can be divided into those that target the opioid receptor system and those that target non-opioid receptor systems, including the dopamine and glutamate receptor systems. Currently, the clinical drugs used to treat opioid use disorder include the opioid receptor agonists methadone and buprenorphine, which are limited by their abuse liability, and the opioid receptor antagonist naltrexone, which is limited by poor compliance. Therefore, the development of effective medications with lower abuse liability and better potential for compliance is urgently needed. Based on recent advances in the understanding of the neurobiological mechanisms underlying opioid use disorder, potential treatment strategies and targets have emerged. This review focuses on the progress made in identifying potential targets and developing medications to treat opioid use disorder, including progress made by our laboratory, and provides insights for future medication development. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Affiliation(s)
- Dan-Ni Cao
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Fei Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ning Wu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jin Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
3
|
Liu K, Hu C, Yin W, Zhou L, Gu X, Zuo X. An in vivo and in vitro model on the protective effect of cilnidipine on contrast-induced nephropathy via regulation of apoptosis and CaMKⅡ/mPTP pathway. J Biochem Mol Toxicol 2023; 37:e23238. [PMID: 36207783 DOI: 10.1002/jbt.23238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/15/2022] [Accepted: 09/22/2022] [Indexed: 01/18/2023]
Abstract
Contrast-induced nephropathy (CIN) is an acute kidney injury (AKI) observed after the administration of contrast media. Calcium channel blockers (CCBs) have been reported to exert a renal protective effect. This study aims to investigate the role of cilnidipine, a novel CCBs, on CIN by regulating the calcium/calmodulin-dependent protein kinase Ⅱ(CaMKⅡ)/mitochondrial permeability transition pore (mPTP) pathway. Here, iohexol, a representative contrast media, was used to establish CIN model. KN-93 (CaMKⅡ inhibitor) and atractyloside (mPTP opener) were administered in rats, and CaMKⅡ overexpression was used in Human proximal tubular epithelial cells. Markers of renal injury (serum creatinine, blood urea nitrogen, and urinary NAGL), hematoxylin-eosin stain, oxidative stress (ROS, superoxide dismutase [SOD], and malondialdehyde [MDA] levels), cell death (MTT and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling [TUNEL]), mitochondrial function (mPTP, mitochondrial membrane potential [MMP], and ATP) were assessed. Western blots were used to measure the expression levels of Bax/Bcl-2, caspase-3, CaMKⅡ/mPTP signaling pathways. Results showed that cilnidipine markedly improved kidney function, and alleviated tubular cell apoptosis, oxidative stress and mitochondrial damage induced by iohexol in vitro and in vivo. The underlying mechanism may be that cilnidipine relieved CaMKⅡ activation and mPTP opening induced by iohexol. All of these protective effects of cilnidipine were attenuated by CaMKⅡ overexpression and atractyloside (mPTP opener) pretreatment. Moreover, KN-93 (CaMKⅡ inhibitor) treatment showed a similar renal protective effect with cilnidipine, while the protective effect of cilnidipine on kidney in CIN rats was not further suppressed by KN-93 cotreatment. These in vitro and in vivo results point toward the fact that cilnidipine might be a novel therapeutic drug against contrast-induced nephrotoxicity in a CaMKⅡ-dependent manner.
Collapse
Affiliation(s)
- Kun Liu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | - Can Hu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | - Wenjun Yin
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | - Lingyun Zhou
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | - Xurui Gu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | - Xiaocong Zuo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha City, Hunan Province, China.,Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| |
Collapse
|
4
|
Li X, Zhu J, Tian L, Ma X, Fan X, Luo L, Yu J, Sun Y, Yang X, Tang W, Ma W, Yan J, Xu X, Liang H. Agmatine Protects Against the Progression of Sepsis Through the Imidazoline I2 Receptor-Ribosomal S6 Kinase 2-Nuclear Factor-κB Signaling Pathway. Crit Care Med 2020; 48:e40-e47. [PMID: 31634234 DOI: 10.1097/ccm.0000000000004065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The knowledge that agmatine is found in the human body has existed for several years; however, its role in sepsis has not yet been studied. In the present study, we investigate the role of agmatine in the progression and treatment of sepsis. DESIGN Clinical/laboratory investigations. SETTING Medical centers/University-based research laboratory. SUBJECTS Elective ICU patients with severe sepsis and healthy volunteers; C57BL/6 mice weighing 18-22 g. INTERVENTIONS Serum agmatine level and its associations with inflammatory markers were assessed in patients with sepsis. Agmatine was administered intraperitoneally to mice before a lipopolysaccharide challenge. Human peripheral blood mononuclear cells and murine macrophages were pretreated with agmatine followed by lipopolysaccharide stimulation. MEASUREMENTS AND MAIN RESULTS Serum agmatine levels were significantly decreased in patients with sepsis and lipopolysaccharide-induced mice, and correlated with Acute Physiology and Chronic Health Evaluation II score, procalcitonin, tumor necrosis factor-α, and interleukin-6 levels. In a therapeutic experiment, exogenous agmatine attenuated the cytokine production of peripheral blood mononuclear cells from patients with sepsis and healthy controls. Agmatine also exerted a significant beneficial effect in the inflammatory response and organ damage and reduced the death rate in lipopolysaccharide-induced mice. Imidazoline I2 receptor agonist 2-benzofuran-2-yl blocked the pharmacological action of agmatine; whereas, other imidazoline receptor ligands did not. Furthermore, agmatine significantly impaired the inflammatory response by inactivating nuclear factor-κB, but not protein 38 mitogen-activated protein kinase, c-Jun N-terminal kinase, extracellular signal-regulated kinase, and inducible nitric oxide synthase signaling in macrophages. Activation of imidazoline I2 receptor or knockdown of ribosomal S6 kinase 2 counteracted the effects of agmatine on phosphorylation and degradation of inhibitor of nuclear factor-κBα. CONCLUSIONS Endogenous agmatine metabolism correlated with the progression of sepsis. Supplemental exogenous agmatine could ameliorate the lipopolysaccharide-induced systemic inflammatory responses and multiple organ injuries through the imidazoline I2 receptor-ribosomal S6 kinase 2-nuclear factor-κB pathway. Agmatine could be used as both a clinical biomarker and a promising pharmaconutrient in patients with severe sepsis.
Collapse
Affiliation(s)
- Xuanfei Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Junyu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Lixing Tian
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Xiaoyuan Ma
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Xia Fan
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Li Luo
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Jing Yu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Yu Sun
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Xue Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Wanqi Tang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Wei Ma
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Jun Yan
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Xiang Xu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Huaping Liang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| |
Collapse
|
5
|
Therapeutic Effect of Agmatine on Neurological Disease: Focus on Ion Channels and Receptors. Neurochem Res 2019; 44:735-750. [PMID: 30610652 DOI: 10.1007/s11064-018-02712-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 02/08/2023]
Abstract
The central nervous system (CNS) is the most injury-prone part of the mammalian body. Any acute or chronic, central or peripheral neurological disorder is related to abnormal biochemical and electrical signals in the brain cells. As a result, ion channels and receptors that are abundant in the nervous system and control the electrical and biochemical environment of the CNS play a vital role in neurological disease. The N-methyl-D-aspartate receptor, 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid receptor, kainate receptor, acetylcholine receptor, serotonin receptor, α2-adrenoreceptor, and acid-sensing ion channels are among the major channels and receptors known to be key components of pathophysiological events in the CNS. The primary amine agmatine, a neuromodulator synthesized in the brain by decarboxylation of L-arginine, can regulate ion channel cascades and receptors that are related to the major CNS disorders. In our previous studies, we established that agmatine was related to the regulation of cell differentiation, nitric oxide synthesis, and murine brain endothelial cell migration, relief of chronic pain, cerebral edema, and apoptotic cell death in experimental CNS disorders. In this review, we will focus on the pathophysiological aspects of the neurological disorders regulated by these ion channels and receptors, and their interaction with agmatine in CNS injury.
Collapse
|
6
|
Cao DN, Shi JJ, Wu N, Li J. Modulation of miR-139-5p on chronic morphine-induced, naloxone-precipitated cAMP overshoot in vitro. Metab Brain Dis 2018; 33:1501-1508. [PMID: 29916183 DOI: 10.1007/s11011-018-0257-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/28/2018] [Indexed: 10/14/2022]
Abstract
Chronic exposure to morphine can produce tolerance, dependence and addiction, but the underlying neurobiological basis is still incompletely understood. c-Jun, as an important component of the activator protein-1 transcription factor, is supposed to take part in regulating gene expression in AC/cAMP/PKA signaling. MicroRNA (miRNA) has emerged as a critical regulator of neuronal functions. Although a number of miRNAs have been reported to regulate the μ-opioid receptor expression, there has been no report about miRNAs to regulate chronic morphine-induced, naloxone-precipitated cAMP overshoot. Our results showed that chronic morphine pretreatment induced naloxone-precipitated cAMP overshoot in concentration- and time-dependent manners in HEK 293/μ cells. Chronic morphine pretreatment alone elevated both c-Jun protein and miR-139-5p expression levels, while dramatically artificial elevation of miR-139-5p inhibited c-Jun at the translational level. Furthermore, dramatically artificial upregulation of intracellular miR-139-5p limited chronic morphine-induced, naloxone-precipitated cAMP overshoot. These findings suggested that miR-139-5p was involved in regulating chronic morphine-induced, naloxone-precipitated cAMP overshoot in a negative feedback manner through its target c-Jun, which extends our understanding of neurobiological mechanisms underlying morphine dependence and addiction.
Collapse
Affiliation(s)
- Dan-Ni Cao
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Jing-Jing Shi
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Ning Wu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| | - Jin Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| |
Collapse
|
7
|
Liu Y, Lu GY, Chen WQ, Li YF, Wu N, Li J. Agmatine inhibits chronic morphine exposure-induced impairment of hippocampal neural progenitor proliferation in adult rats. Eur J Pharmacol 2017; 818:50-56. [PMID: 29031903 DOI: 10.1016/j.ejphar.2017.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 02/09/2023]
Abstract
Our previous studies have shown that agmatine inhibited opioid dependence, yet the neural mechanism remains unclear. Growing evidence showed that opioids decrease neurogenesis in the adult hippocampal subgranular zone by inhibiting neural progenitor proliferation. However, whether agmatine affects chronic opioid exposure-induced impairment to hippocampal neural progenitor cell proliferation remains unknown. In the present study, we investigated the role of agmatine in hippocampal neural progenitors in morphine dependence rats. We found that chronic administration of morphine for 12 days induced morphine dependence in rats. This treatment not only decreased the proliferation of hippocampal neural progenitors in the granule cell layer, but also decreased the levels of hippocampal cAMP, pCREB and BDNF. However, these alterations can be restored to normal levels by co-treatment of agmatine (10mg/kg, s.c.). In vitro treatment with agmatine (10µM) for two days significantly increased proliferation of the cultured hippocampal neural progenitors. Concurrent treatment of agmatine (10µM) with morphine (10 or 50µM) reversed the supression of morphine-induced neural progenitor proliferation. In conclusion, we found that agmatine abolished chronic morphine-induced decrease in proliferation of hippocampal progenitors in vivo and in vitro, which may be due to the increase in cAMP-CREB-BDNF signaling. The enhancement of agmatine to proliferation of hippocampal progenitors may be one of the important mechanisms involved in the inhibition of morphine dependence by agmatine.
Collapse
Affiliation(s)
- Ying Liu
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, PR China
| | - Guan-Yi Lu
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, PR China
| | - Wen-Qiang Chen
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, PR China
| | - Yun-Feng Li
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, PR China
| | - Ning Wu
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, PR China.
| | - Jin Li
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, PR China.
| |
Collapse
|
8
|
Bian JM, Wu N, Su RB, Li J. Phosphatidylethanolamine-binding protein is not involved in µ-opioid receptor-mediated regulation of extracellular signal-regulated kinase. Mol Med Rep 2015; 11:3368-74. [PMID: 25573435 PMCID: PMC4368089 DOI: 10.3892/mmr.2015.3161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 11/25/2014] [Indexed: 12/18/2022] Open
Abstract
Stimulation of the µ‑opioid receptor activates extracellular signal‑regulated kinase (ERK), however, the mechanism by which this occurs remains to be elucidated. Phosphatidylethanolamine‑binding protein (PEBP) has been reported to act as a negative regulator of the ERK cascade (Raf‑MEK‑ERK) by binding to Raf‑1 kinase. In the present study, the role of PEBP in µ‑opioid receptor‑mediated ERK activation was investigated in Chinese hamster ovary/µ cells and SH‑SY5Y cells, as well as in human embryonic kidney 293 cells expressing other types of G protein‑coupled receptors. The acute activation of µ‑opioid receptors by morphine or (D‑Ala2, MePhe4, Gly5‑ol) enkephalin induced a rapid activation of ERK. Prolonged morphine treatment did not affect the phosphorylation level of ERK compared with control cells, but the phosphorylation level of ERK decreased markedly when cells were precipitated with naloxone following chronic morphine treatment. For the phosphorylation of PEBP, no change was identified under the designated drug treatment and exposure duration. A total of two other types of G protein‑coupled receptors, including Gs‑coupled dopamine D1 receptors and Gq‑coupled adrenergic α1A receptors were also investigated and only the activation of adrenergic α1A receptors induced an upregulated phosphorylation of PEBP, which was protein kinase C activity dependent. Thus, PEBP did not have a significant role in µ‑opioid receptor‑mediated regulation of ERK.
Collapse
Affiliation(s)
- Jia-Ming Bian
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China
| | - Ning Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China
| | - Rui-Bin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China
| | - Jin Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China
| |
Collapse
|
9
|
Maltsev AV, Evdokimovskii EV, Pimenov OY, Nenov MN, Kokoz YM. Regulation of potential-dependent L-type Ca2+ currents by agmatine. Imidazoline receptors in isolated cardiomyocytes. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2013. [DOI: 10.1134/s1990747812040058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
|
11
|
Molderings GJ, Haenisch B. Agmatine (decarboxylated l-arginine): Physiological role and therapeutic potential. Pharmacol Ther 2012; 133:351-65. [DOI: 10.1016/j.pharmthera.2011.12.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 01/14/2023]
|
12
|
The pharmacological importance of agmatine in the brain. Neurosci Biobehav Rev 2012; 36:502-19. [DOI: 10.1016/j.neubiorev.2011.08.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 06/23/2011] [Accepted: 08/18/2011] [Indexed: 01/28/2023]
|