1
|
Slavova D, Ortiz V, Blaise M, Bairachnaya M, Giros B, Isingrini E. Role of the locus coeruleus-noradrenergic system in stress-related psychopathology and resilience: Clinical and pre-clinical evidences. Neurosci Biobehav Rev 2024; 167:105925. [PMID: 39427811 DOI: 10.1016/j.neubiorev.2024.105925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/28/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Stressful events, from daily stressors to traumatic experiences, are common and occur at any age. Despite the high prevalence of trauma, not everyone develops stress-related disorders like major depressive disorder (MDD) and post-traumatic stress disorder (PTSD), a variation attributed to resilience, the ability to adapt and avoid negative consequences of significant stress. This review examines the locus coeruleus-norepinephrine (LC-NE) system, a critical component in the brain's stress response. It discusses the LC-NE system's anatomical and functional complexity and its role in individual variability in stress responses. How different etiological factors and stress modalities affect the LC-NE system, influencing both adaptive stress responses and psychopathologies, are discussed and supported by evidence from human and animal studies. It also explores molecular and cellular adaptations in the LC that contribute to resilience, including roles of neuropeptide, inflammatory cytokines, and genetic modulation, and addresses developmental and sex differences in stress vulnerability. The need for a multifaceted approach to understand stress-induced psychopathologies is emphasized and pave the way for more personalized interventions for stress-related disorders.
Collapse
Affiliation(s)
- Déa Slavova
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France
| | - Vanesa Ortiz
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France
| | - Maud Blaise
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France
| | - Marya Bairachnaya
- Douglas Research Center Institute, McGill University, Montreal, Canada
| | - Bruno Giros
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France; Douglas Research Center Institute, McGill University, Montreal, Canada
| | - Elsa Isingrini
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France.
| |
Collapse
|
2
|
Teng W, Subsomwong P, Narita K, Nakane A, Asano K. Heat Shock Protein SSA1 Enriched in Hypoxic Secretome of Candida albicans Exerts an Immunomodulatory Effect via Regulating Macrophage Function. Cells 2024; 13:127. [PMID: 38247818 PMCID: PMC10814802 DOI: 10.3390/cells13020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Candida albicans is an opportunistic pathogenic yeast that can survive in both normoxic and hypoxic environments. The involvement of C. albicans secretome on host biological processes has been demonstrated. However, the immunoregulatory function of C. albicans secretome released under hypoxic condition remains unclear. This study demonstrated the differences in cytokine responses and protein profiles between secretomes prepared under normoxic and hypoxic conditions. Furthermore, the immunoregulatory effects of heat shock protein SSA1(Ssa1), a protein candidate enriched in the hypoxic secretome, were investigated. Stimulation of mouse bone marrow-derived macrophages (BMMs) with Ssa1 resulted in the significant production of interleukin (IL)-10, IL-6, and tumor necrosis factor (TNF)-α as well as the significant expression of M2b macrophage markers (CD86, CD274 and tumor necrosis factor superfamily member 14), suggesting that C. albicans Ssa1 may promote macrophage polarization towards an M2b-like phenotype. Proteomic analysis of Ssa1-treated BMMs also revealed that Ssa1 reduced inflammation-related factors (IL-18-binding protein, IL-1 receptor antagonist protein, OX-2 membrane glycoprotein and cis-aconitate decarboxylase) and enhanced the proteins involved in anti-inflammatory response (CMRF35-like molecule 3 and macrophage colony-stimulating factor 1 receptor). Based on these results, we investigated the effect of Ssa1 on C. albicans infection and showed that Ssa1 inhibited the uptake of C. albicans by BMMs. Taken together, our results suggest that C. albicans alters its secretome, particularly by promoting the release of Ssa1, to modulate host immune response and survive under hypoxic conditions.
Collapse
Affiliation(s)
- Wei Teng
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (W.T.); (P.S.)
| | - Phawinee Subsomwong
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (W.T.); (P.S.)
| | - Kouji Narita
- Insititue for Animal Experimentation, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan;
| | - Akio Nakane
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan;
| | - Krisana Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (W.T.); (P.S.)
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan;
| |
Collapse
|
3
|
Zhao H, Yin Y, Lin T, Wang W, Gong L. Administration of serotonin and norepinephrine reuptake inhibitors tends to have less ocular surface damage in a chronic stress-induced rat model of depression than selective serotonin reuptake inhibitors. Exp Eye Res 2023; 231:109486. [PMID: 37080380 DOI: 10.1016/j.exer.2023.109486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/24/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023]
Abstract
Depressed patients who medicate with selective serotonin reuptake inhibitors (SSRIs) often report ocular dryness. Epidemiological studies have found that serotonin and norepinephrine reuptake inhibitors (SNRIs) are not risk factors for dry eye in depressed patients. However, the effect of SNRIs on the ocular surface is unknown. A depression rat model was induced by chronic unpredictable mild stress (CUMS), and SNRIs or SSRIs were administered to the rats for 3 or 6 weeks. The levels of norepinephrine (NE) and serotonin in tear fluid were tested by ELISA. The corneal fluorescence and lissamine green staining were used to evaluate ocular surface damage. NE and/or serotonin were administered to human corneal epithelial cells in vitro. RNA sequencing (RNA-seq) analysis was performed to investigate the mRNA expression profiles. Tear NE levels were higher in the SNRIs group, and ocular surface inflammation and apoptosis were significantly reduced compared to the SSRIs group. RNA-Seq indicated that NE significantly activate MAPK signaling pathway. NE can inhibit serotonin-induced activation of the NF-κB signaling pathway through α-1 adrenergic receptors and promotes the proliferation of corneal epithelial cells through activation of the MAPK signaling pathway. SNRIs administration have less ocular surface damage than SSRIs. NE protects human corneal epithelial cells from damage, and reduce inflammation on the ocular surface via activating the MAPK signaling pathway. SNRIs might be used as an appropriate treatment for depression-related DED.
Collapse
Affiliation(s)
- Han Zhao
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200000, China; Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, 200000, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200000, China
| | - Yue Yin
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200000, China; Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, 200000, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200000, China
| | - Tong Lin
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200000, China; Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, 200000, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200000, China
| | - Wushuang Wang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200000, China; Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, 200000, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200000, China
| | - Lan Gong
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200000, China; Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, 200000, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200000, China.
| |
Collapse
|
4
|
Calvello R, Porro C, Lofrumento DD, Ruggiero M, Panaro MA, Cianciulli A. Decoy Receptors Regulation by Resveratrol in Lipopolysaccharide-Activated Microglia. Cells 2023; 12:cells12050681. [PMID: 36899817 PMCID: PMC10000713 DOI: 10.3390/cells12050681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Resveratrol is a polyphenol that acts as antioxidants do, protecting the body against diseases, such as diabetes, cancer, heart disease, and neurodegenerative disorders, such as Alzheimer's (AD) and Parkinson's diseases (PD). In the present study, we report that the treatment of activated microglia with resveratrol after prolonged exposure to lipopolysaccharide is not only able to modulate pro-inflammatory responses, but it also up-regulates the expression of decoy receptors, IL-1R2 and ACKR2 (atypical chemokine receptors), also known as negative regulatory receptors, which are able to reduce the functional responses promoting the resolution of inflammation. This result might constitute a hitherto unknown anti-inflammatory mechanism exerted by resveratrol on activated microglia.
Collapse
Affiliation(s)
- Rosa Calvello
- Department of Biosciences, Biotechnologies and Environment, University of Bari, I-70125 Bari, Italy
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, I-71100 Foggia, Italy
| | - Dario Domenico Lofrumento
- Department of Biological and Environmental Sciences and Technologies, Section of Human Anatomy, University of Salento, I-73100 Lecce, Italy
| | - Melania Ruggiero
- Department of Biosciences, Biotechnologies and Environment, University of Bari, I-70125 Bari, Italy
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, I-70125 Bari, Italy
- Correspondence:
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Environment, University of Bari, I-70125 Bari, Italy
| |
Collapse
|
5
|
Gutiérrez IL, Dello Russo C, Novellino F, Caso JR, García-Bueno B, Leza JC, Madrigal JLM. Noradrenaline in Alzheimer's Disease: A New Potential Therapeutic Target. Int J Mol Sci 2022; 23:ijms23116143. [PMID: 35682822 PMCID: PMC9181823 DOI: 10.3390/ijms23116143] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 12/13/2022] Open
Abstract
A growing body of evidence demonstrates the important role of the noradrenergic system in the pathogenesis of many neurodegenerative processes, especially Alzheimer’s disease, due to its ability to control glial activation and chemokine production resulting in anti-inflammatory and neuroprotective effects. Noradrenaline involvement in this disease was first proposed after finding deficits of noradrenergic neurons in the locus coeruleus from Alzheimer’s disease patients. Based on this, it has been hypothesized that the early loss of noradrenergic projections and the subsequent reduction of noradrenaline brain levels contribute to cognitive dysfunctions and the progression of neurodegeneration. Several studies have focused on analyzing the role of noradrenaline in the development and progression of Alzheimer’s disease. In this review we summarize some of the most relevant data describing the alterations of the noradrenergic system normally occurring in Alzheimer’s disease as well as experimental studies in which noradrenaline concentration was modified in order to further analyze how these alterations affect the behavior and viability of different nervous cells. The combination of the different studies here presented suggests that the maintenance of adequate noradrenaline levels in the central nervous system constitutes a key factor of the endogenous defense systems that help prevent or delay the development of Alzheimer’s disease. For this reason, the use of noradrenaline modulating drugs is proposed as an interesting alternative therapeutic option for Alzheimer’s disease.
Collapse
Affiliation(s)
- Irene L. Gutiérrez
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
| | - Cinzia Dello Russo
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool L69 3GL, UK
| | - Fabiana Novellino
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council, 88100 Catanzaro, Italy
| | - Javier R. Caso
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
| | - Borja García-Bueno
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
| | - Juan C. Leza
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
| | - José L. M. Madrigal
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Correspondence: ; Tel.: +34-91-394-1463
| |
Collapse
|
6
|
Supino D, Minute L, Mariancini A, Riva F, Magrini E, Garlanda C. Negative Regulation of the IL-1 System by IL-1R2 and IL-1R8: Relevance in Pathophysiology and Disease. Front Immunol 2022; 13:804641. [PMID: 35211118 PMCID: PMC8861086 DOI: 10.3389/fimmu.2022.804641] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Interleukin-1 (IL-1) is a primary cytokine of innate immunity and inflammation. IL-1 belongs to a complex family including ligands with agonist activity, receptor antagonists, and an anti-inflammatory cytokine. The receptors for these ligands, the IL-1 Receptor (IL-1R) family, include signaling receptor complexes, decoy receptors, and negative regulators. Agonists and regulatory molecules co-evolved, suggesting the evolutionary relevance of a tight control of inflammatory responses, which ensures a balance between amplification of innate immunity and uncontrolled inflammation. IL-1 family members interact with innate immunity cells promoting innate immunity, as well as with innate and adaptive lymphoid cells, contributing to their differentiation and functional polarization and plasticity. Here we will review the properties of two key regulatory receptors of the IL-1 system, IL-1R2, the first decoy receptor identified, and IL-1R8, a pleiotropic regulator of different IL-1 family members and co-receptor for IL-37, the anti-inflammatory member of the IL-1 family. Their complex impact in pathology, ranging from infections and inflammatory responses, to cancer and neurologic disorders, as well as clinical implications and potential therapeutic exploitation will be presented.
Collapse
Affiliation(s)
- Domenico Supino
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Luna Minute
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Italy
| | - Andrea Mariancini
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Italy
| | - Federica Riva
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Elena Magrini
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Cecilia Garlanda
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Italy
| |
Collapse
|
7
|
Tseng CT, Gaulding SJ, Dancel CLE, Thorn CA. Local activation of α2 adrenergic receptors is required for vagus nerve stimulation induced motor cortical plasticity. Sci Rep 2021; 11:21645. [PMID: 34737352 PMCID: PMC8568982 DOI: 10.1038/s41598-021-00976-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022] Open
Abstract
Vagus nerve stimulation (VNS) paired with rehabilitation training is emerging as a potential treatment for improving recovery of motor function following stroke. In rats, VNS paired with skilled forelimb training results in significant reorganization of the somatotopic cortical motor map; however, the mechanisms underlying this form of VNS-dependent plasticity remain unclear. Recent studies have shown that VNS-driven cortical plasticity is dependent on noradrenergic innervation of the neocortex. In the central nervous system, noradrenergic α2 receptors (α2-ARs) are widely expressed in the motor cortex and have been critically implicated in synaptic communication and plasticity. In current study, we examined whether activation of cortical α2-ARs is necessary for VNS-driven motor cortical reorganization to occur. Consistent with previous studies, we found that VNS paired with motor training enlarges the map representation of task-relevant musculature in the motor cortex. Infusion of α2-AR antagonists into M1 blocked VNS-driven motor map reorganization from occurring. Our results suggest that local α2-AR activation is required for VNS-induced cortical reorganization to occur, providing insight into the mechanisms that may underlie the neuroplastic effects of VNS therapy.
Collapse
Affiliation(s)
- Ching-Tzu Tseng
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA
| | - Solomon J Gaulding
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA
| | - Canice Lei E Dancel
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA
| | - Catherine A Thorn
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA.
| |
Collapse
|
8
|
Paredes-Rodriguez E, Vegas-Suarez S, Morera-Herreras T, De Deurwaerdere P, Miguelez C. The Noradrenergic System in Parkinson's Disease. Front Pharmacol 2020; 11:435. [PMID: 32322208 PMCID: PMC7157437 DOI: 10.3389/fphar.2020.00435] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/20/2020] [Indexed: 12/16/2022] Open
Abstract
Nowadays it is well accepted that in Parkinson’s disease (PD), the neurodegenerative process occurs in stages and that damage to other areas precedes the neuronal loss in the substantia nigra pars compacta, which is considered a pathophysiological hallmark of PD. This heterogeneous and progressive neurodegeneration may explain the diverse symptomatology of the disease, including motor and non-motor alterations. In PD, one of the first areas undergoing degeneration is the locus coeruleus (LC). This noradrenergic nucleus provides extensive innervation throughout the brain and plays a fundamental neuromodulator role, participating in stress responses, emotional memory, and control of motor, sensory, and autonomic functions. Early in the disease, LC neurons suffer modifications that can condition the effectiveness of pharmacological treatments, and importantly, can lead to the appearance of common non-motor symptomatology. The noradrenergic system also exerts anti-inflammatory and neuroprotective effect on the dopaminergic degeneration and noradrenergic damage can consequently condition the progress of the disease. From the pharmacological point of view, it is also important to understand how the noradrenergic system performs in PD, since noradrenergic medication is often used in these patients, and drug interactions can take place when combining them with the gold standard drug therapy in PD, L-3,4-dihydroxyphenylalanine (L-DOPA). This review provides an overview about the functional status of the noradrenergic system in PD and its contribution to the efficacy of pharmacological-based treatments. Based on preclinical and clinical publications, a special attention will be dedicated to the most prevalent non-motor symptoms of the disease.
Collapse
Affiliation(s)
- Elena Paredes-Rodriguez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Sergio Vegas-Suarez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Teresa Morera-Herreras
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Philippe De Deurwaerdere
- Centre National de la Recherche scientifique, Institut des Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA UMR 5287), Bordeaux, France
| | - Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| |
Collapse
|
9
|
O'Neill E, Yssel JD, McNamara C, Harkin A. Pharmacological targeting of β 2 -adrenoceptors is neuroprotective in the LPS inflammatory rat model of Parkinson's disease. Br J Pharmacol 2020; 177:282-297. [PMID: 31506926 PMCID: PMC6989960 DOI: 10.1111/bph.14862] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/20/2019] [Accepted: 08/27/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Chronic inflammation may play a role in the pathogenesis of Parkinson's disease (PD). Noradrenaline is an endogenous neurotransmitter with anti-inflammatory properties. In the present investigation, we assessed the immunomodulatory and neuroprotective efficacy of pharmacologically targeting the CNS noradrenergic system in a rat model of PD. EXPERIMENTAL APPROACH The impact of treatment with the β2 -adrenoceptor agonists clenbuterol and formoterol was assessed in the intranigral LPS rat model of PD. The immunomodulatory potential of formoterol to influence the CNS response to systemic inflammation was also assessed. KEY RESULTS LPS-induced deficits in motor function (akinesia and forelimb-use asymmetry) and nigrostriatal dopamine loss were rescued by both agents. Treatment with the noradrenaline reuptake inhibitor atomoxetine reduced striatal dopamine loss and motor deficits following intranigral LPS injection. Co-treatment with the β2 -adrenoceptor antagonist ICI 118,551 attenuated the protective effects of atomoxetine. Systemic LPS challenge exacerbated reactive microgliosis, IL-1β production, dopamine cell loss in the substantia nigra, nerve terminal degeneration in the striatum, and associated motor impairments in animals that previously received intranigral LPS. This exacerbation was attenuated by formoterol treatment. CONCLUSION AND IMPLICATIONS The results indicate that pharmacologically targeting β2 -adrenoceptors has the propensity to regulate the neuroinflammatory phenotype in vivo and may be a potential neuroprotective strategy where inflammation contributes to the progression of dopaminergic neurodegeneration. In accordance with this, clinical agents such as β2 -adrenoceptor agonists may prove useful as immunomodulatory agents in the treatment of neurodegenerative conditions associated with brain inflammation.
Collapse
Affiliation(s)
- Eoin O'Neill
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of NeuroscienceTrinity College DublinDublin 2Ireland
| | - Justin D. Yssel
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of NeuroscienceTrinity College DublinDublin 2Ireland
| | - Caoimhe McNamara
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of NeuroscienceTrinity College DublinDublin 2Ireland
| | - Andrew Harkin
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of NeuroscienceTrinity College DublinDublin 2Ireland
| |
Collapse
|
10
|
Ryan KM, Boyle NT, Harkin A, Connor TJ. Dexamethasone attenuates inflammatory-mediated suppression of β 2-adrenoceptor expression in rat primary mixed glia. J Neuroimmunol 2019; 338:577082. [PMID: 31707103 DOI: 10.1016/j.jneuroim.2019.577082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 11/29/2022]
Abstract
β2-adrenoceptors are G-protein coupled receptors expressed on both astrocytes and microglia that play a key role in mediating the anti-inflammatory actions of noradrenaline in the CNS. Here the effect of an inflammatory stimulus (LPS + IFN-γ) was examined on glial β2-adrenoceptor expression and function. Exposure of glia to LPS + IFN-γ decreased β2-adrenoceptor mRNA and agonist-stimulated production of the intracellular second messenger cAMP. Pre-treatment with the synthetic glucocorticoid and potent anti-inflammatory agent dexamethasone prevented the LPS + IFN-γ-induced suppression of β2-adrenoceptor mRNA expression. These results raise the possibility that inflammation-mediated β2-adrenoceptor downregulation in glia may dampen the innate anti-inflammatory properties of noradrenaline in the CNS.
Collapse
Affiliation(s)
- Karen M Ryan
- Neuroimmunology Research Group, Department of Physiology, Trinity College Institute of Neuroscience & School of Medicine, Trinity College, Dublin 2, Ireland
| | - Noreen T Boyle
- Neuroimmunology Research Group, Department of Physiology, Trinity College Institute of Neuroscience & School of Medicine, Trinity College, Dublin 2, Ireland
| | - Andrew Harkin
- Neuropsychopharmacology Research Group, Trinity College Institute of Neuroscience, School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin 2, Ireland.
| | - Thomas J Connor
- Neuroimmunology Research Group, Department of Physiology, Trinity College Institute of Neuroscience & School of Medicine, Trinity College, Dublin 2, Ireland
| |
Collapse
|
11
|
Caraci F, Merlo S, Drago F, Caruso G, Parenti C, Sortino MA. Rescue of Noradrenergic System as a Novel Pharmacological Strategy in the Treatment of Chronic Pain: Focus on Microglia Activation. Front Pharmacol 2019; 10:1024. [PMID: 31572196 PMCID: PMC6751320 DOI: 10.3389/fphar.2019.01024] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022] Open
Abstract
Different types of pain can evolve toward a chronic condition characterized by hyperalgesia and allodynia, with an abnormal response to normal or even innocuous stimuli, respectively. A key role in endogenous analgesia is recognized to descending noradrenergic pathways that originate from the locus coeruleus and project to the dorsal horn of the spinal cord. Impairment of this system is associated with pain chronicization. More recently, activation of glial cells, in particular microglia, toward a pro-inflammatory state has also been implicated in the transition from acute to chronic pain. Both α2- and β2-adrenergic receptors are expressed in microglia, and their activation leads to acquisition of an anti-inflammatory phenotype. This review analyses in more detail the interconnection between descending noradrenergic system and neuroinflammation, focusing on drugs that, by rescuing the noradrenergic control, exert also an anti-inflammatory effect, ultimately leading to analgesia. More specifically, the potential efficacy in the treatment of neuropathic pain of different drugs will be analyzed. On one side, drugs acting as inhibitors of the reuptake of serotonin and noradrenaline, such as duloxetine and venlafaxine, and on the other, tapentadol, inhibitor of the reuptake of noradrenaline, and agonist of the µ-opioid receptor.
Collapse
Affiliation(s)
- Filippo Caraci
- Department of Drug Sciences, Section of Pharmacology and Toxicology, University of Catania, Catania, Italy.,Oasi Research Institute-IRCCS, Troina, Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | | | - Carmela Parenti
- Department of Drug Sciences, Section of Pharmacology and Toxicology, University of Catania, Catania, Italy
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| |
Collapse
|
12
|
Central Noradrenergic Agonists in the Treatment of Ischemic Stroke-an Overview. Transl Stroke Res 2019; 11:165-184. [PMID: 31327133 DOI: 10.1007/s12975-019-00718-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 02/03/2023]
Abstract
Ischemic stroke is the leading cause of morbidity and mortality with a significant health burden worldwide and few treatment options. Among the short- and long-term effects of ischemic stroke is the cardiovascular sympathetic autonomic dysfunction, presented in part as the by-product of the ischemic damage to the noradrenergic centers of the brain. Unlike high levels in the plasma, the brain may face suboptimal levels of norepinephrine (NE), with adverse effects on the clinical and functional outcomes of ischemic stroke. The intravenous administration of NE and other sympathomimetic agents, in an attempt to increase cerebral perfusion pressure, often aggravates the ischemia-induced rise in blood pressure (BP) with life-threatening consequences for stroke patients, the majority of whom present with hypertension at the time of admission. Unlike the systemic administration, the central administration of NE reduces BP while exerting anti-inflammatory and neuroprotective effects. These characteristics of centrally administered NE, combined with the short latency of response, make it an ideal candidate for use in the acute phase of stroke, followed by the use of centrally acting noradrenergic agonists, such as NE reuptake inhibitors and B2-adrenergic receptor agonists for stroke rehabilitation. In addition, a number of nonpharmacological strategies, such as transcutaneous vagus nerve stimulation (tVNS) and trigeminal nerve stimulation (TNS), have the potential to enhance the central noradrenergic functional activities and improve stroke clinical outcomes. Many factors could influence the efficacy of the noradrenergic treatment in stroke patients. These factors include the type of the noradrenergic agent; the dose, frequency, and duration of administration; the timing of administration in relation to the acute event; and the site and characteristics of the ischemic lesions. Having this knowledge, combined with the better understanding of the regulation of noradrenergic receptors in different parts of the brain, would pave the path for the successful use of the centrally acting noradrenergic agents in the management of ischemic stroke.
Collapse
|
13
|
Johnson JD, Barnard DF, Kulp AC, Mehta DM. Neuroendocrine Regulation of Brain Cytokines After Psychological Stress. J Endocr Soc 2019; 3:1302-1320. [PMID: 31259292 PMCID: PMC6595533 DOI: 10.1210/js.2019-00053] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/06/2019] [Indexed: 12/22/2022] Open
Abstract
There is growing evidence that stress-induced brain cytokines are important in the etiology of depression and anxiety. Here, we review how the neuroendocrine responses to psychological stressors affect the immediate and long-term regulation of inflammatory cytokines within the brain and highlight how the regulation changes across time with repeated stress exposure. In doing so, we report on the percentage of studies in the literature that observed increases in either IL-1β, TNF-α, or IL-6 within the hypothalamus, hippocampus, or prefrontal cortex after either acute or chronic stress exposure. The key takeaway is that catecholamines and glucocorticoids play critical roles in the regulation of brain cytokines after psychological stress exposure. Central catecholamines stimulate the release of IL-1β from microglia, which is a key factor in the further activation of microglia and recruitment of monocytes into the brain. Meanwhile, the acute elevation of glucocorticoids inhibits the production of brain cytokines via two mechanisms: the suppression of noradrenergic locus coeruleus neurons and inhibition of the NFκB signaling pathway. However, glucocorticoids and peripheral catecholamines facilitate inflammatory responses to future stimuli by stimulating monocytes to leave the bone marrow, downregulating inhibitory receptors on microglia, and priming inflammatory responses mediated by peripheral monocytes or macrophages. The activation of microglia and the elevation of peripheral glucocorticoid and catecholamine levels are both necessary during times of stress exposure for the development of psychopathologies.
Collapse
Affiliation(s)
- John D Johnson
- Kent State University, Biological Sciences Department, School of Biomedical Sciences, Kent, Ohio
| | - David F Barnard
- Kent State University, Biological Sciences Department, School of Biomedical Sciences, Kent, Ohio
| | - Adam C Kulp
- Kent State University, Biological Sciences Department, School of Biomedical Sciences, Kent, Ohio
| | - Devanshi M Mehta
- Kent State University, Biological Sciences Department, School of Biomedical Sciences, Kent, Ohio
| |
Collapse
|
14
|
Zhou Z, Ikegaya Y, Koyama R. The Astrocytic cAMP Pathway in Health and Disease. Int J Mol Sci 2019; 20:E779. [PMID: 30759771 PMCID: PMC6386894 DOI: 10.3390/ijms20030779] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are major glial cells that play critical roles in brain homeostasis. Abnormalities in astrocytic functions can lead to brain disorders. Astrocytes also respond to injury and disease through gliosis and immune activation, which can be both protective and detrimental. Thus, it is essential to elucidate the function of astrocytes in order to understand the physiology of the brain to develop therapeutic strategies against brain diseases. Cyclic adenosine monophosphate (cAMP) is a major second messenger that triggers various downstream cellular machinery in a wide variety of cells. The functions of astrocytes have also been suggested as being regulated by cAMP. Here, we summarize the possible roles of cAMP signaling in regulating the functions of astrocytes. Specifically, we introduce the ways in which cAMP pathways are involved in astrocyte functions, including (1) energy supply, (2) maintenance of the extracellular environment, (3) immune response, and (4) a potential role as a provider of trophic factors, and we discuss how these cAMP-regulated processes can affect brain functions in health and disease.
Collapse
Affiliation(s)
- Zhiwen Zhou
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan.
- Center for Information and Neural Networks, Suita City, Osaka 565-0871, Japan.
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
15
|
An introduction to innate immunity in the central nervous system. ROLE OF INFLAMMATION IN ENVIRONMENTAL NEUROTOXICITY 2019. [DOI: 10.1016/bs.ant.2018.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Younger D, Murugan M, Rama Rao KV, Wu LJ, Chandra N. Microglia Receptors in Animal Models of Traumatic Brain Injury. Mol Neurobiol 2018; 56:5202-5228. [PMID: 30554385 DOI: 10.1007/s12035-018-1428-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
|
17
|
Molgora M, Supino D, Mantovani A, Garlanda C. Tuning inflammation and immunity by the negative regulators IL-1R2 and IL-1R8. Immunol Rev 2018; 281:233-247. [PMID: 29247989 DOI: 10.1111/imr.12609] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interleukin-1 receptor family members (ILRs) and Toll-Like Receptors (TLRs) are key players in immunity and inflammation and are tightly regulated at different levels. Most cell types, including cells of the innate and adaptive immune system express ILRs and TLRs. In addition, IL-1 family members are emerging as key players in the differentiation and function of innate and adaptive lymphoid cells. IL-1R2 and IL-1R8 (also known as TIR8 or SIGIRR) are members of the ILR family acting as negative regulators of the IL-1 system. IL-1R2 binds IL-1 and the accessory protein IL-1RAcP without activating signaling and can be released as a soluble form (sIL-1R2), thus modulating IL-1 availability for the signaling receptor. IL-1R8 dampens ILR- and TLR-mediated cell activation and it is a component of the receptor recognizing human IL-37. Here, we summarize our current understanding of the structure and function of IL-1R2 and IL-1R8, focusing on their role in different pathological conditions, ranging from infectious and sterile inflammation, to autoimmunity and cancer-related inflammation. We also address the emerging evidence regarding the role of IL-1R8 as a crucial checkpoint molecule in NK cells in anti-cancer and antiviral activity and the potential therapeutic implications of IL-1R8 blockade in specific pathological contexts.
Collapse
Affiliation(s)
- Martina Molgora
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Domenico Supino
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Alberto Mantovani
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Rozzano, Italy.,Humanitas University, Pieve Emanuele (Milano), Italy.,The William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Cecilia Garlanda
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Rozzano, Italy.,Humanitas University, Pieve Emanuele (Milano), Italy
| |
Collapse
|
18
|
Lowry JR, Klegeris A. Emerging roles of microglial cathepsins in neurodegenerative disease. Brain Res Bull 2018; 139:144-156. [DOI: 10.1016/j.brainresbull.2018.02.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/23/2018] [Accepted: 02/13/2018] [Indexed: 01/21/2023]
|
19
|
Monocytes, Macrophages, and Microglia and the Role of IL-1 in Autoimmune Inner Ear Disease (AIED). CURRENT OTORHINOLARYNGOLOGY REPORTS 2018. [DOI: 10.1007/s40136-018-0191-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
20
|
Treatment with the noradrenaline re-uptake inhibitor atomoxetine alone and in combination with the α2-adrenoceptor antagonist idazoxan attenuates loss of dopamine and associated motor deficits in the LPS inflammatory rat model of Parkinson's disease. Brain Behav Immun 2018; 69:456-469. [PMID: 29339319 DOI: 10.1016/j.bbi.2018.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/04/2018] [Accepted: 01/11/2018] [Indexed: 01/14/2023] Open
Abstract
The impact of treatment with the noradrenaline (NA) re-uptake inhibitor atomoxetine and the α2-adrenoceptor (AR) antagonist idazoxan in an animal model of Parkinson's disease (PD) was assessed. Concurrent systemic treatment with atomoxetine and idazoxan, a combination which serves to enhance the extra-synaptic availability of NA, exerts anti-inflammatory and neuroprotective effects following delivery of an inflammatory stimulus, the bacterial endotoxin, lipopolysaccharide (LPS) into the substantia nigra. Lesion-induced deficits in motor function (akinesia, forelimb-use asymmetry) and striatal dopamine (DA) loss were rescued to varying degrees depending on the treatment. Treatment with atomoxetine following LPS-induced lesion to the substantia nigra, yielded a robust anti-inflammatory effect, suppressing microglial activation and expression of the pro-inflammatory cytokine TNF-α whilst increasing the expression of neurotrophic factors. Furthermore atomoxetine treatment prevented loss of tyrosine hydroxylase (TH) positive nigral dopaminergic neurons and resulted in functional improvements in motor behaviours. Atomoxetine alone was sufficient to achieve most of the observed effects. In combination with idazoxan, an additional improvement in the impairment of contralateral limb use 7 days post lesion and a reduction in amphetamine-mediated rotational asymmetry 14 days post-lesion was observed, compared to atomoxetine or idazoxan treatments alone. The results indicate that increases in central NA tone has the propensity to regulate the neuroinflammatory phenotype in vivo and may act as an endogenous neuroprotective mechanism where inflammation contributes to the progression of DA loss. In accordance with this, the clinical use of agents such as NA re-uptake inhibitors and α2-AR antagonists may prove useful in enhancing the endogenous neuroimmunomodulatory potential of NA in conditions associated with brain inflammation.
Collapse
|
21
|
Griffin ÉW, Yssel JD, O’Neill E, Ryan KJ, Boyle N, Harper P, Harkin A, Connor T. The β2-adrenoceptor agonist clenbuterol reduces the neuroinflammatory response, neutrophil infiltration and apoptosis following intra-striatal IL-1β administration to rats. Immunopharmacol Immunotoxicol 2018; 40:99-106. [DOI: 10.1080/08923973.2017.1418882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Éadaoin W. Griffin
- Neuroimmunology Research Group, Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- Department of Physiology, School of Medicine, Trinity College, Dublin, Ireland
| | - Justin D. Yssel
- Department of Physiology, School of Medicine, Trinity College, Dublin, Ireland
- Neuropsychopharmacology Research Group, Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Eoin O’Neill
- Neuropsychopharmacology Research Group, Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Katie J. Ryan
- Neuroimmunology Research Group, Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- Department of Physiology, School of Medicine, Trinity College, Dublin, Ireland
| | - Noreen Boyle
- Neuroimmunology Research Group, Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- Department of Physiology, School of Medicine, Trinity College, Dublin, Ireland
| | - Peter Harper
- Neuroimmunology Research Group, Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Andrew Harkin
- Neuropsychopharmacology Research Group, Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Thomas Connor
- Neuroimmunology Research Group, Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- Department of Physiology, School of Medicine, Trinity College, Dublin, Ireland
| |
Collapse
|
22
|
O'Neill E, Harkin A. Targeting the noradrenergic system for anti-inflammatory and neuroprotective effects: implications for Parkinson's disease. Neural Regen Res 2018; 13:1332-1337. [PMID: 30106035 PMCID: PMC6108217 DOI: 10.4103/1673-5374.235219] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Degeneration of the locus coeruleus noradrenergic system is thought to play a key role in the pathogenesis of Parkinson's disease (PD), whereas pharmacological approaches to increase noradrenaline bioavailability may provide neuroprotection. Noradrenaline inhibits microglial activation and suppresses pro-inflammatory mediator production (e.g., tumor necrosis factor-α, interleukin-1β & inducible nitric oxide synthase activity), thus limiting the cytotoxicity of midbrain dopaminergic neurons in response to an inflammatory stimulus. Neighbouring astrocyte populations promote a neurotrophic environment in response to β2-adrenoceptor (β2-AR) stimulation via the production of growth factors (e.g., brain derived neurotrophic factor, cerebral dopamine neurotrophic factor & glial cell derived neurotrophic factor which have shown promising neuroprotective and neuro-restorative effects in the nigrostriatal dopaminergic system. More recent findings have demonstrated a role for the β2-AR in down-regulating expression levels of the human α-synuclein gene SNCA and relative α-synuclein protein abundance. Given that α-synuclein is a major protein constituent of Lewy body pathology, a hallmark neuropathological feature in Parkinson's disease, these findings could open up new avenues for pharmacological intervention strategies aimed at alleviating the burden of α-synucleinopathies in the Parkinsonian brain. In essence, the literature reviewed herein supports our hypothesis of a tripartite neuroprotective role for noradrenaline in combating PD-related neuropathology and motor dysfunction via (1) inhibiting nigral microglial activation & pro-inflammatory mediator production, (2) promoting the synthesis of neurotrophic factors from midbrain astrocytes and (3) downregulating α-synuclein gene expression and protein abundance in a β2-AR-dependent manner. Thus, taken together, either pharmacologically enhancing extra-synaptic noradrenaline bioavailability or targeting glial β2-ARs directly makes itself as a promising treatment option aimed at slowing/halting PD progression.
Collapse
Affiliation(s)
- Eoin O'Neill
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Andrew Harkin
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| |
Collapse
|
23
|
Zangeneh FZ, Naghizadeh MM, Masoumi M. Polycystic ovary syndrome and circulating inflammatory markers. Int J Reprod Biomed 2017. [DOI: 10.29252/ijrm.15.6.375] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
24
|
Bonecchi R, Garlanda C, Mantovani A, Riva F. Cytokine decoy and scavenger receptors as key regulators of immunity and inflammation. Cytokine 2016; 87:37-45. [PMID: 27498604 DOI: 10.1016/j.cyto.2016.06.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 12/16/2022]
Abstract
IL-1R2 was the first decoy receptor to be described. Subsequently receptors which act as pure decoys or scavengers or trigger dampening of cytokine signaling have been described for cytokines and chemokines. Here we review the current understanding of the mode of action and significance in pathology of the chemokine atypical receptor ACKR2, the IL-1 decoy receptor IL-1R2 and the atypical IL-1 receptor family IL-1R8. Decoy and scavenger receptors with no or atypical signaling have emerged as a general strategy conserved in evolution to tune the action of cytokines, chemokines and growth factors.
Collapse
Affiliation(s)
- Raffaella Bonecchi
- Istituto Clinico Humanitas IRCCS, via Manzoni 113, 20089 Rozzano, Italy; Humanitas University, via Manzoni 113, 20089 Rozzano, Italy
| | - Cecilia Garlanda
- Istituto Clinico Humanitas IRCCS, via Manzoni 113, 20089 Rozzano, Italy
| | - Alberto Mantovani
- Istituto Clinico Humanitas IRCCS, via Manzoni 113, 20089 Rozzano, Italy; Humanitas University, via Manzoni 113, 20089 Rozzano, Italy.
| | - Federica Riva
- Department of Animal Pathology, Faculty of Veterinary Medicine, University of Milan, Italy
| |
Collapse
|
25
|
Ryan KM, Griffin ÉW, Ryan KJ, Tanveer R, Vanattou-Saifoudine N, McNamee EN, Fallon E, Heffernan S, Harkin A, Connor TJ. Clenbuterol activates the central IL-1 system via the β2-adrenoceptor without provoking inflammatory response related behaviours in rats. Brain Behav Immun 2016; 56:114-29. [PMID: 26928198 DOI: 10.1016/j.bbi.2016.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/18/2016] [Accepted: 02/25/2016] [Indexed: 01/09/2023] Open
Abstract
The long-acting, highly lipophilic, β2-adrenoceptor agonist clenbuterol may represent a suitable therapeutic agent for the treatment of neuroinflammation as it drives an anti-inflammatory response within the CNS. However, clenbuterol is also known to increase the expression of IL-1β in the brain, a potent neuromodulator that plays a role in provoking sickness related symptoms including anxiety and depression-related behaviours. Here we demonstrate that, compared to the immunological stimulus lipopolysaccharide (LPS, 250μg/kg), clenbuterol (0.5mg/kg) selectively up-regulates expression of the central IL-1 system resulting in a mild stress-like response which is accompanied by a reduction in locomotor activity and food consumption in rats. We provide further evidence that clenbuterol-induced activation of the central IL-1 system occurs in a controlled and selective manner in tandem with its negative regulators IL-1ra and IL-1RII. Furthermore, we demonstrate that peripheral β2-adrenoceptors mediate the suppression of locomotor activity and food consumption induced by clenbuterol and that these effects are not linked to the central induction of IL-1β. Moreover, despite increasing central IL-1β expression, chronic administration of clenbuterol (0.03mg/kg; twice daily for 21days) fails to induce anxiety or depressive-like behaviour in rats in contrast to reports of the ability of exogenously administered IL-1 to induce these symptoms in rodents. Overall, our findings suggest that clenbuterol or other selective β2-adrenoceptor agonists could have the potential to combat neuroinflammatory or neurodegenerative disorders without inducing unwanted symptoms of depression and anxiety.
Collapse
Affiliation(s)
- Karen M Ryan
- Neuroimmunology Research Group, Trinity College Institute of Neuroscience, Department of Physiology & School of Medicine, Trinity College, Dublin 2, Ireland
| | - Éadaoin W Griffin
- Neuroimmunology Research Group, Trinity College Institute of Neuroscience, Department of Physiology & School of Medicine, Trinity College, Dublin 2, Ireland
| | - Katie J Ryan
- Neuroimmunology Research Group, Trinity College Institute of Neuroscience, Department of Physiology & School of Medicine, Trinity College, Dublin 2, Ireland
| | - Riffat Tanveer
- Neuroimmunology Research Group, Trinity College Institute of Neuroscience, Department of Physiology & School of Medicine, Trinity College, Dublin 2, Ireland
| | - Natacha Vanattou-Saifoudine
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Eoin N McNamee
- Neuroimmunology Research Group, Trinity College Institute of Neuroscience, Department of Physiology & School of Medicine, Trinity College, Dublin 2, Ireland
| | - Emer Fallon
- Neuroimmunology Research Group, Trinity College Institute of Neuroscience, Department of Physiology & School of Medicine, Trinity College, Dublin 2, Ireland
| | - Sheena Heffernan
- Neuroimmunology Research Group, Trinity College Institute of Neuroscience, Department of Physiology & School of Medicine, Trinity College, Dublin 2, Ireland
| | - Andrew Harkin
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland.
| | - Thomas J Connor
- Neuroimmunology Research Group, Trinity College Institute of Neuroscience, Department of Physiology & School of Medicine, Trinity College, Dublin 2, Ireland
| |
Collapse
|
26
|
Feinstein DL, Kalinin S, Braun D. Causes, consequences, and cures for neuroinflammation mediated via the locus coeruleus: noradrenergic signaling system. J Neurochem 2016; 139 Suppl 2:154-178. [PMID: 26968403 DOI: 10.1111/jnc.13447] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 12/31/2022]
Abstract
Aside from its roles in as a classical neurotransmitter involved in regulation of behavior, noradrenaline (NA) has other functions in the CNS. This includes restricting the development of neuroinflammatory activation, providing neurotrophic support to neurons, and providing neuroprotection against oxidative stress. In recent years, it has become evident that disruption of physiological NA levels or signaling is a contributing factor to a variety of neurological diseases and conditions including Alzheimer's disease (AD) and Multiple Sclerosis. The basis for dysregulation in these diseases is, in many cases, due to damage occurring to noradrenergic neurons present in the locus coeruleus (LC), the major source of NA in the CNS. LC damage is present in AD, multiple sclerosis, and a large number of other diseases and conditions. Studies using animal models have shown that experimentally induced lesion of LC neurons exacerbates neuropathology while treatments to compensate for NA depletion, or to reduce LC neuronal damage, provide benefit. In this review, we will summarize the anti-inflammatory and neuroprotective actions of NA, summarize examples of how LC damage worsens disease, and discuss several approaches taken to treat or prevent reductions in NA levels and LC neuronal damage. Further understanding of these events will be of value for the development of treatments for AD, multiple sclerosis, and other diseases and conditions having a neuroinflammatory component. The classical neurotransmitter noradrenaline (NA) has critical roles in modulating behaviors including those involved in sleep, anxiety, and depression. However, NA can also elicit anti-inflammatory responses in glial cells, can increase neuronal viability by inducing neurotrophic factor expression, and can reduce neuronal damage due to oxidative stress by scavenging free radicals. NA is primarily produced by tyrosine hydroxylase (TH) expressing neurons in the locus coeruleus (LC), a relatively small brainstem nucleus near the IVth ventricle which sends projections throughout the brain and spinal cord. It has been known for close to 50 years that LC neurons are lost during normal aging, and that loss is exacerbated in neurological diseases including Parkinson's disease and Alzheimer's disease. LC neuronal damage and glial activation has now been documented in a variety of other neurological conditions and diseases, however, the causes of LC damage and cell loss remain largely unknown. A number of approaches have been developed to address the loss of NA and increased inflammation associated with LC damage, and several methods are being explored to directly minimize the extent of LC neuronal cell loss or function. In this review, we will summarize some of the consequences of LC loss, consider several factors that likely contribute to that loss, and discuss various ways that have been used to increase NA or to reduce LC damage. This article is part of the 60th Anniversary special issue.
Collapse
Affiliation(s)
- Douglas L Feinstein
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA. .,Jesse Brown VA Medical Center, Chicago, IL, USA.
| | - Sergey Kalinin
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| | - David Braun
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
27
|
Neuroprotection and reduced gliosis by atomoxetine pretreatment in a gerbil model of transient cerebral ischemia. J Neurol Sci 2015; 359:373-80. [DOI: 10.1016/j.jns.2015.11.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/06/2015] [Accepted: 11/15/2015] [Indexed: 11/23/2022]
|
28
|
Brown GC, Vilalta A. How microglia kill neurons. Brain Res 2015; 1628:288-297. [PMID: 26341532 DOI: 10.1016/j.brainres.2015.08.031] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 08/03/2015] [Accepted: 08/24/2015] [Indexed: 12/11/2022]
Abstract
Microglia are resident brain macrophages that become inflammatory activated in most brain pathologies. Microglia normally protect neurons, but may accidentally kill neurons when attempting to limit infections or damage, and this may be more common with degenerative disease as there was no significant selection pressure on the aged brain in the past. A number of mechanisms by which activated microglia kill neurons have been identified, including: (i) stimulation of the phagocyte NADPH oxidase (PHOX) to produce superoxide and derivative oxidants, (ii) expression of inducible nitric oxide synthase (iNOS) producing NO and derivative oxidants, (iii) release of glutamate and glutaminase, (iv) release of TNFα, (v) release of cathepsin B, (vi) phagocytosis of stressed neurons, and (vii) decreased release of nutritive BDNF and IGF-1. PHOX stimulation contributes to microglial activation, but is not directly neurotoxic unless NO is present. NO is normally neuroprotective, but can react with superoxide to produce neurotoxic peroxynitrite, or in the presence of hypoxia inhibit mitochondrial respiration. Glutamate can be released by glia or neurons, but is neurotoxic only if the neurons are depolarised, for example as a result of mitochondrial inhibition. TNFα is normally neuroprotective, but can become toxic if caspase-8 or NF-κB activation are inhibited. If the above mechanisms do not kill neurons, they may still stress the neurons sufficiently to make them susceptible to phagocytosis by activated microglia. We review here whether microglial killing of neurons is an artefact, makes evolutionary sense or contributes in common neuropathologies and by what mechanisms. This article is part of a Special Issue entitled SI: Neuroprotection.
Collapse
Affiliation(s)
- Guy C Brown
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| | - Anna Vilalta
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
29
|
Scanzano A, Cosentino M. Adrenergic regulation of innate immunity: a review. Front Pharmacol 2015; 6:171. [PMID: 26321956 PMCID: PMC4534859 DOI: 10.3389/fphar.2015.00171] [Citation(s) in RCA: 248] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/31/2015] [Indexed: 12/24/2022] Open
Abstract
The sympathetic nervous system has a major role in the brain-immune cross-talk, but few information exist on the sympathoadrenergic regulation of innate immune system. The aim of this review is to summarize available knowledge regarding the sympathetic modulation of the innate immune response, providing a rational background for the possible repurposing of adrenergic drugs as immunomodulating agents. The cells of immune system express adrenoceptors (AR), which represent the target for noradrenaline and adrenaline. In human neutrophils, adrenaline and noradrenaline inhibit migration, CD11b/CD18 expression, and oxidative metabolism, possibly through β-AR, although the role of α1- and α2-AR requires further investigation. Natural Killer express β-AR, which are usually inhibitory. Monocytes express β-AR and their activation is usually antiinflammatory. On murine Dentritic cells (DC), β-AR mediate sympathetic influence on DC-T cells interactions. In human DC β2-AR may affect Th1/2 differentiation of CD4+ T cells. In microglia and in astrocytes, β2-AR dysregulation may contribute to neuroinflammation in autoimmune and neurodegenerative disease. In conclusion, extensive evidence supports a critical role for adrenergic mechanisms in the regulation of innate immunity, in peripheral tissues as well as in the CNS. Sympathoadrenergic pathways in the innate immune system may represent novel antiinflammatory and immunomodulating targets with significant therapeutic potential.
Collapse
Affiliation(s)
- Angela Scanzano
- Center for Research in Medical Pharmacology, University of Insubria Varese, Italy
| | - Marco Cosentino
- Center for Research in Medical Pharmacology, University of Insubria Varese, Italy
| |
Collapse
|
30
|
Doucet M, O’Toole E, Connor T, Harkin A. Small-molecule inhibitors at the PSD-95/nNOS interface protect against glutamate-induced neuronal atrophy in primary cortical neurons. Neuroscience 2015; 301:421-38. [DOI: 10.1016/j.neuroscience.2015.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/29/2015] [Accepted: 06/03/2015] [Indexed: 01/21/2023]
|
31
|
Braun D, Madrigal JLM, Feinstein DL. Noradrenergic regulation of glial activation: molecular mechanisms and therapeutic implications. Curr Neuropharmacol 2014; 12:342-52. [PMID: 25342942 PMCID: PMC4207074 DOI: 10.2174/1570159x12666140828220938] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 07/12/2014] [Accepted: 07/16/2014] [Indexed: 01/07/2023] Open
Abstract
It has been known for many years that the endogenous neurotransmitter noradrenaline (NA) exerts anti-inflammatory and neuroprotective effects both in vitro and in vivo. In many cases the site of action of NA are beta-adrenergic receptors (βARs), causing an increase in intracellular levels of cAMP which initiates a broad cascade of events including suppression of inflammatory transcription factor activities, alterations in nuclear localization of proteins, and induction of patterns of gene expression mediated through activity of the CREB transcription factor. These changes lead not only to reduced inflammatory events, but also contribute to neuroprotective actions of NA by increasing expression of neurotrophic substances including BDNF, GDNF, and NGF. These properties have prompted studies to determine if treatments with drugs to raise CNS NA levels could provide benefit in various neurological conditions and diseases having an inflammatory component. Moreover, increasing evidence shows that disruptions in endogenous NA levels occurs in several diseases and conditions including Alzheimer's disease (AD), Parkinson's disease (PD), Down's syndrome, posttraumatic stress disorder (PTSD), and multiple sclerosis (MS), suggesting that damage to NA producing neurons is a common factor that contributes to the initiation or progression of neuropathology. Methods to increase NA levels, or to reduce damage to noradrenergic neurons, therefore represent potential preventative as well as therapeutic approaches to disease.
Collapse
Affiliation(s)
- David Braun
- Department of Anesthesiology, University of Illinois at Chicago, Chicago IL, USA, 60612
| | - Jose L M Madrigal
- Departamento de Farmacología, Universidad Complutense de Madrid, Spain
| | - Douglas L Feinstein
- Department of Anesthesiology, University of Illinois at Chicago, Chicago IL, USA, 60612 ; Jesse Brown VA Medical Center, Chicago IL, USA, 60612
| |
Collapse
|
32
|
Merzenich MM, Van Vleet TM, Nahum M. Brain plasticity-based therapeutics. Front Hum Neurosci 2014; 8:385. [PMID: 25018719 PMCID: PMC4072971 DOI: 10.3389/fnhum.2014.00385] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 05/15/2014] [Indexed: 11/30/2022] Open
Abstract
The primary objective of this review article is to summarize how the neuroscience of brain plasticity, exploiting new findings in fundamental, integrative and cognitive neuroscience, is changing the therapeutic landscape for professional communities addressing brain-based disorders and disease. After considering the neurological bases of training-driven neuroplasticity, we shall describe how this neuroscience-guided perspective distinguishes this new approach from (a) the more-behavioral, traditional clinical strategies of professional therapy practitioners, and (b) an even more widely applied pharmaceutical treatment model for neurological and psychiatric treatment domains. With that background, we shall argue that neuroplasticity-based treatments will be an important part of future best-treatment practices in neurological and psychiatric medicine.
Collapse
Affiliation(s)
| | - Thomas M Van Vleet
- Posit Science Corporation San Francisco, CA, USA ; Medical Research, Department of Veteran Affairs Martinez, CA, USA
| | - Mor Nahum
- Posit Science Corporation San Francisco, CA, USA ; Department of Optometry, University of California at Berkeley Berkeley, CA, USA
| |
Collapse
|
33
|
Day JS, O'Neill E, Cawley C, Aretz NK, Kilroy D, Gibney SM, Harkin A, Connor TJ. Noradrenaline acting on astrocytic β2-adrenoceptors induces neurite outgrowth in primary cortical neurons. Neuropharmacology 2014; 77:234-48. [DOI: 10.1016/j.neuropharm.2013.09.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 09/17/2013] [Accepted: 09/30/2013] [Indexed: 12/23/2022]
|
34
|
Abstract
The IL-1 family of ligands and receptors has a central role in both innate and adaptive immune responses and is tightly controlled by antagonists, decoy receptors, scavengers, dominant negative molecules, miRNAs and other mechanisms, acting extracellularly or intracellularly. During evolution, the development of multiple mechanisms of negative regulation reveals the need for tight control of the biological consequences of IL-1 family ligands in order to balance local and systemic inflammation and limit immunopathology. Indeed, studies with gene targeted mice for negative regulators and genetic studies in humans provide evidence for their non-redundant role in controlling inflammation, tissue damage and adaptive responses. In addition, studies have revealed the need of negative regulation of the IL-1 family not only in disease, but also in homeostatic conditions. In this review, the negative regulation mediated by decoy receptors are presented and include IL-1R2 and IL-IL-18BP as well as atypical receptors, which include TIR8/SIGIRR, IL-1RAcPb, TIGIRR-1 and IL-1RAPL. Particular emphasis is given to IL-1R2, since its discovery is the basis for the formulation of the decoy paradigm, now considered a general strategy to counter the primary inflammatory activities of cytokines and chemokines. Emphasis is also given to TIR8, a prototypical negative regulatory receptor having non-redundant roles in limiting inflammation and adaptive responses.
Collapse
Affiliation(s)
- Cecilia Garlanda
- Humanitas Clinical and Research Center, Department of Inflammation and Immunology, Rozzano, Italy.
| | - Federica Riva
- Department of Veterinary Science and Public Health, University of Milan, Italy
| | - Eduardo Bonavita
- Humanitas Clinical and Research Center, Department of Inflammation and Immunology, Rozzano, Italy
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Department of Inflammation and Immunology, Rozzano, Italy; Department of Biotechnology and Translational Medicine, University of Milan, Rozzano (Milano), Italy
| |
Collapse
|
35
|
Stimulation of central β2-adrenoceptors suppresses NFκB activity in rat brain: A role for IκB. Neurochem Int 2013; 63:368-78. [DOI: 10.1016/j.neuint.2013.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 07/08/2013] [Accepted: 07/20/2013] [Indexed: 11/19/2022]
|
36
|
Kaushik DK, Thounaojam MC, Kumawat KL, Gupta M, Basu A. Interleukin-1β orchestrates underlying inflammatory responses in microglia via Krüppel-like factor 4. J Neurochem 2013; 127:233-44. [DOI: 10.1111/jnc.12382] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/25/2013] [Accepted: 07/25/2013] [Indexed: 12/31/2022]
Affiliation(s)
| | | | | | - Malvika Gupta
- National Brain Research Centre; Manesar Haryana India
| | - Anirban Basu
- National Brain Research Centre; Manesar Haryana India
| |
Collapse
|
37
|
Garlanda C, Riva F, Bonavita E, Gentile S, Mantovani A. Decoys and Regulatory "Receptors" of the IL-1/Toll-Like Receptor Superfamily. Front Immunol 2013; 4:180. [PMID: 23847621 PMCID: PMC3705552 DOI: 10.3389/fimmu.2013.00180] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/22/2013] [Indexed: 11/24/2022] Open
Abstract
Members of the IL-1 family play a key role in innate and adaptive immunity and in the pathogenesis of diverse diseases. Members of IL-1R like receptor (ILR) family include signaling molecules and negative regulators. The latter include decoy receptors (IL-1RII; IL-18BP) and “receptors” with regulatory function (TIR8/SIGIRR; IL-1RAcPb; DIGIRR). Structural considerations suggest that also TIGIRR-1 and IL-1RAPL may have regulatory function. The presence of multiple pathways of negative regulation of members of the IL-1/IL-1R family emphasizes the need for a tight control of members of this fundamental system.
Collapse
Affiliation(s)
- Cecilia Garlanda
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center , Rozzano , Italy
| | | | | | | | | |
Collapse
|
38
|
Yang JH, Lee EO, Kim SE, Suh YH, Chong YH. Norepinephrine differentially modulates the innate inflammatory response provoked by amyloid-β peptide via action at β-adrenoceptors and activation of cAMP/PKA pathway in human THP-1 macrophages. Exp Neurol 2012; 236:199-206. [PMID: 22609331 DOI: 10.1016/j.expneurol.2012.05.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/04/2012] [Accepted: 05/08/2012] [Indexed: 01/28/2023]
Abstract
Evidence indicates that norepinephrine (NE) has antiinflammatory activities and plays a neuroprotective role where inflammatory events contribute to Alzheimer's disease pathology. Here, we evaluated the effects of NE on amyloid beta 1-42 (Aβ1-42)-induced cytotoxicity and proinflammatory cytokine/chemokine secretion, and determined the mechanisms through which NE exerts its actions in human THP-1 macrophages. NE clearly reduced the Aβ1-42-mediated production of the proinflammatory chemokine, monocytic chemotactic protein-1 (MCP-1/CCL2). In contrast to its ability to reduce MCP-1 secretion, NE enhanced the amounts of the proinflammatory cytokine interleukin (IL)-1β secreted from Aβ1-42 treated cells. NE significantly reduced the Aβ1-42-induced cytotoxicity in situations where it contributed to the increased IL-1β and decreased MCP-1 during Aβ1-42 stimulation. The ability of NE to differentially modulate the Aβ1-42-induced immune responses was mediated by β-adrenoceptors, as the aforementioned effects were replicated by the β-adrenoceptor agonist, isoproterenol, and blocked by the β-adrenoceptor antagonist, dl-propranolol. Of note, the NE effects on Aβ1-42-induced responses were mimicked by dbcAMP and forskolin, but significantly blocked by H89, an inhibitor of PKA. Moreover, NE abolished Aβ1-42-mediated decline of CREB phosphorylation. Overall, NE suppresses Aβ1-42-mediated cytotoxicity and MCP-1 secretion, but enhances Aβ-mediated IL-1β secretion through action at β-adrenoceptors, accompanied by activation of cAMP/PKA pathway and CREB in human microglia-like THP-1 cells.
Collapse
Affiliation(s)
- Ji Hye Yang
- Department of Microbiology, School of Medicine, Division of Molecular Biology and Neuroscience, Ewha Medical Research Institute, Ewha Womans University Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
39
|
Collins LM, Toulouse A, Connor TJ, Nolan YM. Contributions of central and systemic inflammation to the pathophysiology of Parkinson's disease. Neuropharmacology 2012; 62:2154-68. [PMID: 22361232 DOI: 10.1016/j.neuropharm.2012.01.028] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 01/13/2012] [Accepted: 01/31/2012] [Indexed: 12/19/2022]
Abstract
Idiopathic Parkinson's disease (PD) represents a complex interaction between the inherent vulnerability of the nigrostriatal dopaminergic system, a possible genetic predisposition, and exposure to environmental toxins including inflammatory triggers. Evidence now suggests that chronic neuroinflammation is consistently associated with the pathophysiology of PD. Activation of microglia and increased levels of pro-inflammatory mediators such as TNF-α, IL-1β and IL-6, reactive oxygen species and eicosanoids has been reported after post-mortem analysis of the substantia nigra from PD patients and in animal models of PD. It is hypothesised that chronically activated microglia secrete high levels of pro-inflammatory mediators which damage neurons and further activate microglia, resulting in a feed forward cycle promoting further inflammation and neurodegeneration. Moreover, nigrostriatal dopaminergic neurons are more vulnerable to pro-inflammatory and oxidative mediators than other cell types because of their low intracellular glutathione concentration. Systemic inflammation has also been suggested to contribute to neurodegeneration in PD, as lymphocyte infiltration has been observed in brains of PD patients and in animal models of PD, substantiating the current theory of a fundamental role of inflammation in neurodegeneration. We will examine the current evidence in the literature which offers insight into the premise that both central and systemic inflammation may contribute to neurodegeneration in PD. We will discuss the emerging possibility of the use of diagnostic tools such as imaging technologies for PD patients. Finally, we will present the immunomodulatory therapeutic strategies that are now under investigation and in clinical trials as potential neuroprotective drugs for PD.
Collapse
Affiliation(s)
- Louise M Collins
- Department of Anatomy and Neuroscience, University College Cork, Biosciences Institute, Western Road, Cork, Ireland
| | | | | | | |
Collapse
|
40
|
Glucocorticoids mediate stress-induced priming of microglial pro-inflammatory responses. Brain Behav Immun 2012; 26:337-45. [PMID: 22041296 PMCID: PMC5652300 DOI: 10.1016/j.bbi.2011.10.005] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/05/2011] [Accepted: 10/17/2011] [Indexed: 12/30/2022] Open
Abstract
Acute and chronic stress sensitizes or "primes" the neuroinflammatory response to a subsequent pro-inflammatory challenge. While prior evidence shows that glucocorticoids (GCs) play a pivotal role in stress-induced potentiation of neuroinflammatory responses, it remains unclear whether stress-induced GCs sensitize the response of key CNS immune substrates (i.e. microglia) to pro-inflammatory stimuli. An ex vivo approach was used to address this question. Here, stress-induced GC signaling was manipulated in vivo and hippocampal microglia challenged with the pro-inflammatory stimulus LPS ex vivo. Male Sprague-Dawley rats were either pretreated in vivo with the GC receptor antagonist RU486 or adrenalectomized (ADX). Animals were then exposed to an acute stressor (inescapable tailshock; IS) and 24 h later hippocampal microglia were isolated and challenged with LPS to probe for stress-induced sensitization of pro-inflammatory responses. Prior exposure to IS resulted in a potentiated pro-inflammatory cytokine response (e.g. IL-1β gene expression) to LPS in isolated microglia. Treatment in vivo with RU486 and ADX inhibited or completely blocked this IS-induced sensitization of the microglial pro-inflammatory response. The present results suggest that stress-induced GCs function to sensitize the microglial pro-inflammatory response (IL-1β, IL-6, NFκBIα) to immunologic challenges.
Collapse
|
41
|
Marino F, Cosentino M. Adrenergic modulation of immune cells: an update. Amino Acids 2011; 45:55-71. [PMID: 22160285 DOI: 10.1007/s00726-011-1186-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 11/23/2011] [Indexed: 12/25/2022]
Abstract
Sympathoadrenergic pathways are crucial to the communication between the nervous system and the immune system. The present review addresses emerging issues in the adrenergic modulation of immune cells, including: the specific pattern of adrenoceptor expression on immune cells and their role and changes upon cell differentiation and activation; the production and utilization of noradrenaline and adrenaline by immune cells themselves; the dysregulation of adrenergic immune mechanisms in disease and their potential as novel therapeutic targets. A wide array of sympathoadrenergic therapeutics is currently used for non-immune indications, and could represent an attractive source of non-conventional immunomodulating agents.
Collapse
Affiliation(s)
- Franca Marino
- Department of Clinical Medicine, Section of Experimental and Clinical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100 Varese, VA, Italy
| | | |
Collapse
|
42
|
Abstract
Microglial cells are the resident macrophages in the central nervous system. These cells of mesodermal/mesenchymal origin migrate into all regions of the central nervous system, disseminate through the brain parenchyma, and acquire a specific ramified morphological phenotype termed "resting microglia." Recent studies indicate that even in the normal brain, microglia have highly motile processes by which they scan their territorial domains. By a large number of signaling pathways they can communicate with macroglial cells and neurons and with cells of the immune system. Likewise, microglial cells express receptors classically described for brain-specific communication such as neurotransmitter receptors and those first discovered as immune cell-specific such as for cytokines. Microglial cells are considered the most susceptible sensors of brain pathology. Upon any detection of signs for brain lesions or nervous system dysfunction, microglial cells undergo a complex, multistage activation process that converts them into the "activated microglial cell." This cell form has the capacity to release a large number of substances that can act detrimental or beneficial for the surrounding cells. Activated microglial cells can migrate to the site of injury, proliferate, and phagocytose cells and cellular compartments.
Collapse
|
43
|
Ryan KJ, Griffin ÉW, Connor TJ. Complementary anti-inflammatory actions of the β2-adrenoceptor agonist clenbuterol and the glucocorticoid dexamethasone in rat brain. J Neuroimmunol 2011; 232:209-16. [DOI: 10.1016/j.jneuroim.2010.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 09/14/2010] [Accepted: 10/04/2010] [Indexed: 10/18/2022]
|
44
|
The β2-adrenoceptor agonist clenbuterol elicits neuroprotective, anti-inflammatory and neurotrophic actions in the kainic acid model of excitotoxicity. Brain Behav Immun 2010; 24:1354-61. [PMID: 20599496 DOI: 10.1016/j.bbi.2010.06.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 06/14/2010] [Accepted: 06/27/2010] [Indexed: 11/21/2022] Open
Abstract
Excitotoxicity is a mechanism of neuronal cell death implicated in a range of neurodegenerative conditions. Systemic administration of the excitotoxin kainic acid (KA) induces inflammation and apoptosis in the hippocampus, resulting in neuronal loss. Evidence indicates that stimulation of glial β(2)-adrenoceptors has anti-inflammatory and neurotrophic properties that could result in neuroprotection. Consequently, in this study we examined the effect of the β(2)-adrenoceptor agonist clenbuterol on KA-induced inflammation, neurotrophic factor expression and apoptosis in the hippocampus. Clenbuterol (0.5mg/kg) was administered to rats one hour prior to KA (10mg/kg). Epileptic behaviour induced by KA was assessed for three hours following administration using the Racine scale. Twenty-four hours later TUNEL staining in the CA3 hippocampal subfield and hippocampal caspase-3 activity was assessed to measure KA-induced apoptosis. In addition, expression of inflammatory cytokines (IL-1β and IFN-γ), inducible nitric oxide synthase (iNOS), kynurenine pathway enzymes indolamine 2,3-dioxygenase (IDO) and kynurenine monooxygenase (KMO), the microglial activation marker CD11b, and the neurotrophins BDNF and NGF were quantified in the hippocampus using real-time PCR. Whilst clenbuterol treatment did not significantly alter KA-induced epileptic behavior it ameliorated KA-induced apoptosis, and this neuroprotective effect was accompanied by reduced inflammatory cytokine expression, reduced expression of iNOS, IDO, KMO and CD11b, coupled with increased BDNF and NGF expression in KA-treated rats. In conclusion, the β(2)-adrenoceptor agonist clenbuterol has anti-inflammatory and neurotrophic actions and elicits a neuroprotective effect in the KA model of neurodegeneration.
Collapse
|
45
|
Laukova M, Vargovic P, Krizanova O, Kvetnansky R. Repeated stress down-regulates β(2)- and α (2C)-adrenergic receptors and up-regulates gene expression of IL-6 in the rat spleen. Cell Mol Neurobiol 2010; 30:1077-87. [PMID: 20607388 PMCID: PMC11498878 DOI: 10.1007/s10571-010-9540-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 06/19/2010] [Indexed: 11/25/2022]
Abstract
Catecholamines are among first compounds released during stress, and they regulate many functions of the organism, including immune system, via adrenergic receptors (ARs). Spleen, as an immune organ with high number of macrophages, possesses various ARs, from which β(2)-ARs are considered to be the most important for the modulation of immune functions. Nevertheless, little is known about the regulation and involvement of ARs in the splenic function by stress. Therefore, the aim of this work was to measure the gene expression of ARs and several cytokines in the spleen of rats exposed to a single and repeated (14×) immobilization stress (IMO). We have found a significant increase in β(2)-AR mRNA after a single IMO, but a significant decrease in β(2)-AR mRNA and protein level after repeated (14×) IMO. The most prominent decrease was detected in the gene expression of the α(2A)- and α(2C)-AR after repeated IMO. However, changes in mRNA were translated into protein levels only for the α(2C)-subtype. Other types of ARs remained unchanged during the stress situation. Since we proposed that these ARs might affect production of cytokines, we measured gene expression of pro-inflammatory (TNF-α, IL-1β, IL-6 and IL-18) and anti-inflammatory (IL-10 and TGF-β1) cytokines. We detected changes only in IL-6 and IL-10 mRNA levels. While IL-6 mRNA was increased, IL-10 mRNA dropped after repeated IMO. According to these results we suggest that changes of β(2)- and α(2C)-ARs participate in IL-6-mediated processes in the spleen, especially during chronic stress situations.
Collapse
MESH Headings
- Animals
- Catecholamines/metabolism
- Gene Expression Regulation
- Humans
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Male
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, alpha-2/genetics
- Receptors, Adrenergic, alpha-2/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Spleen/physiology
- Stress, Physiological
- Up-Regulation
Collapse
Affiliation(s)
- Marcela Laukova
- Institute of Experimental Endocrinology, Centre of Excellence CENDO, Slovak Academy of Sciences, Vlarska 3, 83306 Bratislava, Slovakia
| | - Peter Vargovic
- Institute of Experimental Endocrinology, Centre of Excellence CENDO, Slovak Academy of Sciences, Vlarska 3, 83306 Bratislava, Slovakia
| | - Olga Krizanova
- Institute of Molecular Physiology and Genetics, Centre of Excellence for Cardiovascular Research, Slovak Academy of Sciences, Vlarska 5, 83334 Bratislava, Slovakia
| | - Richard Kvetnansky
- Institute of Experimental Endocrinology, Centre of Excellence CENDO, Slovak Academy of Sciences, Vlarska 3, 83306 Bratislava, Slovakia
| |
Collapse
|
46
|
McNamee EN, Griffin ÉW, Ryan KM, Ryan KJ, Heffernan S, Harkin A, Connor TJ. Noradrenaline acting at β-adrenoceptors induces expression of IL-1β and its negative regulators IL-1ra and IL-1RII, and drives an overall anti-inflammatory phenotype in rat cortex. Neuropharmacology 2010; 59:37-48. [DOI: 10.1016/j.neuropharm.2010.03.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/23/2010] [Accepted: 03/24/2010] [Indexed: 10/19/2022]
|
47
|
McNamee EN, Ryan KM, Griffin EW, González-Reyes RE, Ryan KJ, Harkin A, Connor TJ. Noradrenaline acting at central beta-adrenoceptors induces interleukin-10 and suppressor of cytokine signaling-3 expression in rat brain: implications for neurodegeneration. Brain Behav Immun 2010; 24:660-71. [PMID: 20193756 DOI: 10.1016/j.bbi.2010.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 02/21/2010] [Accepted: 02/21/2010] [Indexed: 11/27/2022] Open
Abstract
Evidence indicates that the monoamine neurotransmitter noradrenaline elicits anti-inflammatory actions in the central nervous system (CNS), and consequently may play a neuroprotective role where inflammatory events contribute to CNS pathology. Here we examined the ability of pharmacologically enhancing central noradrenergic tone to induce expression of anti-inflammatory cytokines in rat brain. Administration of the noradrenaline reuptake inhibitor reboxetine (15mg/kg; ip) combined with the alpha(2)-adrenoceptor antagonist idazoxan (1mg/kg; ip) induced interleukin-10 (IL-10) expression in rat cortex and hippocampus. In addition, these drug treatments induced IL-10 signaling as indicated by increased STAT3 phosphorylation and suppressor of cytokine signaling-3 (SOCS-3) mRNA expression. In contrast to the profound increase in IL-10 induced by the reboxetine/idazoxan combination, the other two broad spectrum anti-inflammatory cytokines IL-4 and TGF-beta were not induced by this treatment. The ability of combined treatment with reboxetine and idazoxan to induce IL-10 and SOCS3 expression was mediated by beta-adrenoceptor activation, as their induction was blocked by pre-treatment with the beta-adrenoceptor antagonist propranolol. Moreover, administration of the brain penetrant beta(2)-adrenoceptor agonist clenbuterol induced a time- and dose-dependent increase in central IL-10 and SOCS3 expression, and the ability of clenbuterol to induce IL-10 and SOCS-3 expression was blocked by the centrally acting beta-adrenoceptor antagonist, propranolol, and was mimicked by the highly selective beta(2)-adrenoceptor agonist formoterol. In all, these data indicate that increasing central noradrenergic tone induces IL-10 production and signaling in the CNS, which may protect against neurodegeneration.
Collapse
Affiliation(s)
- Eoin N McNamee
- Neuroimmunology Research Group, Trinity College Institute of Neuroscience, Department of Physiology & School of Medicine, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | | | |
Collapse
|
48
|
Noradrenaline reuptake inhibitors inhibit expression of chemokines IP-10 and RANTES and cell adhesion molecules VCAM-1 and ICAM-1 in the CNS following a systemic inflammatory challenge. J Neuroimmunol 2010; 220:34-42. [PMID: 20061033 DOI: 10.1016/j.jneuroim.2009.12.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 12/12/2009] [Accepted: 12/14/2009] [Indexed: 11/20/2022]
Abstract
Evidence suggests that noradrenaline has a tonic anti-inflammatory action in the central nervous system (CNS) via its ability to inhibit expression of inflammatory mediators from glial cells. Consequently it is suggested that noradrenaline may play an endogenous neuroprotective role in CNS disorders where inflammatory events contribute to pathology. Infiltration of peripheral immune cells into the brain is driven by increased chemokine and cell adhesion molecule (CAM) expression, and is known to exacerbate neuroinflammation and thereby contribute to the disease process in a number of neurodegenerative disease states. Here we demonstrate that treatment of rats with the noradrenaline reuptake inhibitors (NRIs) desipramine and atomoxetine, agents that increase extracellular noradrenaline in the CNS, suppressed chemokine and cell adhesion molecule (CAM) expression in rat brain following a systemic challenge with bacterial lipopolysaccharide (LPS). Specifically, these agents reduced expression of the chemokines, interferon-inducible protein-10 (IP-10, CXCL-10) and regulated upon activation normal T-cell expressed and secreted (RANTES, CCL-5), and the CAMs, vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule (ICAM-1) in cortex and hippocampus. The inhibitory action of NRIs on chemokines and CAM expression was mimicked by in vitro exposure of cultured glial cells to noradrenaline, but not to the NRIs themselves. These data indicate that the suppressive action of NRIs on chemokine and CAM expression that occurs in vivo is due to increased noradrenaline availability at glial cells, as opposed to a direct action of the drugs on glial cells per se. These results support the theory that noradrenaline has anti-inflammatory properties, and agents that increase noradrenaline availability in vivo can play a role in combating brain inflammation by reducing expression of chemokines and CAMs; molecules that facilitate leucocyte influx into the CNS.
Collapse
|