1
|
Petersen EF, Larsen BS, Nielsen RB, Pijpers I, Versweyveld D, Holm R, Tho I, Snoeys J, Nielsen CU. Co-release of paclitaxel and encequidar from amorphous solid dispersions increase oral paclitaxel bioavailability in rats. Int J Pharm 2024; 654:123965. [PMID: 38442796 DOI: 10.1016/j.ijpharm.2024.123965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
The oral bioavailability of paclitaxel is limited due to low solubility and high affinity for the P-glycoprotein (P-gp) efflux transporter. Here we hypothesized that maximizing the intestinal paclitaxel levels through apparent solubility enhancement and controlling thesimultaneous release of both paclitaxel and the P-gp inhibitor encequidar from amorphous solid dispersions (ASDs) would increase the oral bioavailability of paclitaxel. ASDs of paclitaxel and encequidar in polyvinylpyrrolidone K30 (PVP-K30), hydroxypropylmethylcellulose 5 (HPMC-5), and hydroxypropylmethylcellulose 4 K (HPMC-4K) were hence prepared by freeze-drying. In vitro dissolution studies showed that both compounds were released fastest from PVP-K30, then from HPMC-5, and slowest from HPMC-4K ASDs. The dissolution of paclitaxel from all polymers resulted in stable concentration levels above the apparent solubility. The pharmacokinetics of paclitaxel after oral administration to male Sprague-Dawley rats was investigated with or without 1 mg/kg encequidar, as amorphous solids or polymer-based ASDs. The bioavailability of paclitaxel increased 3- to 4-fold when administered as polymer-based ASDs relative to solid amorphous paclitaxel. However, when amorphous paclitaxel was co-administered with encequidar, either as an amorphous powder or as a polymer-based ASD, the bioavailability increased 2- to 4-fold, respectively. Interestingly, a noticeable increase in paclitaxel bioavailability of 24-fold was observed when paclitaxel and encequidar were co-administered as HPMC-5-based ASDs. We, therefore, suggest that controlling the dissolution rate of paclitaxel and encequidar in order to obtain simultaneous and timed release from polymer-based ASDs is a strategy to increase oral paclitaxel bioavailability.
Collapse
Affiliation(s)
- Emilie Fynbo Petersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Bjarke Strøm Larsen
- Department of Pharmacy, University of Oslo, Sem Sælands vei 3, NO-0371 Oslo, Norway
| | - Rasmus Blaaholm Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Ils Pijpers
- Bioanalytical Discovery and Development Sciences, Johnson & Johnson Innovative Medicine, Turnhoutseweg 30, BE-2340 Beerse, Belgium
| | - Dries Versweyveld
- In vivo Sciences, Preclinical Sciences & Translational Safety (PSTS), Johnson & Johnson Innovative Medicine, Turnhoutseweg 30, BE-2340 Beerse, Belgium
| | - René Holm
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Ingunn Tho
- Department of Pharmacy, University of Oslo, Sem Sælands vei 3, NO-0371 Oslo, Norway
| | - Jan Snoeys
- Translational Pharmacokinetics Pharmacodynamics and Investigative Toxicology, Johnson & Johnson Innovative Medicine, Turnhoutseweg 30, BE-2340 Beerse, Belgium
| | - Carsten Uhd Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| |
Collapse
|
2
|
Chu J, Panfen E, Wang L, Marino A, Chen XQ, Fancher RM, Landage R, Patil O, Desai SD, Shah D, Xue Y, Sinz M, Shen H. Evaluation of Encequidar as An Intestinal P-gp and BCRP Specific Inhibitor to Assess the Role of Intestinal P-gp and BCRP in Drug-Drug Interactions. Pharm Res 2023; 40:2567-2584. [PMID: 37523014 DOI: 10.1007/s11095-023-03563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
PURPOSE The differences between intestinal and systemic (hepatic and renal) P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) roles in drug disposition are difficult to define. Accordingly, we characterized Encequidar (ECD) as an intestinal P-gp and BCRP specific inhibitor to evaluate their role in drug disposition. METHODS We assessed the in vitro and in vivo inhibition potential of ECD towards human and animal P-gp and BCRP. RESULTS ECD is a potent inhibitor with a high degree of selectivity in inhibiting human P-gp (hP-gp) over human BCRP (hBCRP) (IC50s of 0.0058 ± 0.0006 vs. > 10 µM, respectively). In contrast, ECD is a potent inhibitor of rat and cynomolgus monkey BCRP (IC50 ranged from 0.059 to 0.18 µM). While the AUC of IV paclitaxel (PTX) was significantly increased by elacridar (ELD) (P < 0.05) but not ECD in rats (15 mg/kg; PO) (2.55- vs. 0.93-fold), that of PO PTX was significantly elevated to a similar extent between the inhibitors (39.5- vs. 33.5-fold). Similarly, the AUC of PO sulfasalazine (SFZ) was dramatically increased by ELD and ECD (16.6- vs. 3.04-fold) although that of IV SFZ was not significantly affected by ELD and ECD in rats (1.18- vs. 1.06-fold). Finally, a comparable ECD-induced increase of the AUC of PO talinolol in cynomolgus monkeys was observed compared with ELD (2.14- vs. 2.12-fold). CONCLUSIONS ECD may allow an in-depth appraisal of the role of intestinal efflux transporter(s) in drug disposition in animals and humans through local intestinal drug interactions.
Collapse
Affiliation(s)
- Jessica Chu
- Departments of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, NJ, 08543, USA
| | - Erika Panfen
- Departments of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, NJ, 08543, USA
| | - Linna Wang
- Nonclinical Disposition & Bioanalysis, Bristol Myers Squibb Research and Development, Princeton, NJ, 08543, USA
| | - Anthony Marino
- Departments of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, NJ, 08543, USA
| | - Xue-Qing Chen
- Discovery Pharmaceutics, Bristol Myers Squibb Research and Development, Princeton, NJ, 08543, USA
| | - R Marcus Fancher
- Departments of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, NJ, 08543, USA
| | - Raviraj Landage
- Pharmaceutical Candidate Optimization, Biocon Bristol Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bommasandra IV Phase, Bangalore, 560099, India
| | - Omprakash Patil
- Pharmaceutical Candidate Optimization, Biocon Bristol Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bommasandra IV Phase, Bangalore, 560099, India
| | - Salil Dileep Desai
- Pharmaceutical Candidate Optimization, Biocon Bristol Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bommasandra IV Phase, Bangalore, 560099, India
| | - Devang Shah
- Departments of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, NJ, 08543, USA
| | - Yongjun Xue
- Nonclinical Disposition & Bioanalysis, Bristol Myers Squibb Research and Development, Princeton, NJ, 08543, USA
| | - Michael Sinz
- Departments of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, NJ, 08543, USA
| | - Hong Shen
- Departments of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, NJ, 08543, USA.
| |
Collapse
|
3
|
Li M, Zheng S, Gong Q, Zhuang H, Wu Z, Wang P, Zhang X, Xu R. An oral triple pill-based cocktail effectively controls acute myeloid leukemia with high translation. Biomed Pharmacother 2023; 167:115584. [PMID: 37778270 DOI: 10.1016/j.biopha.2023.115584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023] Open
Abstract
Acute myeloid leukemia (AML) is a deadly hematological malignancy characterized by oncogenic translational addiction that results in over-proliferation and apoptosis evasion of leukemia cells. Various chemo- and targeted therapies aim to reverse this hallmark, but most show only modest efficacy. Here we report a single oral pill containing a low-dose triple small molecule-based cocktail, a highly active anti-cancer therapy (HAACT) with unique mechanisms that can effectively control AML. The cocktail comprises oncogenic translation inhibitor HHT, drug efflux pump P-gpi ENC and anti-apoptotic protein Bcl-2i VEN. Mechanistically, the cocktail can potently kill both leukemia stem cells (LSC) and bulk leukemic cells via co-targeting oncogenic translation, apoptosis machinery, and drug efflux pump, resulting in deep and durable remissions of AML in diverse model systems. We also identified EphB4/Bcl-xL as the cocktail response biomarkers. Collectively, our studies provide proof that a single pill containing a triple combination cocktail might be a promising avenue for AML therapy.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Hematology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Shuwen Zheng
- Department of Hematology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Qinyuan Gong
- Department of Hematology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Haifeng Zhuang
- Department of Clinical Hematology and Transfusion, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Zhaoxing Wu
- Department of Hematology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ping Wang
- Department of Hematology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xuzhao Zhang
- Department of Hematology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Rongzhen Xu
- Department of Hematology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Institute of Hematology, Zhejiang University, Hangzhou 310009, China.
| |
Collapse
|
4
|
Dai MS, Chao TC, Chiu CF, Lu YS, Shiah HS, Jackson CGCA, Hung N, Zhi J, Cutler DL, Kwan R, Kramer D, Chan WK, Qin A, Tseng KC, Hung CT, Chao TY. Oral paclitaxel and encequidar in patients with breast cancer: a pharmacokinetic, safety, and antitumor activity study. Ther Adv Med Oncol 2023; 15:17588359231183680. [PMID: 37492633 PMCID: PMC10363869 DOI: 10.1177/17588359231183680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/31/2023] [Indexed: 07/27/2023] Open
Abstract
Background Paclitaxel is widely used for the treatment of metastatic breast cancer (MBC). However, it has a low oral bioavailability due to gut extrusion caused by P-glycoprotein (P-gp). Oral paclitaxel (oPAC) may be more convenient, less resource-intensive, and more tolerable than its intravenous form. Encequidar (E) is a first-in-class, minimally absorbed, gut-specific oral P-gp inhibitor that facilitates the oral absorption of paclitaxel. Objectives To investigate the pharmacokinetics (PK), overall response rate (ORR), and safety of weekly oral paclitaxel with encequidar (oPAC + E) in patients with advanced breast cancer. Design This is a multicenter, single-arm, open-label study in six medical centers in Taiwan. Methods Patients with advanced breast cancer were administered 205 mg/m2 oPAC and 12.9 mg E for 3 consecutive days weekly for up to 16 weeks. Plasma samples were collected at weeks 1 and 4. PK, ORR, and safety were evaluated. Results In all, 28 patients were enrolled; 27 had MBC; 23 had prior chemotherapy; and 14 had ⩾2 lines of prior chemotherapy. PK were evaluable in 25 patients. Plasma paclitaxel area under the curve (AUC)(0-52 h) at week 1 (3419 ± 1475 ng h/ml) and week 4 (3224 ± 1150 ng h/ml) were equivalent. Best overall response in 28 evaluable patients was partial response (PR) in 11 (39.3%), 13 (46.4%) stable disease (SD), and 1 (3.6%) with progressive disease (PD). No patient achieved complete response (CR). The clinical benefit rate (CR + PR + SD) was 85.7%. Major adverse events among the 28 treated patients were grade 3 neutropenia (25%), grade 4 neutropenia (18%), with febrile neutropenia in 4%, and grade 3 diarrhea (4%). No treatment-related deaths occurred. Grade 2 peripheral neuropathy occurred in 1 (4%) patient and grade 3 peripheral neuropathy in 1 (4%) patient. Conclusions oPAC + E produced a consistent therapeutic plasma paclitaxel exposure during treatment. There was a high rate of radiologically assessed clinical benefit, and a low rate of neurotoxicity which may provide advantages over IV paclitaxel. Registration ClinicalTrials.gov Identifier: NCT03165955.
Collapse
Affiliation(s)
- Ming-Shen Dai
- Division of Hematology/Oncology, Tri-Service General Hospital, Taipei
| | - Ta-Chung Chao
- Division of Medical Oncology, Taipei Veterans General Hospital, Beitou District, Taipei
| | - Chang-Fang Chiu
- Department of Medical Oncology, China Medical University Hospital, Taichung
| | - Yen-Shen Lu
- Department of Medical Oncology, National Taiwan University Hospital, Taipei
| | - Her-Shyong Shiah
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei
| | | | - Noelyn Hung
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | | | | | | - Tsu-Yi Chao
- Director, Cancer Center, Attending Physician, Division of Hematology-Oncology, Taipei Medical University-Shuang Ho Hospital, No. 291, Zhongzheng Road, Zhonghe District, New Taipei City 23561
- Division of Hematology/Oncology, Tri-Service General Hospital, Taipei
| |
Collapse
|
5
|
Marie S, Frost KL, Hau RK, Martinez-Guerrero L, Izu JM, Myers CM, Wright SH, Cherrington NJ. Predicting disruptions to drug pharmacokinetics and the risk of adverse drug reactions in non-alcoholic steatohepatitis patients. Acta Pharm Sin B 2023; 13:1-28. [PMID: 36815037 PMCID: PMC9939324 DOI: 10.1016/j.apsb.2022.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/18/2022] Open
Abstract
The liver plays a central role in the pharmacokinetics of drugs through drug metabolizing enzymes and transporters. Non-alcoholic steatohepatitis (NASH) causes disease-specific alterations to the absorption, distribution, metabolism, and excretion (ADME) processes, including a decrease in protein expression of basolateral uptake transporters, an increase in efflux transporters, and modifications to enzyme activity. This can result in increased drug exposure and adverse drug reactions (ADRs). Our goal was to predict drugs that pose increased risks for ADRs in NASH patients. Bibliographic research identified 71 drugs with reported ADRs in patients with liver disease, mainly non-alcoholic fatty liver disease (NAFLD), 54 of which are known substrates of transporters and/or metabolizing enzymes. Since NASH is the progressive form of NAFLD but is most frequently undiagnosed, we identified other drugs at risk based on NASH-specific alterations to ADME processes. Here, we present another list of 71 drugs at risk of pharmacokinetic disruption in NASH, based on their transport and/or metabolism processes. It encompasses drugs from various pharmacological classes for which ADRs may occur when used in NASH patients, especially when eliminated through multiple pathways altered by the disease. Therefore, these results may inform clinicians regarding the selection of drugs for use in NASH patients.
Collapse
Affiliation(s)
- Solène Marie
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Kayla L. Frost
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Raymond K. Hau
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Lucy Martinez-Guerrero
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Jailyn M. Izu
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Cassandra M. Myers
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Stephen H. Wright
- College of Medicine, Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Nathan J. Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA,Corresponding author. Tel.: +1 520 6260219; fax: +1 520 6266944.
| |
Collapse
|
6
|
Kan JWY, Yan CSW, Wong ILK, Su X, Liu Z, Chan TH, Chow LMC. Discovery of a Flavonoid FM04 as a Potent Inhibitor to Reverse P-Glycoprotein-Mediated Drug Resistance in Xenografts and Improve Oral Bioavailability of Paclitaxel. Int J Mol Sci 2022; 23:ijms232315299. [PMID: 36499627 PMCID: PMC9739180 DOI: 10.3390/ijms232315299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Biotransformation of flavonoid dimer FD18 resulted in an active metabolite FM04. It was more druggable because of its improved physicochemical properties. FM04 (EC50 = 83 nM) was 1.8-fold more potent than FD18 in reversing P-glycoprotein (P-gp)-mediated paclitaxel (PTX) resistance in vitro. Similar to FD18, FM04 chemosensitized LCC6MDR cells towards multiple anticancer drugs by inhibiting the transport activity of P-gp and restoring intracellular drug levels. It stimulated the P-gp ATPase by 3.3-fold at 100 μM. Different from FD18, FM04 itself was not a transport substrate of P-gp and presumably, it cannot work as a competitive inhibitor. In the human melanoma MDA435/LCC6MDR xenograft, the co-administration of FM04 (28 mg/kg, I.P.) with PTX (12 mg/kg, I.V.) directly modulated P-gp-mediated PTX resistance and caused a 56% (*, p < 0.05) reduction in tumor volume without toxicity or animal death. When FM04 was administered orally at 45 mg/kg as a dual inhibitor of P-gp/CYP2C8 or 3A4 enzymes in the intestine, it increased the intestinal absorption of PTX from 0.2% to 14% in mice and caused about 57- to 66-fold improvement of AUC as compared to a single oral dose of PTX. Oral co-administration of FM04 (45 mg/kg) with PTX (40, 60 or 70 mg/kg) suppressed the human melanoma MDA435/LCC6 tumor growth with at least a 73% (***, p < 0.001) reduction in tumor volume without serious toxicity. Therefore, FM04 can be developed into a novel combination chemotherapy to treat cancer by directly targeting the P-gp overexpressed tumors or potentiating the oral bioavailability of P-gp substrate drugs.
Collapse
Affiliation(s)
- Jason W. Y. Kan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Clare S. W. Yan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Iris L. K. Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiaochun Su
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Zhen Liu
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tak Hang Chan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR, China
- Department of Chemistry, McGill University, Montreal, QC H3A 2K6, Canada
- Correspondence: (T.H.C.); (L.M.C.C.); Tel.: +(852)-34008670 (T.H.C.); +(852)-34008662 (L.M.C.C.); Fax: +(852)-23649932 (T.H.C. & L.M.C.C.)
| | - Larry M. C. Chow
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR, China
- Correspondence: (T.H.C.); (L.M.C.C.); Tel.: +(852)-34008670 (T.H.C.); +(852)-34008662 (L.M.C.C.); Fax: +(852)-23649932 (T.H.C. & L.M.C.C.)
| |
Collapse
|
7
|
Teodori E, Braconi L, Manetti D, Romanelli MN, Dei S. The Tetrahydroisoquinoline Scaffold in ABC Transporter Inhibitors that Act as Multidrug Resistance (MDR) Reversers. Curr Top Med Chem 2022; 22:2535-2569. [PMID: 36284399 DOI: 10.2174/1568026623666221025111528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/08/2022] [Accepted: 09/27/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND The failure of anticancer chemotherapy is often due to the development of resistance to a variety of anticancer drugs. This phenomenon is called multidrug resistance (MDR) and is related to the overexpression of ABC transporters, such as P-glycoprotein, multidrug resistance- associated protein 1 and breast cancer resistance protein. Over the past few decades, several ABC protein modulators have been discovered and studied as a possible approach to evade MDR and increase the success of anticancer chemotherapy. Nevertheless, the co-administration of pump inhibitors with cytotoxic drugs, which are substrates of the transporters, does not appear to be associated with an improvement in the therapeutic efficacy of antitumor agents. However, more recently discovered MDR reversing agents, such as the two tetrahydroisoquinoline derivatives tariquidar and elacridar, are characterized by high affinity towards the ABC proteins and by reduced negative properties. Consequently, many analogs of these two derivatives have been synthesized, with the aim of optimizing their MDR reversal properties. OBJECTIVE This review aims to describe the MDR modulators carrying the tetraidroisoquinoline scaffold reported in the literature in the period 2009-2021, highlighting the structural characteristics that confer potency and/or selectivity towards the three ABC transport proteins. RESULTS AND CONCLUSION Many compounds have been synthesized in the last twelve years showing interesting properties, both in terms of potency and selectivity. Although clear structure-activity relationships can be drawn only by considering strictly related compounds, some of the compounds reviewed could be promising starting points for the design of new ABC protein inhibitors.
Collapse
Affiliation(s)
- Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino (FI), Italy
| | - Laura Braconi
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino (FI), Italy
| | - Dina Manetti
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino (FI), Italy
| | - Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino (FI), Italy
| | - Silvia Dei
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino (FI), Italy
| |
Collapse
|
8
|
Zhang H, Bian S, Xu Z, Gao M, Wang H, Zhang J, Zhang M, Ke Y, Wang W, Chen ZS, Xu H. The effect and mechanistic study of encequidar on reversing the resistance of SW620/AD300 cells to doxorubicin. Biochem Pharmacol 2022; 205:115258. [PMID: 36179932 DOI: 10.1016/j.bcp.2022.115258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022]
Abstract
Encequidar, a gut-specific P-glycoprotein (P-gp) inhibitor, makes oral paclitaxel possible, and has been used in clinical treatment of metastatic breast cancer, however, its pharmacological effect and mechanism of reversal of drug resistance in drug-resistant colon cancer cells SW620/AD300 are still unknown. Herein, we first synthesized encequidar and demonstrated that it could inhibit the transport activity of P-gp, reduced doxorubicin (DOX) efflux, enhanced DOX cytotoxicity and promoted tumor-apoptosis in SW620/AD300 cells. Metabolomic analysis of cell samples was performedusing liquid chromatography Q-Exactive mass spectrometer, the results of metabolite enrichment analysis and pathway analysis showed that the combination of encequidar and DOX could: i) significantly affect the citric acid cycle (TCA cycle) and reduce the energy supply required for P-gp to exert its transport activity; ii) affect the metabolism of glutathione, which is the main component of the anti-oxidative stress system, and reduce the ability of cells to resist oxidative stress; iii) increase the intracellular reactive oxygen species (ROS) production and enhance ROS-induced cell damage and lipid peroxidation, which in turn restore the sensitivity of drug-resistant cells to DOX. In conclusion, these results provide sufficient data support for the therapeutical application of the P-gp inhibitor encequidar to reverse MDR, and are of great significance to further understand the therapeutic advantages of encequidar in anti-tumor therapy and guide clinical rational drug use.
Collapse
Affiliation(s)
- Hang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shaopan Bian
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhihao Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ming Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Han Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Junwei Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Mingkun Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yu Ke
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Weijia Wang
- Department of International Medical Services (IMS), Beijing Tiantan Hospital of Capital Medical University, Beijing, 100070, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York, USA.
| | - Haiwei Xu
- Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
9
|
Martins V, Fazal L, Oganesian A, Shah A, Stow J, Walton H, Wilsher N. A commentary on the use of pharmacoenhancers in the pharmaceutical industry and the implication for DMPK drug discovery strategies. Xenobiotica 2022; 52:786-796. [PMID: 36537234 DOI: 10.1080/00498254.2022.2130838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Paxlovid, a drug combining nirmatrelvir and ritonavir, was designed for the treatment of COVID-19 and its rapid development has led to emergency use approval by the FDA to reduce the impact of COVID-19 infection on patients.In order to overcome potentially suboptimal therapeutic exposures, nirmatrelvir is dosed in combination with ritonavir to boost the pharmacokinetics of the active product.Here we consider examples of drugs co-administered with pharmacoenhancers.Pharmacoenhancers have been adopted for multiple purposes such as ensuring therapeutic exposure of the active product, reducing formation of toxic metabolites, changing the route of administration, and increasing the cost-effectiveness of a therapy.We weigh the benefits and risks of this approach, examining the impact of technology developments on drug design and how enhanced integration between cross-discipline teams can improve the outcome of drug discovery.
Collapse
|
10
|
Updated chemical scaffolds of ABCG2 inhibitors and their structure-inhibition relationships for future development. Eur J Med Chem 2022; 241:114628. [DOI: 10.1016/j.ejmech.2022.114628] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 11/19/2022]
|
11
|
A phase Ib study of Oraxol (oral paclitaxel and encequidar) in patients with advanced malignancies. Cancer Chemother Pharmacol 2022; 90:7-17. [PMID: 35731258 DOI: 10.1007/s00280-022-04443-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Oraxol is an oral formulation of paclitaxel administered with a novel, minimally absorbed P-glycoprotein inhibitor encequidar (HM30181A). This phase Ib study was conducted to determine the maximum-tolerated dose (MTD) of Oraxol administered at a fixed dose for up to 5 consecutive days in patients with advanced malignancies. METHODS Part 1 of this study utilized a 3 + 3 dose-escalation design to determine the MTD of oral paclitaxel 270 mg plus oral encequidar 15 mg administered daily. Dose escalation was achieved by increasing the number of consecutive dosing days per week (from 2 to 5 days per week). Dosing occurred for 3 consecutive weeks out of a 4-week cycle. Part 2 treated additional patients at the MTD to determine tolerability and recommended phase II dose (RP2D). Adverse events, tumor responses, and pharmacokinetic profiles were assessed. RESULTS A total of 34 patients (n = 24 in Part 1, n = 10 in Part 2) received treatment. The MTD of Oraxol was determined to be 270 mg daily × 5 days per week per protocol definition and this was declared the RP2D. The most common treatment-related adverse events were fatigue, neutropenia, and nausea/vomiting. Hypersensitivity-type reactions were not observed. Of the 28 patients evaluable for response, 2 (7.1%) achieved partial response and 18 (64.3%) achieved stable disease. Pharmacokinetic analysis showed rapid absorption of paclitaxel when administered orally following encequidar. Paclitaxel daily exposure was comparable following 2-5 days dose levels. CONCLUSION The oral administration of encequidar with paclitaxel was safe, achieved clinically relevant paclitaxel levels, and showed evidence of anti-tumor activity.
Collapse
|
12
|
Exploration of novel phthalazinone derivatives as potential efflux transporter inhibitors for reversing multidrug resistance and improving the oral absorption of paclitaxel. Eur J Med Chem 2022; 233:114231. [PMID: 35247755 DOI: 10.1016/j.ejmech.2022.114231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/23/2022]
Abstract
Chemotherapy is an important means of cancer treatment. However, overexpression of efflux transporters (including but not limited to P-gp and BCRP) can lead to resistance to cancer chemotherapy. Multiple-target inhibitors of efflux transporter can be overcome the resistance and improve the oral bioavailability of chemotherapy drugs. Therefore, we designed and synthesized a series of phthalazinone ring derivatives (1-20) with different aromatic heterocycles substituents on the amide bond for dual inhibition of P-gp and BCRP. Most target compounds significantly increased the accumulation of P-gp substrates in the chemo-resistant cancer cell lines by inhibiting the efflux of transporters. Compound 19 in particular showed stronger MDR reversal compared to Gefitinib and Verapamil, and comparable to that of the BCRP inhibitor Ko143. In addition, compound 19 improved intestinal absorption of paclitaxel (PTX) and enhanced the bioavailability of the orally administered drug in vivo.
Collapse
|
13
|
Urgaonkar S, Nosol K, Said AM, Nasief NN, Bu Y, Locher KP, Lau JYN, Smolinski MP. Discovery and Characterization of Potent Dual P-Glycoprotein and CYP3A4 Inhibitors: Design, Synthesis, Cryo-EM Analysis, and Biological Evaluations. J Med Chem 2021; 65:191-216. [PMID: 34928144 DOI: 10.1021/acs.jmedchem.1c01272] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Targeted concurrent inhibition of intestinal drug efflux transporter P-glycoprotein (P-gp) and drug metabolizing enzyme cytochrome P450 3A4 (CYP3A4) is a promising approach to improve oral bioavailability of their common substrates such as docetaxel, while avoiding side effects arising from their pan inhibitions. Herein, we report the discovery and characterization of potent small molecule inhibitors of P-gp and CYP3A4 with encequidar (minimally absorbed P-gp inhibitor) as a starting point for optimization. To aid in the design of these dual inhibitors, we solved the high-resolution cryo-EM structure of encequidar bound to human P-gp. The structure guided us to prudently decorate the encequidar scaffold with CYP3A4 pharmacophores, leading to the identification of several analogues with dual potency against P-gp and CYP3A4. In vivo, dual P-gp and CYP3A4 inhibitor 3a improved the oral absorption of docetaxel by 3-fold as compared to vehicle, while 3a itself remained poorly absorbed.
Collapse
Affiliation(s)
- Sameer Urgaonkar
- Athenex Inc., Conventus Building, Buffalo, New York 14203, United States
| | - Kamil Nosol
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Ahmed M Said
- Athenex Inc., Conventus Building, Buffalo, New York 14203, United States
| | - Nader N Nasief
- Athenex Inc., Conventus Building, Buffalo, New York 14203, United States
| | - Yahao Bu
- Athenex Inc., Conventus Building, Buffalo, New York 14203, United States
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Johnson Y N Lau
- Athenex Inc., Conventus Building, Buffalo, New York 14203, United States
| | | |
Collapse
|
14
|
Nielsen RB, Holm R, Pijpers I, Snoeys J, Nielsen UG, Nielsen CU. Oral etoposide and zosuquidar bioavailability in rats: Effect of co-administration and in vitro-in vivo correlation of P-glycoprotein inhibition. Int J Pharm X 2021; 3:100089. [PMID: 34977557 PMCID: PMC8683663 DOI: 10.1016/j.ijpx.2021.100089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/03/2021] [Indexed: 11/01/2022] Open
Abstract
P-glycoprotein inhibitors, like zosuquidar, have widely been used to study the role of P-glycoprotein in oral absorption. Still, systematic studies on the inhibitor dose-response relationship on intestinal drug permeation are lacking. In the present study, we investigated the effect of 0.79 nM-2.5 μM zosuquidar on etoposide permeability across Caco-2 cell monolayers. We also investigated etoposide pharmacokinetics after oral or IV administration to Sprague Dawley rats with co-administration of 0.063–63 mg/kg zosuquidar, as well as the pharmacokinetics of zosuquidar itself. Oral zosuquidar bioavailability was 2.6–4.2%, while oral etoposide bioavailability was 5.5 ± 0.9%, which increased with increasing zosuquidar doses to 35 ± 5%. The intestinal zosuquidar concentration required to induce a half-maximal increase in bioavailability was estimated to 180 μM. In contrast, the IC50 of zosuquidar on etoposide permeability in vitro was only 5–10 nM, and a substantial in vitro-in vivo discrepancy of at least four orders of magnitude was thereby identified. Overall, the present study provides valuable insights for future formulation development that applies fixed dose combinations of P-glycoprotein inhibitors to increase the absorption of poorly permeable P-glycoprotein substrate drugs.
Collapse
|
15
|
Pharmaceutical Formulations with P-Glycoprotein Inhibitory Effect as Promising Approaches for Enhancing Oral Drug Absorption and Bioavailability. Pharmaceutics 2021; 13:pharmaceutics13071103. [PMID: 34371794 PMCID: PMC8309061 DOI: 10.3390/pharmaceutics13071103] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 02/08/2023] Open
Abstract
P-glycoprotein (P-gp) is crucial in the active transport of various substrates with diverse structures out of cells, resulting in poor intestinal permeation and limited bioavailability following oral administration. P-gp inhibitors, including small molecule drugs, natural constituents, and pharmaceutically inert excipients, have been exploited to overcome P-gp efflux and enhance the oral absorption and bioavailability of many P-gp substrates. The co-administration of small molecule P-gp inhibitors with P-gp substrates can result in drug–drug interactions and increased side effects due to the pharmacological activity of these molecules. On the other hand, pharmaceutically inert excipients, including polymers, surfactants, and lipid-based excipients, are safe, pharmaceutically acceptable, and are not absorbed from the gut. Notably, they can be incorporated in pharmaceutical formulations to enhance drug solubility, absorption, and bioavailability due to the formulation itself and the P-gp inhibitory effects of the excipients. Different formulations with inherent P-gp inhibitory activity have been developed. These include micelles, emulsions, liposomes, solid lipid nanoparticles, polymeric nanoparticles, microspheres, dendrimers, and solid dispersions. They can bypass P-gp by different mechanisms related to their properties. In this review, we briefly introduce P-gp and P-gp inhibitors, and we extensively summarize the current development of oral drug delivery systems that can bypass and inhibit P-gp to improve the oral absorption and bioavailability of P-gp substrates. Since many drugs are limited by P-gp-mediated efflux, this review is helpful for designing suitable formulations of P-gp substrates to enhance their oral absorption and bioavailability.
Collapse
|
16
|
Smolinski MP, Urgaonkar S, Pitzonka L, Cutler M, Lee G, Suh KH, Lau JYN. Discovery of Encequidar, First-in-Class Intestine Specific P-glycoprotein Inhibitor. J Med Chem 2021; 64:3677-3693. [PMID: 33729781 DOI: 10.1021/acs.jmedchem.0c01826] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Many chemotherapeutics, such as paclitaxel, are administered intravenously as they suffer from poor oral bioavailability, partly because of efflux mechanism of P-glycoprotein in the intestinal epithelium. To date, no drug has been approved by the U.S. Food and Drug Administration (FDA) that selectively blocks this efflux pump. We sought to identify a compound that selectively inhibits P-glycoprotein in the gastrointestinal mucosa with poor oral bioavailability, thus eliminating the issues such as bone marrow toxicity associated with systemic inhibition of P-glycoprotein. Here, we describe the discovery of highly potent, selective, and poorly orally bioavailable P-glycoprotein inhibitor 14 (encequidar). Clinically, encequidar was found to be well tolerated and minimally absorbed; and importantly, it enabled the oral delivery of paclitaxel.
Collapse
Affiliation(s)
- Michael P Smolinski
- Athenex Inc., Conventus Building, 1001 Main Street, Suite 600, Buffalo, New York 14203, United States
| | - Sameer Urgaonkar
- Athenex Inc., Conventus Building, 1001 Main Street, Suite 600, Buffalo, New York 14203, United States
| | - Laura Pitzonka
- Athenex Inc., Conventus Building, 1001 Main Street, Suite 600, Buffalo, New York 14203, United States
| | - Murray Cutler
- Athenex Inc., Conventus Building, 1001 Main Street, Suite 600, Buffalo, New York 14203, United States
| | - GwanSun Lee
- Hanmi Pharmaceutical Co. Ltd., 14, Wiryeseong-daero, Songpa-gu, Seoul, 05545, Korea
| | - Kwee Hyun Suh
- Hanmi Pharmaceutical Co. Ltd., 14, Wiryeseong-daero, Songpa-gu, Seoul, 05545, Korea
| | - Johnson Y N Lau
- Athenex Inc., Conventus Building, 1001 Main Street, Suite 600, Buffalo, New York 14203, United States
| |
Collapse
|
17
|
Ghadi M, Hosseinimehr SJ, Amiri FT, Mardanshahi A, Noaparast Z. Itraconazole synergistically increases therapeutic effect of paclitaxel and 99mTc-MIBI accumulation, as a probe of P-gp activity, in HT-29 tumor-bearing nude mice. Eur J Pharmacol 2021; 895:173892. [PMID: 33497608 DOI: 10.1016/j.ejphar.2021.173892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022]
Abstract
P-glycoprotein (P-gp), is an important efflux pump involved in chemotherapy resistance in human colon cancer. We investigated the efficacy of itraconazole as a P-gp inhibitor and its therapeutic synergistic relationship to paclitaxel through 99mTc-MIBI accumulation in HT-29 tumor-bearing nude mice. Histopathological screening along with in vitro experiments was done for further assessment. Itraconazole successfully inhibited P-gp mediated 99mTc-MIBI efflux, increasing its in vitro accumulation in itraconazole-receiving dishes. Notably, the co-administration of itraconazole with paclitaxel significantly enhanced the in vitro cytotoxicity effect of paclitaxel in itraconazole + paclitaxel wells containing HT-29 cells. Compared to the control, tumor volume in mice treated with itraconazole, paclitaxel and itraconazole +paclitaxel showed growth suppression approximately by 36.21, 60.02, and 73.3% respectively. And compared to paclitaxel group, the nude mice co-treated with paclitaxel and itraconazole showed suppression of tumor growth by about 33.31 % at the end of the treatment period. Also the biodistribution result showed that the co-administration of itraconazole with paclitaxel raised the mean tumor radioactivity accumulation compared to control and paclitaxel group. When given paclitaxel alone, the ID% of hepatic and cardiac tissue was reduced while co-administration of itraconazole with paclitaxel increased 99mTc-MIBI accumulation in these organs. Furthermore, the histopathological findings confirmed the biodistribution results. These results demonstrate that although monotherapy with itraconazole or paclitaxel has anti-tumor activity against HT-29 human colorectal cancer, a synergistic anti-tumor activity can be achieved when itraconazole is co-administered with paclitaxel. Also, 99mTc-MIBI is an effective radiotracer for monitoring response to treatment in MDR tumors.
Collapse
Affiliation(s)
- Mahdi Ghadi
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Mardanshahi
- Department of Radiology, Faculty of Medicine, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zohreh Noaparast
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
18
|
Hertz DL. Exploring pharmacogenetics of paclitaxel- and docetaxel-induced peripheral neuropathy by evaluating the direct pharmacogenetic-pharmacokinetic and pharmacokinetic-neuropathy relationships. Expert Opin Drug Metab Toxicol 2021; 17:227-239. [PMID: 33401943 DOI: 10.1080/17425255.2021.1856367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Peripheral neuropathy (PN) is an adverse effect of several classes of chemotherapy including the taxanes. Predictive PN biomarkers could inform individualized taxane treatment to reduce PN and enhance therapeutic outcomes. Pharmacogenetics studies of taxane-induced PN have focused on genes involved in pharmacokinetics, including enzymes and transporters. Contradictory findings from these studies prevent translation of genetic biomarkers into clinical practice. Areas covered: This review discusses the progress toward identifying pharmacogenetic predictors of PN by assessing the evidence for two independent associations; the effect of pharmacogenetics on taxane pharmacokinetics and the evidence that taxane pharmacokinetics affects PN. Assessing these direct relationships allows the reader to understand the progress toward individualized taxane treatment and future research opportunities. Expert opinion: Paclitaxel pharmacokinetics is a major determinant of PN. Additional clinical trials are needed to confirm the clinical benefit of individualized dosing to achieve target paclitaxel exposure. Genetics does not meaningfully contribute to paclitaxel pharmacokinetics and may not be useful to inform dosing. However, genetics may contribute to PN sensitivity and could be useful for estimating patients' optimal paclitaxel exposure. For docetaxel, genetics has not been demonstrated to have a meaningful effect on pharmacokinetics and there is no evidence that pharmacokinetics determines PN.
Collapse
Affiliation(s)
- Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy , Ann Arbor, MI, United States
| |
Collapse
|
19
|
Zeng W, Kwan Law BY, Wai Wong VK, Bik Chan DS, Fai Mok SW, Ying Gao JJ, Yan Ho RK, Liang X, Li JH, Lee MT, Yoon WL, Smolinski MP, Nam Lau JY, Kei Lam CW, Fok M. HM30181A, a potent P-glycoprotein inhibitor, potentiates the absorption and in vivo antitumor efficacy of paclitaxel in an orthotopic brain tumor model. Cancer Biol Med 2020; 17:986-1001. [PMID: 33299648 PMCID: PMC7721091 DOI: 10.20892/j.issn.2095-3941.2020.0128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Objective: Delivery of chemotherapeutic drugs to the brain has remained a major obstacle in the treatment of glioma, owing to the presence of the blood-brain barrier and the activity of P-gp, which pumps its substrate back into the systemic circulation. The aim of the present study was to develop an intravenous formulation of HM30181A (HM) to inhibit P-gp in the brain to effectively deliver paclitaxel (PTX) for the treatment of malignant glioma. Methods: Two formulations of solubilized HM were designed on the basis of different solid dispersion strategies: i) spray-drying [polyvinlypyrrolidone (PVP)-HM] and ii) solvent evaporation [HP-β-cyclodextrin (cyclodextrin)-HM]. The P-gp inhibition of these 2 formulations was assessed on the basis of rhodamine 123 uptake in cancer cells. Blood and brain pharmacokinetic parameters were also determined, and the antitumor effect of cyclodextrin-HM with PTX was evaluated in an orthotopic glioma xenograft mouse model. Results: Although both PVP-HM and cyclodextrin-HM formulations showed promising P-gp inhibition activity in vitro, cyclodextrin-HM had a higher maximum tolerated dose in mice than did PVP-HM. Pharmacokinetic study of cyclodextrin-HM revealed a plasma concentration plateau at 20 mg/kg, and the mice began to lose weight at doses above this level. Cyclodextrin-HM (10 mg/kg) administered with PTX at 10 mg/kg showed optimal antitumor activity in a mouse model, according to both tumor volume measurement and survival time (P < 0.05). Conclusions: In a mouse orthotopic brain tumor model, the intravenous co-administration of cyclodextrin-HM with PTX showed potent antitumor effects and therefore may have potential for glioma therapy in humans.
Collapse
Affiliation(s)
- Wu Zeng
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | | | - Simon Wing Fai Mok
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China.,Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Joyce Jia Ying Gao
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Rebecca Ka Yan Ho
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Xu Liang
- Athenex Hong Kong Innovative Limited, Hong Kong, China
| | - Jia Hao Li
- Athenex Hong Kong Innovative Limited, Hong Kong, China
| | | | - Weng Li Yoon
- Athenex Hong Kong Innovative Limited, Hong Kong, China
| | | | | | | | - Manson Fok
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
20
|
Keefer C, Chang G, Carlo A, Novak JJ, Banker M, Carey J, Cianfrogna J, Eng H, Jagla C, Johnson N, Jones R, Jordan S, Lazzaro S, Liu J, Scott Obach R, Riccardi K, Tess D, Umland J, Racich J, Varma M, Visswanathan R, Di L. Mechanistic insights on clearance and inhibition discordance between liver microsomes and hepatocytes when clearance in liver microsomes is higher than in hepatocytes. Eur J Pharm Sci 2020; 155:105541. [DOI: 10.1016/j.ejps.2020.105541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/18/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023]
|
21
|
Guieu B, Jourdan JP, Dreneau A, Willand N, Rochais C, Dallemagne P. Desirable drug-drug interactions or when a matter of concern becomes a renewed therapeutic strategy. Drug Discov Today 2020; 26:315-328. [PMID: 33253919 DOI: 10.1016/j.drudis.2020.11.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/14/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
Drug-drug interactions are sometimes considered to be detrimental and responsible for adverse effects. In some cases, however, some are stakeholders of the efficiency of the treatment and this combinatorial strategy is exploited by some drug associations, including levodopa (L-Dopa) and dopadecarboxylase inhibitors, β-lactam antibiotics and clavulanic acid, 5-fluorouracil (5-FU) and folinic acid, and penicillin and probenecid. More recently, some drug-drug combinations have been integrated in modern drug design strategies, aiming to enhance the efficiency of already marketed drugs with new compounds acting not only as synergistic associations, but also as real boosters of activity. In this review, we provide an update of examples of such strategies, with a special focus on microbiology and oncology.
Collapse
Affiliation(s)
- Benjamin Guieu
- Normandie University, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Jean-Pierre Jourdan
- Normandie University, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France; Department of Pharmacy, Caen University Hospital, Caen, F-14000, France
| | - Aurore Dreneau
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Nicolas Willand
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Christophe Rochais
- Normandie University, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Patrick Dallemagne
- Normandie University, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France.
| |
Collapse
|
22
|
Dhiman N, Kaur K, Jaitak V. Tetrazoles as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies. Bioorg Med Chem 2020; 28:115599. [PMID: 32631569 DOI: 10.1016/j.bmc.2020.115599] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022]
Abstract
Cancer is a leading cause of death worldwide. Even after the availability of numerous drugs and treatments in the market, scientists and researchers are focusing on new therapies because of their resistance and toxicity issues. The newly synthesized drug candidates are able to demonstrate in vitro activity but are unable to reach clinical trials due to their rapid metabolism and low bioavailability. Therefore there is an imperative requisite to expand novel anticancer negotiators with tremendous activity as well as in vivo efficacy. Tetrazole is a promising pharmacophore which is metabolically more stable and acts as a bioisosteric analogue for many functional groups. Tetrazole fragment is often castoff with other pharmacophores in the expansion of novel anticancer drugs. This is the first systematic review that emphasizes on contemporary strategies used for the inclusion of tetrazole moiety, mechanistic targets along with comprehensive structural activity relationship studies to provide perspective into the rational design of high-efficiency tetrazole-based anticancer drug candidates.
Collapse
Affiliation(s)
- Neha Dhiman
- Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151 001, India
| | - Kamalpreet Kaur
- Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151 001, India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151 001, India.
| |
Collapse
|
23
|
Ma N, Zhang ZM, Lee JS, Cheng K, Lin L, Zhang DM, Hao P, Ding K, Ye WC, Li Z. Affinity-Based Protein Profiling Reveals Cellular Targets of Photoreactive Anticancer Inhibitors. ACS Chem Biol 2019; 14:2546-2552. [PMID: 31742988 DOI: 10.1021/acschembio.9b00784] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Affinity-based protein profiling has proven to be a powerful method in target identification of bioactive molecules. Here, this technology was applied in two photoreactive anticancer inhibitors, arenobufagin and HM30181. Using UV irradiation, these photoreactive reagents can covalently cross-link to target proteins, leading to a covalent binding with target proteins. Moreover, the cellular on/off targets of these two molecules, including ATP1A1, MDR1, PARP1, DDX5, NOP2, RAB6A, and ERGIC1 were first identified by affinity-based protein profiling and bioimaging approaches. The protein hit, PARP1, was further validated to be involved in the function of the anticancer effects.
Collapse
Affiliation(s)
- Nan Ma
- School of Pharmacy, Jinan University, Guangzhou City Key Laboratory of Precision Chemical Drug Development, International Cooperative Laboratory of Traditional Chinese Medicine, Modernization and Innovative Drug Development Ministry of Education (MOE) of People’s Republic of China, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhi-Min Zhang
- School of Pharmacy, Jinan University, Guangzhou City Key Laboratory of Precision Chemical Drug Development, International Cooperative Laboratory of Traditional Chinese Medicine, Modernization and Innovative Drug Development Ministry of Education (MOE) of People’s Republic of China, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jun-Seok Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul 136-791, Korea
| | - Ke Cheng
- School of Pharmacy, Jinan University, Guangzhou City Key Laboratory of Precision Chemical Drug Development, International Cooperative Laboratory of Traditional Chinese Medicine, Modernization and Innovative Drug Development Ministry of Education (MOE) of People’s Republic of China, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Dong-Mei Zhang
- School of Pharmacy, Jinan University, Guangzhou City Key Laboratory of Precision Chemical Drug Development, International Cooperative Laboratory of Traditional Chinese Medicine, Modernization and Innovative Drug Development Ministry of Education (MOE) of People’s Republic of China, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Ke Ding
- School of Pharmacy, Jinan University, Guangzhou City Key Laboratory of Precision Chemical Drug Development, International Cooperative Laboratory of Traditional Chinese Medicine, Modernization and Innovative Drug Development Ministry of Education (MOE) of People’s Republic of China, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Wen-Cai Ye
- School of Pharmacy, Jinan University, Guangzhou City Key Laboratory of Precision Chemical Drug Development, International Cooperative Laboratory of Traditional Chinese Medicine, Modernization and Innovative Drug Development Ministry of Education (MOE) of People’s Republic of China, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, Guangzhou City Key Laboratory of Precision Chemical Drug Development, International Cooperative Laboratory of Traditional Chinese Medicine, Modernization and Innovative Drug Development Ministry of Education (MOE) of People’s Republic of China, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
24
|
Han SY, Kim ES, You BH, Chae HS, Lu Q, Chin YW, Ahn HC, Chung SJ, Lee K, Choi YH. Effect of treatment period with LC478, a disubstituted adamantayl derivative, on P-glycoprotein inhibition: its application to increase docetaxel absorption in rats. Xenobiotica 2019; 50:863-874. [PMID: 31791185 DOI: 10.1080/00498254.2019.1700318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
1. Treatment periods of P-glycoprotein (P-gp) inhibitors have revealed different efficacies. We have previously reported dose-dependent inhibition of P-gp in single-treatment with LC478. However, whether repeated treatment with LC478 can inhibit P-gp even at its ineffective single-treatment dose remains unknown. 2. Therefore, the purpose of this study was to assess the effect of repeated treatment (i.e., 7-day treatment) with LC478 on P-gp known to affect docetaxel bioavailability in rats. Effects of LC478 on P-gp mediated efflux and expression in MDCK-MDR1 cells, P-gp ATPase activity, and binding site with P-gp were evaluated.3. The 7-day treatment with LC478 increased docetaxel absorption via intestinal P-gp inhibition in rats. Intestinal concentrations of LC478 were 8.31-10.3 μM in rats after 7-day treatment of LC478. These concentrations were close to 10 μM that reduced P-gp mediated docetaxel efflux and P-gp expression in MDCK-MDR1 cells. Considering that intestinal LC478 concentrations after 1-day treatment were 2.68-4.19 μM, higher LC478 concentrations after 7-day treatment might have driven P-gp inhibition and increased docetaxel absorption. LC478 might competitively inhibit P-gp considering its stimulated ATPase activity and its binding site with nucleotide binding domain of P-gp. 4. Therefore, repeated treatment with LC478 can determine its feasibility for P-gp inhibition and changing docetaxel bioavailability.
Collapse
Affiliation(s)
- Seung Yon Han
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang-si, Republic of Korea
| | - Eun-Sun Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang-si, Republic of Korea
| | - Byoung Hoon You
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang-si, Republic of Korea
| | - Hee-Sung Chae
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang-si, Republic of Korea
| | - Qili Lu
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang-si, Republic of Korea
| | - Young-Won Chin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hee-Chul Ahn
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang-si, Republic of Korea
| | - Suk-Jae Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyeong Lee
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang-si, Republic of Korea
| | - Young Hee Choi
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang-si, Republic of Korea
| |
Collapse
|
25
|
Dei S, Braconi L, Romanelli MN, Teodori E. Recent advances in the search of BCRP- and dual P-gp/BCRP-based multidrug resistance modulators. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:710-743. [PMID: 35582565 PMCID: PMC8992508 DOI: 10.20517/cdr.2019.31] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023]
Abstract
The development of multidrug resistance (MDR) is one of the major challenges to the success of chemotherapy treatment of cancer. This phenomenon is often associated with the overexpression of the ATP-binding cassette (ABC) transporters P-gp (P-glycoprotein, ABCB1), multidrug resistance-associated protein 1, ABCC1 and breast cancer resistance protein, ABCG2 (BCRP). These transporters are constitutively expressed in many tissues playing relevant protective roles by the regulation of the permeability of biological membranes, but they are also overexpressed in malignant tissues. P-gp is the first efflux transporter discovered to be involved in cancer drug resistance, and over the years, inhibitors of this pump have been disclosed to administer them in combination with chemotherapeutic agents. Three generations of inhibitors of P-gp have been examined in preclinical and clinical studies; however, these trials have largely failed to demonstrate that coadministration of pump inhibitors elicits an improvement in therapeutic efficacy of antitumor agents, although some of the latest compounds show better results. Therefore, new and innovative strategies, such as the fallback to natural products and the discover of dual activity ligands emerged as new perspectives. BCRP is the most recently ABC protein identified to be involved in multidrug resistance. It is overexpressed in several haematological and solid tumours together with P-gp, threatening the therapeutic effectiveness of different chemotherapeutic drugs. The chemistry of recently described BCRP inhibitors and dual P-gp/BCRP inhibitors, as well as their preliminary pharmacological evaluation are discussed, and the most recent advances concerning these kinds of MDR modulators are reviewed.
Collapse
Affiliation(s)
- Silvia Dei
- Department of Neuroscience, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, Sesto Fiorentino (FI) 50019, Italy
| | - Laura Braconi
- Department of Neuroscience, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, Sesto Fiorentino (FI) 50019, Italy
| | - Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, Sesto Fiorentino (FI) 50019, Italy
| | - Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, Sesto Fiorentino (FI) 50019, Italy
| |
Collapse
|
26
|
Kairuki M, Qiu Q, Pan M, Li Q, Zhou J, Ghaleb H, Huang W, Qian H, Jiang C. Designed P-glycoprotein inhibitors with triazol-tetrahydroisoquinoline-core increase doxorubicin-induced mortality in multidrug resistant K562/A02 cells. Bioorg Med Chem 2019; 27:3347-3357. [DOI: 10.1016/j.bmc.2019.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022]
|
27
|
Ma J, Gao G, Lu H, Fang D, Li L, Wei G, Chen A, Yang Y, Zhang H, Huo J. Reversal effect of ginsenoside Rh2 on oxaliplatin-resistant colon cancer cells and its mechanism. Exp Ther Med 2019; 18:630-636. [PMID: 31258699 PMCID: PMC6566025 DOI: 10.3892/etm.2019.7604] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 04/18/2019] [Indexed: 01/28/2023] Open
Abstract
Chemotherapy is an important treatment modality for colon cancer, however, drug resistance is the main factor leading to treatment failure. Ginsenoside Rh2 (G-Rh2), the main bioactive metabolite of ginseng, is known to possess the ability to potently induce cell apoptosis, inhibit cell proliferation and reverse multidrug resistance in a variety of cancer cells. The present study examined the effect of G-Rh2 on oxaliplatin (L-OHP)-resistant colon cancer cells and its potential mechanism. L-OHP-resistant colon cancer cells (LoVo/L-OHP) and LoVo cells were used in the present study. The effect of G-Rh2 on LoVo/L-OHP and LoVo cell proliferation was measured using a 3-(4,5 dimethylthiazol-z-yl)-3,5-diphenyltetrazolium bromide assay. The effects of G-Rh2 on LoVo/L-OHP and LoVo cell apoptosis were detected by flow cytometry. The mRNA and protein expression of apoptosis-related genes Bax, Bcl-2 and caspase-3, drug resistance-related genes P-glycoprotein (P-gp) and Smad4, were determined in LoVo/L-OHP and LoVo cells treated with G-Rh2 by reverse transcription-quantitative polymerase chain reaction and western blot analyses. G-Rh2 treatment significantly inhibited the proliferation and induced the apoptosis of LoVo/L-OHP and LoVo cells. In addition, G-Rh2 treatment resulted in a significant increase in pro-apoptotic factors, Bax and caspase-3, and decrease in anti-apoptotic factor Bcl-2 in the LoVo/L-OHP and LoVo cells. Furthermore, G-Rh2 treatment significantly decreased the levels of P-gp and increased the levels of Smad4 in the LoVo/L-OHP and LoVo cells. It was found that L-OHP had no significant effects on LoVo/L-OHP cell proliferation or apoptosis, whereas G-Rh2 + L-OHP treatment significantly inhibited LoVo/L-OHP cell proliferation and induced apoptosis. L-OHP had no significant effects on the expression of P-gp, Smad4, Bcl-2, Bax or caspase-3 in LoVo/L-OHP cells. Treatment with G-Rh2 + L-OHP significantly reduced the expression of P-gp and Bcl-2, and enhanced the expression levels of Smad4, Bax and caspase-3. These findings demonstrated that G-Rh2 reversed the drug resistance of LoVo/L-OHP cells to L-OHP, and this may be mediated by inhibiting cell proliferation and promoting apoptosis and regulating the expression of drug resistance genes. These results suggest that G-Rh2 may function as a potent anticancer drug for drug resistance in colon cancer treatment.
Collapse
Affiliation(s)
- Jun Ma
- Department of Oncology, Huai'an TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223001, P.R. China
| | - Guangyi Gao
- Department of Traditional Chinese Medicine, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223001, P.R. China
| | - Hong Lu
- Department of Oncology, Changshu No. 1 People's Hospital, Changshu, Jiangsu 215500, P.R. China
| | - Dong Fang
- Department of Oncology, Zhenjiang Hospital of Integrated Traditional and Western Medicine, Zhenjiang, Jiangsu 212000, P.R. China
| | - Lingchang Li
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Guoli Wei
- Department of Oncology, Huai'an TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223001, P.R. China
| | - Aifei Chen
- Department of Oncology, Huai'an Hospital of Chinese Medicine, Huai'an, Jiangsu 223001, P.R. China
| | - Yong Yang
- Department of Oncology, Huai'an Hospital of Chinese Medicine, Huai'an, Jiangsu 223001, P.R. China
| | - Hongying Zhang
- Department of Oncology, Huai'an Hospital of Chinese Medicine, Huai'an, Jiangsu 223001, P.R. China
| | - Jiege Huo
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| |
Collapse
|
28
|
Virkel G, Ballent M, Lanusse C, Lifschitz A. Role of ABC Transporters in Veterinary Medicine: Pharmaco- Toxicological Implications. Curr Med Chem 2019; 26:1251-1269. [DOI: 10.2174/0929867325666180201094730] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/14/2017] [Accepted: 12/22/2017] [Indexed: 01/10/2023]
Abstract
Unlike physicians, veterinary practitioners must deal with a number of animal species with crucial differences in anatomy, physiology and metabolism. Accordingly, the pharmacokinetic behaviour, the clinical efficacy and the adverse or toxic effects of drugs may differ across domestic animals. Moreover, the use of drugs in food-producing species may impose a risk for humans due to the generation of chemical residues in edible products, a major concern for public health and consumer's safety. As is clearly known in human beings, the ATP binding cassette (ABC) of transport proteins may influence the bioavailability and elimination of numerous drugs and other xenobiotics in domestic animals as well. A number of drugs, currently available in the veterinary market, are substrates of one or more transporters. Therefore, significant drug-drug interactions among ABC substrates may have unpredictable pharmacotoxicological consequences in different species of veterinary interest. In this context, different investigations revealed the major relevance of P-gp and other transport proteins, like breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins (MRPs), in both companion and livestock animals. Undoubtedly, the discovery of the ABC transporters and the deep understanding of their physiological role in the different species introduced a new paradigm into the veterinary pharmacology. This review focuses on the expression and function of the major transport proteins expressed in species of veterinary interest, and their impact on drug disposition, efficacy and toxicity.
Collapse
Affiliation(s)
- Guillermo Virkel
- Laboratorio de Farmacologia, Centro de Investigacion Veterinaria de Tandil (CIVETAN-CONICETCICPBA), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (FCV-UNCPBA), Campus Universitario (Los Ombues y Reforma Universitaria), (7000) Tandil, Prov. de Buenos Aires, Argentina
| | - Mariana Ballent
- Laboratorio de Farmacologia, Centro de Investigacion Veterinaria de Tandil (CIVETAN-CONICETCICPBA), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (FCV-UNCPBA), Campus Universitario (Los Ombues y Reforma Universitaria), (7000) Tandil, Prov. de Buenos Aires, Argentina
| | - Carlos Lanusse
- Laboratorio de Farmacologia, Centro de Investigacion Veterinaria de Tandil (CIVETAN-CONICETCICPBA), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (FCV-UNCPBA), Campus Universitario (Los Ombues y Reforma Universitaria), (7000) Tandil, Prov. de Buenos Aires, Argentina
| | - Adrián Lifschitz
- Laboratorio de Farmacologia, Centro de Investigacion Veterinaria de Tandil (CIVETAN-CONICETCICPBA), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (FCV-UNCPBA), Campus Universitario (Los Ombues y Reforma Universitaria), (7000) Tandil, Prov. de Buenos Aires, Argentina
| |
Collapse
|
29
|
Lee DH, Hasanuzzaman M, Kwon D, Choi HY, Kim SM, Kim DJ, Kang DJ, Hwang TH, Kim HH, Shin HJ, Shin JG, Oh S, Lee S, Kim SW. 10-Phenyltriazoyl Artemisinin is a Novel P-glycoprotein Inhibitor that Suppresses the Overexpression and Function of P-glycoprotein. Curr Pharm Des 2019; 24:5590-5597. [DOI: 10.2174/1381612825666190222155700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/13/2019] [Indexed: 12/11/2022]
Abstract
Background:
The effect of drugs on ATP-binding cassette transporters, especially permeabilityglycoprotein
(P-gp), is an important consideration during new anti-cancer drug development.
Objective:
In this context, the effects of a newly synthesized artemisinin derivative, 10-(4-phenyl-1H-1,2,3-
triazol)-artemisinin (5a), were evaluated on P-gp expression and function.
Methods:
Reverse transcript polymerase chain reaction and immunoblotting techniques were used to determine
the effect of 5a on P-gp expression in LS174T cells. In addition, the ability of 5a to work as either a substrate or
an inhibitor of P-gp was investigated through different methods.
Results:
The results revealed that 5a acts as a novel P-gp inhibitor that dually suppresses the overexpression and
function of P-glycoprotein. Co-treatment of LS174T cell line, human colon adenocarcinoma cell line, with 5a and
paclitaxel recovered the anticancer effect of paclitaxel by controlling the acquired drug resistance pathway. The
overexpression of P-gp induced by rifampin and paclitaxel in a colorectal cell line was suppressed by 5a which
could be a novel inhibitory substrate inhibiting the transport of paclitaxel by P-gp.
Conclusion:
The results revealed that 5a can be classified as a type B P-gp inhibitor (with both substrate and
inhibitor activities) with an additional function of suppressing P-gp overexpression. The results might be clinically
useful in the development of anticancer drugs against cancers with multidrug resistance.
Collapse
Affiliation(s)
- Dong-Hwan Lee
- Hallym Institute for Clinical Medicine, Hallym University Medical Center, Anyang, 14066, Korea
| | - Md. Hasanuzzaman
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh
| | - Daeho Kwon
- Department of Microbiology, Catholic Kwandong University College of Medicine, Gangneung 25601, Korea
| | - Hye-Young Choi
- Department of Pharmacology, Catholic Kwandong University College of Medicine, Gangneung 25601, Korea
| | - So Myoung Kim
- Department of Pharmacology, Catholic Kwandong University College of Medicine, Gangneung 25601, Korea
| | - Dong Jin Kim
- Approval and Review Team, Medical Device Safety Bureau, Ministry of Food and Drug Safety, Cheongju 28159, Korea
| | - Dong Ju Kang
- Department of Pharmacology, Catholic Kwandong University College of Medicine, Gangneung 25601, Korea
| | - Tae-Ho Hwang
- Gene and Cell Therapy Research Center for Vessel-associated Diseases, Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Hyung-Hoi Kim
- Department of Laboratory Medicine, (Bio) Medical Research Institute, School of Medicine, Pusan National University, Pusan National University Hospital, Busan 4924, Korea
| | - Ho Jung Shin
- SPMED Co., Ltd., 111 Hyoyeol-ro, Buk-gu, Busan 46508, Korea
| | - Jae-Gook Shin
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan 47392, Korea
| | - Sangtae Oh
- Department of Basic Science, Catholic Kwandong University College of Medicine, Gangneung 25601, Korea
| | - Seokjoon Lee
- Department of Pharmacology, Catholic Kwandong University College of Medicine, Gangneung 25601, Korea
| | - So Won Kim
- Department of Pharmacology, Catholic Kwandong University College of Medicine, Gangneung 25601, Korea
| |
Collapse
|
30
|
Han SY, Lu Q, Lee K, Choi YH. LC478, a Novel Di-Substituted Adamantyl Derivative, Enhances the Oral Bioavailability of Docetaxel in Rats. Pharmaceutics 2019; 11:pharmaceutics11030135. [PMID: 30897775 PMCID: PMC6471177 DOI: 10.3390/pharmaceutics11030135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/09/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023] Open
Abstract
P-glycoprotein (P-gp)-mediated efflux of docetaxel in the gastrointestinal tract mainly impedes its oral chemotherapy. Recently, LC478, a novel di-substituted adamantyl derivative, was identified as a non-cytotoxic P-gp inhibitor in vitro. Here, we assessed whether LC478 enhances the oral bioavailability of docetaxel in vitro and in vivo. LC478 inhibited P-gp mediated efflux of docetaxel in Caco-2 cells. In addition, 100 mg/kg of LC478 increased intestinal absorption of docetaxel, which led to an increase in area under plasma concentration-time curve (AUC) and absolute bioavailability of docetaxel in rats. According to U.S. FDA criteria (I, an inhibitor concentration in vivo tissue)/(IC50, inhibitory constant in vitro) >10 determines P-gp inhibition between in vitro and in vivo. The values 15.6–20.5, from (LC478 concentration in intestine, 9.37–12.3 μM)/(IC50 of LC478 on P-gp inhibition in Caco-2 cell, 0.601 μM) suggested that 100 mg/kg of LC478 sufficiently inhibited P-gp to enhance oral absorption of docetaxel. Moreover, LC478 inhibited P-gp mediated efflux of docetaxel in the ussing chamber studies using rat small intestines. Our study demonstrated that the feasibility of LC478 as an ideal enhancer of docetaxel bioavailability by P-gp inhibition in dose (concentration)-dependent manners.
Collapse
Affiliation(s)
- Seung Yon Han
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyonggi-do 10326, Korea.
| | - Qili Lu
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyonggi-do 10326, Korea.
| | - Kyeong Lee
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyonggi-do 10326, Korea.
| | - Young Hee Choi
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyonggi-do 10326, Korea.
| |
Collapse
|
31
|
Effects of Piperazine Derivative on Paclitaxel Pharmacokinetics. Pharmaceutics 2019; 11:pharmaceutics11010023. [PMID: 30626065 PMCID: PMC6359037 DOI: 10.3390/pharmaceutics11010023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/12/2018] [Accepted: 01/02/2019] [Indexed: 01/31/2023] Open
Abstract
Paclitaxel (PTX) is an anticancer agent that is used to treat many cancers but it has a very low oral bioavailability due, at least in part, to the drug efflux transporter, P-glycoprotein (P-gp). Therefore, this study was performed to enhance oral bioavailability of PTX. In this study, we investigated the effects of several piperazine derivatives on P-gp function in vitro. Compound 4 was selected as the most potent P-gp inhibitor from the in vitro results for examining the pharmacokinetic (PK) changes of PTX in rats. Compound 4 increased the AUCinf of PTX without alterations in the Cmax value. The elimination half-life was extended and the oral clearance decreased. Additionally, the Tmax was delayed or widened in the treatment groups. Therefore, the bioavailability (BA) of PTX was improved 2.1-fold following the co-administration of 5 mg/kg of the derivative. A piperazine derivative, compound 4, which was confirmed as a substantial P-gp inhibitor in vitro increased the BA of PTX up to 2-fold by a lingering absorption, in part due to inhibition of intestinal P-gp and a low oral clearance of PTX. These results suggest that co-administering compound 4 may change the PK profile of PTX by inhibiting P-gp activity in the body.
Collapse
|
32
|
Darwish S, Sadeghiani N, Fong S, Mozaffari S, Hamidi P, Withana T, Yang S, Tiwari RK, Parang K. Synthesis and antiproliferative activities of doxorubicin thiol conjugates and doxorubicin-SS-cyclic peptide. Eur J Med Chem 2019; 161:594-606. [PMID: 30396106 PMCID: PMC8418874 DOI: 10.1016/j.ejmech.2018.10.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023]
Abstract
Myocardial toxicity and drug resistance caused by drug efflux are major limitations of doxorubicin (Dox)-based chemotherapy. Dox structure modification could be used to develop conjugates with an improved biological profile, such as antiproliferative activity and higher cellular retention. Thus, Dox thiol conjugates, Dox thiol (Dox-SH), thiol-reactive Dox-SS-pyridine (SS = disulfide), and a Dox-SS-cell-penetrating cyclic peptide, Dox-SS-[C(WR)4K], were synthesized. Dox was reacted with Traut's reagent to generate Dox-SH. The thiol group was activated by the reaction with dithiodipyridine to afford the corresponding Dox-SS-Pyridine (Dox-SS-Pyr). A cyclic cell-penetrating peptide containing a cysteine residue [C(WR)4K] was prepared using Fmoc solid-phase strategy. Dox-SS-Py was reacted with the free sulfhydryl of cysteine in [C(WR)4K] to generate Dox-SS-[C(WR)4K] as a Dox-cyclic peptide conjugate. Cytotoxicity of the compounds was examined in human embryonic kidney (HEK-293), human ovarian cancer (SKOV-3), human fibrosarcoma (HT-1080), and human leukemia (CCRF-CEM) cells. Dox-SH and Dox-SS-pyridine were found to have significantly higher or comparable cytotoxicity when compared to Dox in HEK-293, HT-1080, and CCRF-CEM cells after 24 h and 72 incubation, presumably because of higher activity and retention of the compounds in these cells. Furthermore, Dox-SS-[C(WR)4K] showed significantly higher cytotoxic activity in HEK-293, HT-1080, and SKOV-3 cells when compared with Dox after 72 h incubation. Dox-SS-Pyr exhibited higher cellular uptake than Dox-SS-[C(WR)4K] in HT-1080 and HEK-293 cells as shown by flow cytometry. Fluorescence microscopy exhibited that Dox-SS-Pyr, Dox-SH, and Dox-SS-[C(WR)4K] localized in the nucleus as shown in four cell lines, HT-1080, SKOV-3, MDA-MB-468, and MCF-7. Of note, Dox-SS-[C(WR)4K] was significantly less toxic in mouse myoblast cells compared to Dox at the same concentration. Further mechanistic study demonstrated that the level of intracellular reactive oxygen species (ROS) in myoblast cells exposed to Dox-SS-[C(WR)4K] was reduced in comparison of Dox when co-treated with FeCl2. These data indicate that Dox-SH, Dox-SS-Pyr, and Dox-SS-[C(WR)4K] have the potential to be further examined as Dox alternatives and anticancer agents.
Collapse
Affiliation(s)
- Shaban Darwish
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, United States; Organometallic and Organometalloid Chemistry Department, National Research Centre, El Bohouth st, Dokki, Giza, Egypt
| | - Neda Sadeghiani
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, United States
| | - Shirley Fong
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, United States
| | - Saghar Mozaffari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, United States
| | - Parinaz Hamidi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, United States
| | - Thimanthi Withana
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, United States
| | - Sun Yang
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, United States
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, United States.
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, United States.
| |
Collapse
|
33
|
Guo Y, Wang K, Chen X, Li H, Wan Q, Morris-Natschke S, Lee KH, Chen Y. Seco-4-methyl-DCK derivatives as potent chemosensitizers. Bioorg Med Chem Lett 2019; 29:28-31. [PMID: 30455148 DOI: 10.1016/j.bmcl.2018.11.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 11/26/2022]
Abstract
Twenty-five seco-4-methyl-DCK derivatives were designed, synthesized and evaluated for chemoreversal activity when combined with paclitaxel or vincristine in two drug-resistant cancer cell lines (A2780/T and KB-V) respectively. Most of the new compounds displayed moderate to significant MDR reversal activities in the P-gp overexpressing A2780/T and KB-V cells. Especially, compounds 7o and 7y showed the most potent chemosensitization activities with more than 496 and 735 reversal ratios at a concentration of 10 μM. Unexpectedly the newly synthesized compounds did not show chemosensitization activities observed in a non-P-gp overexpressing cisplatin resistant human ovarian cancer cell line (A2780/CDDP), implying that the MDR reversal effects might be associated with P-gp overexpression. Moreover, these compounds did not exhibit significant antiproliferative activities against nontumorigenic cell lines (HUVEC, HOSEC and T29) compared to the positive control verapamil at the tested concentration, which suggested better safety than verapamil. The pharmacological actions of the compounds will be studied further to explore their merit for development as novel candidates to overcome P-gp mediated MDR cancer.
Collapse
Affiliation(s)
- Yalan Guo
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ke Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiaoyu Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China; Department of Materials Science & Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Haihong Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qi Wan
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Susan Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA; Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan.
| | - Ying Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
34
|
Wei Y, Zhou S, Hao T, Zhang J, Gao Y, Qian S. Further enhanced dissolution and oral bioavailability of docetaxel by coamorphization with a natural P-gp inhibitor myricetin. Eur J Pharm Sci 2018; 129:21-30. [PMID: 30590119 DOI: 10.1016/j.ejps.2018.12.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/30/2018] [Accepted: 12/22/2018] [Indexed: 01/11/2023]
Abstract
The current study aims to improve the dissolution and oral bioavailability of a BCS IV drug docetaxel (DOC) by coamorphization with a natural P-gp inhibitor myricetin (MYR). A single-phase coamorphous form of DOC with MYR in a 1:1 molar ratio was prepared by solvent-evaporation method and characterized by differential scanning calorimetry, thermogravimetric analysis and powder X-ray diffraction. In comparison to crystalline DOC, amorphous DOC showed similar equilibrium aqueous solubility, temporary improvement in the intrinsic dissolution rate (IDR) and supersaturated dissolution; while coamorphous DOC-MYR exhibited a persistent enhanced IDR and prolonged highly supersaturated dissolution. In addition, coamorphous DOC-MYR demonstrated significantly superior physical stability compared to amorphous DOC under the long-term storage condition and accelerated condition. Compared with oral administration of crystalline DOC to rats, amorphous DOC showed a significant increase in Cmax (2.6-fold) and a marginal increase in AUC (1.3-fold) of DOC; but coamorphous DOC-MYR performed a 3.9-fold higher Cmax and 3.1-fold higher AUC. In conclusion, coamorphization of DOC with MYR was a promising approach to enhance both dissolution and oral absorption of poorly soluble and permeable DOC.
Collapse
Affiliation(s)
- Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Shengyan Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Tianyun Hao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
35
|
Li S, Zhao X, Chang S, Li Y, Guo M, Guan Y. ERp57‑small interfering RNA silencing can enhance the sensitivity of drug‑resistant human ovarian cancer cells to paclitaxel. Int J Oncol 2018; 54:249-260. [PMID: 30431082 DOI: 10.3892/ijo.2018.4628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 10/08/2018] [Indexed: 11/05/2022] Open
Abstract
ERp57 has been identified to be associated with the chemoresistance of human ovarian cancer. However, its biological roles in the chemoresistance phenotype remain unclear. In the present study, the association of ERp57 with paclitaxel‑resistant cellular behavior was investigated and the sensitivity enhancement of chemoresistant human ovarian cancer cells to paclitaxel was examined using ERp57‑small interfering (si)RNA silencing. Cell viability, cell proliferation, cell apoptosis and cell migration were detected using an MTT assay, clonogenic assay, flow cytometry analysis and transwell assay. Furthermore, mRNA expression levels of ERp57 and protein expression levels of ERp57, STAT3, phosphorylated STAT3, PCNA, nucelolin, TUBB3, P-gp, vimentin, Bcl-2, Bax, Bcl-xl, p53, MMP1, MMP2 and MMP9 of paclitaxel-sensitive human SKOV3 ovarian cancer cells were compared with paclitaxel-resistant counterpart SKOV3/tax using the real-time PCR and western blot analysis. ERp57 was highly expressed in the paclitaxel‑resistant SKOV3/tax cells, and experimental results concluded that the paclitaxel‑resistance phenotype was due primarily to the activation of the STAT3 signaling pathway. ERp57 overexpression by lentiviral particle infection decreased the sensitivity of SKOV3 cells to paclitaxel. Furthermore, ERp57‑siRNA silencing restored paclitaxel sensitivity of SKOV3/tax cells. Notably, the IC50 value of ERp57‑siRNA silenced SKOV3/tax cells was reduced to the original level and colony survival was significantly decreased in comparison with that of SKOV3/tax cells. Additionally, co‑treatment of ERp57‑siRNA silencing and paclitaxel could inhibit the STAT3 signaling pathway and downregulate the expression levels of downstream proteins. Notably, ERp57‑siRNA and 100 nM paclitaxel co‑treatment downregulated Bcl‑2, Bcl‑xl, MMP2, MMP9, TUBB3 and P‑gp expression levels and upregulated the expression of Bax protein. Furthermore, co‑treatment promoted change of the isoform of p53 to p53/p47. Bioinformatics analyses supported the experimental observations that ERp57 was associated with drug resistance in ovarian cancer. The present study implies that ERp57 is a potential therapeutic target for the treatment of paclitaxel‑resistant human ovarian cancer.
Collapse
Affiliation(s)
- Shuo Li
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xiaoyun Zhao
- Department of Microbiology and Cell Biology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Shijie Chang
- Department of Biomedical Engineering, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yanqiu Li
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Min Guo
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yifu Guan
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
36
|
Koller D, Belmonte C, Lubomirov R, Saiz-Rodríguez M, Zubiaur P, Román M, Ochoa D, Carcas A, Wojnicz A, Abad-Santos F. Effects of aripiprazole on pupillometric parameters related to pharmacokinetics and pharmacogenetics after single oral administration to healthy subjects. J Psychopharmacol 2018; 32:1212-1222. [PMID: 30251598 DOI: 10.1177/0269881118798605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Pupillometry is used for the detection of autonomic dysfunction related to numerous diseases and drug administration. Genetic variants in cytochrome P450 ( CYP2D6, CYP3A4), dopamine receptor ( DRD2, DRD3), serotonin receptor ( HTR2A, HTR2C) and ATP-binding cassette subfamily B ( ABCB1) genes were previously associated with aripiprazole response. AIMS Our aim was to evaluate if aripiprazole affects pupil contraction and its relationship with pharmacokinetics and pharmacogenetics. METHODS Thirty-two healthy volunteers receiving a 10 mg single oral dose of aripiprazole were genotyped for 15 polymorphisms in ABCB1, CYP2D6, DRD2, DRD3, HTR2A and HTR2C genes by reverse transcription polymerase chain reaction. Aripiprazole and dehydro-aripiprazole plasma concentrations were measured by high-performance liquid chromatography tandem mass spectrometry. Pupil examination was performed by automated pupillometry. RESULTS Aripiprazole caused pupil constriction and reached the peak value at Cmax. HTR2A rs6313 T allele carriers and HTR2C rs3813929 C/T subjects showed higher maximum constriction velocity and maximum pupil diameter. Besides, Gly/Gly homozygotes for DRD3 rs6280 showed significantly lower maximum constriction velocity values. A/G heterozygotes for DRD2 rs6277 showed higher total time taken by the pupil to recover 75% of the initial resting size values. CYP2D6 intermediate metabolisers showed higher area under the curve, Cmax and T1/2 than extensive metabolisers. ABCB1 G2677T/A A/A homozygotes had greater T1/2 in comparison with C/C homozygotes. ABCB1 C3435T T allele carriers and C1236T C/T subjects showed greater area under the curve than C/C homozygotes. CONCLUSIONS Aripiprazole affects pupil contraction, which could be a secondary effect through dopamine and serotonin receptors. Pupillometry could be a useful tool to assess autonomic nervous system activity during antipsychotic treatment.
Collapse
Affiliation(s)
- Dora Koller
- 1 Clinical Pharmacology Department, Hospital Universitario de La Princesa, Madrid, Spain
| | - Carmen Belmonte
- 1 Clinical Pharmacology Department, Hospital Universitario de La Princesa, Madrid, Spain
| | - Rubin Lubomirov
- 2 Pharmacology Department, Hospital Universitario La Paz, Madrid, Spain
| | - Miriam Saiz-Rodríguez
- 1 Clinical Pharmacology Department, Hospital Universitario de La Princesa, Madrid, Spain
| | - Pablo Zubiaur
- 1 Clinical Pharmacology Department, Hospital Universitario de La Princesa, Madrid, Spain
| | - Manuel Román
- 1 Clinical Pharmacology Department, Hospital Universitario de La Princesa, Madrid, Spain.,3 Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Dolores Ochoa
- 1 Clinical Pharmacology Department, Hospital Universitario de La Princesa, Madrid, Spain.,3 Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Antonio Carcas
- 4 Pharmacology Department, Universidad Autónoma de Madrid, Spain
| | - Aneta Wojnicz
- 1 Clinical Pharmacology Department, Hospital Universitario de La Princesa, Madrid, Spain
| | - Francisco Abad-Santos
- 1 Clinical Pharmacology Department, Hospital Universitario de La Princesa, Madrid, Spain.,3 Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| |
Collapse
|
37
|
Chae SW, Lee J, Park JH, Kwon Y, Na Y, Lee HJ. Intestinal P-glycoprotein inhibitors, benzoxanthone analogues. ACTA ACUST UNITED AC 2017; 70:234-241. [PMID: 29238994 DOI: 10.1111/jphp.12832] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/21/2017] [Indexed: 01/01/2023]
Abstract
OBJECTIVES The inhibitors of P-glycoprotein (P-gp) which limits an access of exogenous compounds in the luminal membrane of the intestine have been studied to enhance the intestinal P-gp-mediated absorption of anticancer drugs. METHODS Inhibition of the efflux pump by synthesized benzoxanthone derivatives was investigated in vitro and in vivo. MCF-7/ADR cell line was used for cytotoxicity assay and [3 H]-daunomycin (DNM) accumulation/efflux study. Eight benzoxanthone analogues were tested for their effects on DNM cytotoxicity. Among them, three analogues were selected for the accumulation/efflux and P-gp ATPase studies. Paclitaxel (PTX), a P-gp substrate anticancer drug, was orally administered to rats with/without compound 1 (8,10-bis(thiiran-2-ylmethoxy)-7H-benzo[c]xanthen-7-one). The pharmacokinetic parameters of PTX in the presence/absence of compound 1 were evaluated from the plasma concentration-time profiles. KEY-FINDINGS Compound 1 increased the DNA accumulation to 6.5-fold and decreased the DNM efflux to approximately 1/2 in the overexpressing P-gp cell line. Relative bioavailability (RB) of PTX in rats was significantly increased up to 3.2-fold by compound 1 (0.5 or 2 mg/kg). CONCLUSIONS Benzoxanthone analogue, compound 1 is strongly suggested to be a promising inhibitor of P-gp to improve an oral absorption of compounds for cancer therapy.
Collapse
Affiliation(s)
- Song Wha Chae
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Jaeok Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Jung Hyun Park
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Youngjoo Kwon
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Younghwa Na
- College of Pharmacy, CHA University, Pocheon, Korea
| | - Hwa Jeong Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| |
Collapse
|
38
|
Pan M, Cui J, Jiao L, Ghaleb H, Liao C, Zhou J, Kairuki M, Lin H, Huang W, Qian H. Synthesis and biological evaluation of JL-A7 derivatives as potent ABCB1 inhibitors. Bioorg Med Chem 2017. [DOI: 10.1016/j.bmc.2017.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
39
|
Kathawala RJ, Li T, Yang D, Guo HQ, Yang DH, Chen X, Cheng C, Chen ZS. 2-Trifluoromethyl-2-Hydroxypropionamide Derivatives as Novel Reversal Agents of ABCG2 (BCRP)-Mediated Multidrug Resistance: Synthesis and Biological Evaluations. J Cell Biochem 2017; 118:2420-2429. [PMID: 28120346 DOI: 10.1002/jcb.25908] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 01/23/2017] [Indexed: 12/17/2022]
Abstract
It has been postulated that one of the biggest impediments to a successful chemotherapy is the phenomena of multidrug resistance (MDR) in cancer cells. One of the main mechanisms of MDR is overexpression of the ATP-binding cassette (ABC) transporters in cancer cells which alters absorption, distribution, metabolism, and excretion of various chemotherapeutic drugs. Efforts have been made to find effective inhibitors of ABC transporters. However, none has been approved clinically. This study shows that a novel compound 3-chloro-N-(2-hydroxyphenyl)-4-(3,3,3-trifluoro-2-hydroxy-2-methylpropanamido) benzamide (compound 7d), one of the 2-trifluoromethyl-2-hydroxypropionamide derivatives could reverse ABCG2 (BCRP)-mediated MDR. Cytotoxicity studies show that compound 7d sensitizes the ABCG2-overexpressing cells to chemotherapeutic drugs mitoxantrone and SN-38, which are well-established substrates of the ABCG2 transporter. Western blotting results indicate that compound 7d does not significantly alter the protein level of the ABCG2 transporter. Accumulation and efflux studies demonstrate that compound 7d increases intracellular accumulation of mitoxantrone by inhibiting the function of ABCG2. Overall, these findings indicate a potential use for compound 7d as an adjuvant agent for chemotherapy to inhibit the function of the clinically relevant ABC transporter and sensitize tumor cells to chemotherapeutic drugs. J. Cell. Biochem. 118: 2420-2429, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rishil J Kathawala
- Department of Pharmaceutical Sciences, College of Pharmacy Health Sciences, St. John's University, Queens, New York
| | - Tianwen Li
- Key laboratory of Bioorganic Phosphorus and Chemical Biology, The Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| | - Danwen Yang
- Department of Pharmaceutical Sciences, College of Pharmacy Health Sciences, St. John's University, Queens, New York.,Laboratory of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui-Qin Guo
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy Health Sciences, St. John's University, Queens, New York
| | - Xiang Chen
- Laboratory of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Changmei Cheng
- Key laboratory of Bioorganic Phosphorus and Chemical Biology, The Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy Health Sciences, St. John's University, Queens, New York
| |
Collapse
|
40
|
Functional characterization of ABCB4 mutations found in progressive familial intrahepatic cholestasis type 3. Sci Rep 2016; 6:26872. [PMID: 27256251 PMCID: PMC4891722 DOI: 10.1038/srep26872] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/10/2016] [Indexed: 12/13/2022] Open
Abstract
Multidrug resistance 3 (MDR3), encoded by the ATP-binding cassette, subfamily B, member 4 gene (ABCB4), localizes to the canalicular membrane of hepatocytes and translocates phosphatidylcholine from the inner leaflet to the outer leaflet of the canalicular membrane. Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a rare hepatic disease caused by genetic mutations of ABCB4. In this study, we characterized 8 ABCB4 mutations found in PFIC3 patients, using in vitro molecular assays. First, we examined the transport activity of each mutant by measuring its ATPase activity using paclitaxel or phosphatidylcholine. Then, the pathogenic mechanisms by which these mutations affect MDR3 were examined through immunoblotting, cell surface biotinylation, and immunofluorescence. As a result, three ABCB4 mutants showed significantly reduced transport activity. Among these mutants, one mutation A364V, located in intracellular domains, markedly decreased MDR3 expression on the plasma membrane, while the others did not affect the expression. The expression of MDR3 on the plasma membrane and transport activity of A364V was rescued by a pharmacological chaperone, cyclosporin A. Our study provides the molecular mechanisms of ABCB4 mutations and may contribute to the understanding of PFIC3 pathogenesis and the development of a mutation-specific targeted treatment for PFIC3.
Collapse
|
41
|
Bae JK, Kim YJ, Chae HS, Kim DY, Choi HS, Chin YW, Choi YH. Korean red ginseng extract enhances paclitaxel distribution to mammary tumors and its oral bioavailability by P-glycoprotein inhibition. Xenobiotica 2016; 47:450-459. [PMID: 27189791 DOI: 10.1080/00498254.2016.1182233] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. Drug efflux by P-glycoprotein (P-gp) is a common resistance mechanism of breast cancer cells to paclitaxel, the primary chemotherapy in breast cancer. As a means of overcoming the drug resistance-mediated failure of paclitaxel chemotherapy, the potential of Korean red ginseng extract (KRG) as an adjuvant chemotherapy has been reported only in in vitro. Therefore, we assessed whether KRG alters P-gp mediated paclitaxel efflux, and therefore paclitaxel efficacy in in vitro and vivo models. 2. KRG inhibited P-gp protein expression and transcellular efflux of paclitaxel in MDCK-mdr1 cells, but KRG was not a substrate of P-gp ATPase. In female rats with mammary tumor, the combination of paclitaxel with KRG showed the greater reduction of tumor volumes, lower P-gp protein expression and higher paclitaxel distribution in tumors, and greater oral bioavailability of paclitaxel than paclitaxel alone. 3. From these results, KRG increased systemic circulation of oral paclitaxel and its distribution to tumors via P-gp inhibition in rats and under the current study conditions.
Collapse
Affiliation(s)
- Jin Kyung Bae
- a BK21 PLUS R-FIND Team and College of Pharmacy, Dongguk University-Seoul , Goyang , Republic of Korea
| | - You-Jin Kim
- a BK21 PLUS R-FIND Team and College of Pharmacy, Dongguk University-Seoul , Goyang , Republic of Korea
| | - Hee-Sung Chae
- a BK21 PLUS R-FIND Team and College of Pharmacy, Dongguk University-Seoul , Goyang , Republic of Korea
| | - Do Yeun Kim
- b Department of Internal Medicine , Dongguk University, Ilsan Hospital , Goyang , Republic of Korea , and
| | - Han Seok Choi
- c Division of Endocrinology and Metabolism , Department of Internal Medicine, Dongguk University Ilsan Hospital , Koyang , Republic of Korea
| | - Young-Won Chin
- a BK21 PLUS R-FIND Team and College of Pharmacy, Dongguk University-Seoul , Goyang , Republic of Korea
| | - Young Hee Choi
- a BK21 PLUS R-FIND Team and College of Pharmacy, Dongguk University-Seoul , Goyang , Republic of Korea
| |
Collapse
|
42
|
Wu Y, Pan M, Dai Y, Liu B, Cui J, Shi W, Qiu Q, Huang W, Qian H. Design, synthesis and biological evaluation of LBM-A5 derivatives as potent P-glycoprotein-mediated multidrug resistance inhibitors. Bioorg Med Chem 2016; 24:2287-97. [DOI: 10.1016/j.bmc.2016.03.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 10/22/2022]
|
43
|
Kim JC, Kim KS, Kim DS, Jin SG, Kim DW, Kim YI, Park JH, Kim JO, Yong CS, Youn YS, Woo JS, Choi HG. Effect of HM30181 mesylate salt-loaded microcapsules on the oral absorption of paclitaxel as a novel P-glycoprotein inhibitor. Int J Pharm 2016; 506:93-101. [PMID: 27106527 DOI: 10.1016/j.ijpharm.2016.04.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 03/31/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
The purpose of this study was to develop HM30181 mesylate salt (HM30181M)-loaded microcapsules as a novel P-glycoprotein inhibitor for enhancing the oral absorption of paclitaxel. The effect of various carriers including hydrophilic polymers and solvents on the solubility of HM30181M were evaluated. Among the hydrophilic polymers and solvents tested, HPMC and methylene chloride (and ethanol) provided the highest HM30181M solubility. Numerous HM30181M-loaded microcapsules were prepared with HPMC, silicon dioxide and acidifying agents using a spray-drying technique, and their solubility, dissolution and physicochemical properties were evaluated. Furthermore, a pharmacokinetic study was performed after oral administration of paclitaxel alone, simultaneously with HM30181M powder or HM30181M-loaded microcapsules to rats. Among the acidifying agents investigated, phosphoric acid provided the best improvement in the solubility and dissolution of HM30181M. Moreover, the microcapsule composed of HM30181M, HPMC, silicon dioxide and phosphoric acid at a weight ratio of 3:6:3:2 remarkably enhanced the solubility and dissolution of HM30181M compared with the HM30181M powder alone. The microcapsules were spherical in shape, had a reduced particle size of about 7μm, and contained HM30181M in an amorphous state. Furthermore, this microcapsule significantly enhanced HM30181M absorption, making it about 1.7-fold faster and 1.6-fold greater after simultaneous administration, leading to about 70- and 2-fold improved oral bioavailability of paclitaxel compared with paclitaxel alone and the simultaneous administration with HM30181M powder, respectively. Thus, this novel microcapsule could be a potential candidate for effective P-glycoprotein inhibition during oral administration of paclitaxel.
Collapse
Affiliation(s)
- Jin Cheul Kim
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, South Korea; Pharmaceutical Research Centre, Hanmi Pharm. Co., Paltan-myeon, 893-5 Hwaseong, Gyeonggi-Do 445-913, South Korea
| | - Kyeong Soo Kim
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, South Korea; Pharmaceutical Research Centre, Hanmi Pharm. Co., Paltan-myeon, 893-5 Hwaseong, Gyeonggi-Do 445-913, South Korea
| | - Dong Shik Kim
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, South Korea
| | - Sung Giu Jin
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, South Korea
| | - Dong Wuk Kim
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, South Korea
| | - Yong Il Kim
- Pharmaceutical Research Centre, Hanmi Pharm. Co., Paltan-myeon, 893-5 Hwaseong, Gyeonggi-Do 445-913, South Korea
| | - Jae-Hyun Park
- Pharmaceutical Research Centre, Hanmi Pharm. Co., Paltan-myeon, 893-5 Hwaseong, Gyeonggi-Do 445-913, South Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 214-1, Dae-Dong, Gyongsan 712-749, South Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 214-1, Dae-Dong, Gyongsan 712-749, South Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon 440-746, South Korea
| | - Jong Soo Woo
- Pharmaceutical Research Centre, Hanmi Pharm. Co., Paltan-myeon, 893-5 Hwaseong, Gyeonggi-Do 445-913, South Korea.
| | - Han-Gon Choi
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, South Korea.
| |
Collapse
|
44
|
Takeuchi R, Shinozaki K, Nakanishi T, Tamai I. Local Drug-Drug Interaction of Donepezil with Cilostazol at Breast Cancer Resistance Protein (ABCG2) Increases Drug Accumulation in Heart. Drug Metab Dispos 2016; 44:68-74. [PMID: 26467765 DOI: 10.1124/dmd.115.066654] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/08/2015] [Indexed: 02/13/2025] Open
Abstract
Clinical reports indicate that cardiotoxicity due to donepezil can occur after coadministration with cilostazol. We speculated that the concentration of donepezil in heart tissue might be increased as a result of interaction with cilostazol at efflux transporters such as P-glycoprotein (P-gp, ABCB1) and breast cancer resistance protein (BCRP, ABCG2), which are expressed in many tissues including the heart, and our study tested this hypothesis. First, donepezil was confirmed to be a substrate of both BCRP and P-glycoprotein in transporter-transfected cells in vitro. Cilostazol inhibited BCRP and P-glycoprotein with half-inhibitory concentrations of 130 nM and 12.7 μM, respectively. Considering the clinically achievable unbound plasma concentration of cilostazol (about 200 nM), it is plausible that BCRP-mediated transport of donepezil would be affected by cilostazol in vivo. Indeed, in an in vivo rat study, we found that coadministration of cilostazol significantly increased the concentrations of donepezil in the heart and brain, where BCRP functions as a part of the blood-tissue barrier, whereas the plasma concentration of donepezil was unaffected. In addition, in vitro accumulation of donepezil in heart tissue slices of rats was significantly increased in the presence of cilostazol. These results indicate that donepezil-cilostazol interaction at BCRP may be clinically relevant in heart and brain tissues. In other words, the tissue distribution of drugs can be influenced by drug-drug interaction (DDI) at efflux transporters in certain tissues (local DDI) without any apparent change in plasma concentration (systemic DDI).
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/antagonists & inhibitors
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Acridines/pharmacology
- Administration, Intravenous
- Administration, Oral
- Animals
- Biological Transport
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/metabolism
- Cardiotoxicity
- Cholinesterase Inhibitors/administration & dosage
- Cholinesterase Inhibitors/chemistry
- Cholinesterase Inhibitors/pharmacokinetics
- Cholinesterase Inhibitors/toxicity
- Cilostazol
- Dogs
- Donepezil
- Drug Interactions
- Female
- In Vitro Techniques
- Indans/administration & dosage
- Indans/blood
- Indans/pharmacokinetics
- Indans/toxicity
- Madin Darby Canine Kidney Cells
- Male
- Models, Biological
- Myocardium/metabolism
- Piperidines/administration & dosage
- Piperidines/blood
- Piperidines/pharmacokinetics
- Piperidines/toxicity
- Rats, Wistar
- Tetrahydroisoquinolines/pharmacology
- Tetrazoles/pharmacology
- Tetrazoles/toxicity
- Tissue Distribution
- Transfection
Collapse
Affiliation(s)
- Ryota Takeuchi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa (R.T., T.N., I.T.) and Hikuma Pharmacy, Hamamatsu (K.S.), Japan
| | - Kohki Shinozaki
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa (R.T., T.N., I.T.) and Hikuma Pharmacy, Hamamatsu (K.S.), Japan
| | - Takeo Nakanishi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa (R.T., T.N., I.T.) and Hikuma Pharmacy, Hamamatsu (K.S.), Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa (R.T., T.N., I.T.) and Hikuma Pharmacy, Hamamatsu (K.S.), Japan
| |
Collapse
|
45
|
Laughney AM, Kim E, Sprachman MM, Miller MA, Kohler RH, Yang KS, Orth JD, Mitchison TJ, Weissleder R. Single-cell pharmacokinetic imaging reveals a therapeutic strategy to overcome drug resistance to the microtubule inhibitor eribulin. Sci Transl Med 2015; 6:261ra152. [PMID: 25378644 DOI: 10.1126/scitranslmed.3009318] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eribulin mesylate was developed as a potent microtubule-targeting cytotoxic agent to treat taxane-resistant cancers, but recent clinical trials have shown that it eventually fails in many patient subpopulations for unclear reasons. To investigate its resistance mechanisms, we developed a fluorescent analog of eribulin with pharmacokinetic (PK) properties and cytotoxic activity across a human cell line panel that are sufficiently similar to the parent drug to study its cellular PK and tissue distribution. Using intravital imaging and automated tracking of cellular dynamics, we found that resistance to eribulin and the fluorescent analog depended directly on the multidrug resistance protein 1 (MDR1). Intravital imaging allowed for real-time analysis of in vivo PK in tumors that were engineered to be spatially heterogeneous for taxane resistance, whereby an MDR1-mApple fusion protein distinguished resistant cells fluorescently. In vivo, MDR1-mediated drug efflux and the three-dimensional tumor vascular architecture were discovered to be critical determinants of drug accumulation in tumor cells. We furthermore show that standard intravenous administration of a third-generation MDR1 inhibitor, HM30181, failed to rescue drug accumulation; however, the same MDR1 inhibitor encapsulated within a nanoparticle delivery system reversed the multidrug-resistant phenotype and potentiated the eribulin effect in vitro and in vivo in mice. Our work demonstrates that in vivo assessment of cellular PK of an anticancer drug is a powerful strategy for elucidating mechanisms of drug resistance in heterogeneous tumors and evaluating strategies to overcome this resistance.
Collapse
Affiliation(s)
- Ashley M Laughney
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - Eunha Kim
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - Melissa M Sprachman
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - Rainer H Kohler
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - Katy S Yang
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - James D Orth
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA. Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
46
|
Ween MP, Armstrong MA, Oehler MK, Ricciardelli C. The role of ABC transporters in ovarian cancer progression and chemoresistance. Crit Rev Oncol Hematol 2015; 96:220-56. [PMID: 26100653 DOI: 10.1016/j.critrevonc.2015.05.012] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/08/2015] [Accepted: 05/18/2015] [Indexed: 02/06/2023] Open
Abstract
Over 80% of ovarian cancer patients develop chemoresistance which results in a lethal course of the disease. A well-established cause of chemoresistance involves the family of ATP-binding cassette transporters, or ABC transporters that transport a wide range of substrates including metabolic products, nutrients, lipids, and drugs across extra- and intra-cellular membranes. Expressions of various ABC transporters, shown to reduce the intracellular accumulation of chemotherapy drugs, are increased following chemotherapy and impact on ovarian cancer survival. Although clinical trials to date using ABC transporter inhibitors have been disappointing, ABC transporter inhibition remains an attractive potential adjuvant to chemotherapy. A greater understanding of their physiological functions and role in ovarian cancer chemoresistance will be important for the development of more effective targeted therapies. This article will review the role of the ABC transporter family in ovarian cancer progression and chemoresistance as well as the clinical attempts used to date to reverse chemoresistance.
Collapse
Affiliation(s)
- M P Ween
- Lung Research, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide
| | - M A Armstrong
- Data Management and Analysis Centre, University of Adelaide, Australia
| | - M K Oehler
- Gynaecological Oncology Department, Royal Adelaide Hospital, Australia; School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Australia
| | - C Ricciardelli
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Australia.
| |
Collapse
|
47
|
Kim TE, Lee H, Lim KS, Lee S, Yoon SH, Park KM, Han H, Shin SG, Jang IJ, Yu KS, Cho JY. Effects of HM30181, a P-glycoprotein inhibitor, on the pharmacokinetics and pharmacodynamics of loperamide in healthy volunteers. Br J Clin Pharmacol 2015; 78:556-64. [PMID: 24602137 DOI: 10.1111/bcp.12368] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 02/27/2014] [Indexed: 01/02/2023] Open
Abstract
AIMS HM30181 is a third generation P-glycoprotein (P-gp) inhibitor currently under development. The objectives of this study were to evaluate the effects of a single dose of HM30181 on the pharmacodynamics and pharmacokinetics of loperamide, a P-gp substrate, and to compare them with those of quinidine. METHODS Eighteen healthy male subjects were administered loperamide alone (period 1) or with loperamide plus quinidine or HM30181 in period 2 or 3, respectively. In period 3, subjects randomly received one of three HM30181 doses: 15, 60 or 180 mg. Changes in pupil size, alertness, oxygen saturation and the oral bioavailability of loperamide were assessed in each period. In addition, the pharmacokinetics of HM30181 were determined. RESULTS Pupil size, alertness and oxygen saturation did not change over time when loperamide alone or loperamide plus HM30181 was administered while HM30181 significantly increased the systemic exposure to loperamide, i.e. the geometric mean ratio (90% confidence interval) of AUC(0,tlast ) for loperamide with and without HM30181 was 1.48 (1.08, 2.02). Co-administered quinidine significantly increased the systemic exposure to loperamide 2.2-fold (1.53, 3.18), which also markedly reduced pupil size, resulting in a decrease of 24.7 mm h in the area under the effect curve of pupil size change from baseline compared with loperamide alone. CONCLUSIONS HM30181 inhibits P-gp mainly in the intestinal endothelium, which can be beneficial because pan-inhibition of P-gp, particularly in the brain, could lead to detrimental adverse events. Further studies are warranted to investigate adequately the dose-exposure relationship of HM30181, along with its duration of effect.
Collapse
Affiliation(s)
- Tae-Eun Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Köhler SC, Wiese M. HM30181 Derivatives as Novel Potent and Selective Inhibitors of the Breast Cancer Resistance Protein (BCRP/ABCG2). J Med Chem 2015; 58:3910-21. [PMID: 25855895 DOI: 10.1021/acs.jmedchem.5b00188] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The breast cancer resistance protein (BCRP, ABCG2) belongs to the superfamily of ATP binding-cassette (ABC) proteins. In addition to other physiological functions, it transports potentially cell-damaging compounds out of the cell using the energy from ATP hydrolysis. Certain tumors overexpressing BCRP were found to become resistant against various anticancer drugs. In previous work, we found that tariquidar analogues lacking the tetrahydroisoquinoline moiety selectively inhibit BCRP. In the present study, we synthesized 21 derivatives of the third-generation P-gp inhibitor HM30181, which is structurally related to tariquidar. The compounds were tested for their inhibitory activities against BCRP and screened against P-glycoprotein (P-gp, ABCB1) and multidrug resistance protein 1 (MRP1, ABCC1) to confirm the selectivity toward BCRP. The most potent compounds are selective toward BCRP and 2-fold more potent than the reference Ko143. Qualitative structure-activity relationship (SAR) analysis revealed that the presence of a methoxy group in the ortho or para position of at least one phenyl ring is beneficial for inhibitory activity. Furthermore, the cytotoxicity and multidrug resistance (MDR)-reversal ability of selected compounds were investigated. It was shown that they have a low cytotoxicity and the ability to reverse the BCRP-mediated SN-38 resistance.
Collapse
Affiliation(s)
- Sebastian C Köhler
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Michael Wiese
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
49
|
Shanmugam S, Im HT, Sohn YT, Kim YI, Park JH, Park ES, Woo JS. Enhanced oral bioavailability of paclitaxel by solid dispersion granulation. Drug Dev Ind Pharm 2015; 41:1864-76. [DOI: 10.3109/03639045.2015.1018275] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Miklos W, Pelivan K, Kowol CR, Pirker C, Dornetshuber-Fleiss R, Spitzwieser M, Englinger B, van Schoonhoven S, Cichna-Markl M, Koellensperger G, Keppler BK, Berger W, Heffeter P. Triapine-mediated ABCB1 induction via PKC induces widespread therapy unresponsiveness but is not underlying acquired triapine resistance. Cancer Lett 2015; 361:112-20. [PMID: 25749419 DOI: 10.1016/j.canlet.2015.02.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/26/2015] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
Abstract
Although triapine is promising for treatment of advanced leukemia, it failed against solid tumors due to widely unknown reasons. To address this issue, a new triapine-resistant cell line (SW480/tria) was generated by drug selection and investigated in this study. Notably, SW480/tria cells displayed broad cross-resistance against several known ABCB1 substrates due to high ABCB1 levels (induced by promoter hypomethylation). However, ABCB1 inhibition did not re-sensitize SW480/tria cells to triapine and subsequent analysis revealed that triapine is only a weak ABCB1 substrate without significant interaction with the ABCB1 transport function. Interestingly, in chemo-naive, parental SW480 cells short-time (24 h) treatment with triapine stimulated ABCB1 expression. These effects were based on activation of protein kinase C (PKC), a known response to cellular stress. In accordance, SW480/tria cells were characterized by elevated levels of PKC. Together, this led to the conclusion that increased ABCB1 expression is not the major mechanism of triapine resistance in SW480/tria cells. In contrast, increased ABCB1 expression was found to be a consequence of triapine stress-induced PKC activation. These data are especially of importance when considering the choice of chemotherapeutics for combination with triapine.
Collapse
Affiliation(s)
- W Miklos
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - K Pelivan
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria; Research Platform "Translational Cancer Therapy Research", Vienna, Austria
| | - C R Kowol
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria; Research Platform "Translational Cancer Therapy Research", Vienna, Austria
| | - C Pirker
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - R Dornetshuber-Fleiss
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria; Department of Pharmacology and Toxicology, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - M Spitzwieser
- Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, A-1090 Vienna, Austria
| | - B Englinger
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - S van Schoonhoven
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - M Cichna-Markl
- Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, A-1090 Vienna, Austria
| | - G Koellensperger
- Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, A-1090 Vienna, Austria
| | - B K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria; Research Platform "Translational Cancer Therapy Research", Vienna, Austria
| | - W Berger
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria; Research Platform "Translational Cancer Therapy Research", Vienna, Austria
| | - P Heffeter
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria; Research Platform "Translational Cancer Therapy Research", Vienna, Austria.
| |
Collapse
|