1
|
Luan X, Zhu D, Hao Y, Xie J, Wang X, Li Y, Zhu J. Qibai Pingfei Capsule ameliorated inflammation in chronic obstructive pulmonary disease (COPD) via HIF-1 α/glycolysis pathway mediated of BMAL1. Int Immunopharmacol 2025; 144:113636. [PMID: 39579541 DOI: 10.1016/j.intimp.2024.113636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized for the persistent inflammation. The brain and muscle arnt-like 1 (BMAL1), as a crucial clock gene, is associated with the expression level of upstream factor hypoxia-inducible factor (HIF)-1α in glycolysis, which may affect the occurrence of inflammatory reactions in COPD. However, the moderation effect of Qibai Pingfei Capsule (QBPF) capsule is still unknown on BMAL1 and HIF-1α/glycolytic pathway. OBJECTIVE The aim of this study is to investigate the modulatory effects of QBPF capsules on BMAL1 and the HIF-1α/glycolytic pathway in COPD. METHODS The multifactorial approach were used to construct the COPD rat model, including forced swimming, hypoxia, and inhalation of cigarette smoke with four weeks. Nextly, the rats received a two-week course of gavage treatment with medicant. Finally, tissue samples were collected for comprehensive analysis using various molecular biology techniques. These methods included molecular docking, immunoprecipitation, small interfering RNA (siRNA), hematoxylin and eosin (HE) staining, western blot (WB), and immunofluorescence etc. to elucidate the modulatory effects of QBPF for treating COPD in vitro and in vivo. RESULTS The expression levels in mRNA and protein of BMAL1 decreased in COPD, while the content in mRNA and protein of HIF-1α increased. At the same time, the concentration in glycolytic metabolites of hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), lactate dehydrogenase (LDH), and lactate (LD) increased, and ATP decreased. The QBPF capsule can reverse the imbalance between BMAL1 and HIF-1α, improve disorders of glycolytic pathway, and alleviate the inflammation response. Notably, in vivo experiments, the interaction between BMAL1 and HIF-1α were confirmed via molecular docking and immunoprecipitation. In rescue experiments, intervention with siRNA BMAL1 in 16HBE cells revealed a significant decrease in BMAL1 levels and the therapeutic effect of QBPF was also affected. CONCLUSION QBPF could up-regulate the expression level of clock gene BMAL1, thereby regulating the HIF-1α/glycolytic pathway and metabolite to improve the inflammatory response in COPD.
Collapse
Affiliation(s)
- Xuejing Luan
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Dandan Zhu
- Research Center of Integrated Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu 241002, China
| | - Yifei Hao
- Research Center of Integrated Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu 241002, China
| | - Jinghui Xie
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xiu Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu 241002, China
| | - Yan Li
- Yijishan Hospital Affiliated to Wannan Medical College, Wuhu 241001, China
| | - Jie Zhu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; Research Center of Integrated Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu 241002, China.
| |
Collapse
|
2
|
Rumora L, Markelić I, Hlapčić I, Tomašković AH, Fabijanec M, Džubur F, Samaržija M, Dugac AV. Assessment of NLRP3 inflammasome activation in patients with chronic obstructive pulmonary disease before and after lung transplantation. Immunol Res 2024; 72:964-974. [PMID: 38811459 PMCID: PMC11564204 DOI: 10.1007/s12026-024-09497-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
The interplay between purinergic receptors as well as pattern recognition receptors like Toll-like receptors (TLRs) and NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) might have a role in the pathogenesis of chronic obstructive pulmonary disease (COPD). The aim of this study was to determine and compare the concentrations of the damage-associated molecular patterns (DAMPs) heat shock protein 70 (Hsp70) and adenosine triphosphate (ATP), and gene expression of their respective receptors as well as NLRP3 inflammasome-related molecules in the peripheral blood of patients with end-stage COPD before and 1 year after lung transplantation (LT). Lung function was assessed by spirometry and diffusion capacity for carbon monoxide (DLCO). Quantitative polymerase chain reaction (qPCR) was applied for detection of TLR2, TLR4, P2X7R, P2Y2R, IL1B, CASP1, and NLRP3 expression. High-sensitivity ELISA kits were used for extracellular (e) Hsp70 and IL-1β, and luminescence assay for eATP measurements. Concentrations of eHsp70 and eATP as well as IL-1β were significantly increased in the plasma of end-stage COPD patients and significantly decreased after LT. In addition, TLR4, P2Y2R, IL1B, CASP1, and NLRP3 expression was up-regulated in COPD patients before LT, while it was significantly suppressed after LT. In conclusion, it could be assumed that NLRP3 inflammasome is activated in the peripheral blood of end-stage COPD patients and that eHsp70 and eATP could be responsible for its activation through triggering their receptors. On the other hand, previously enhanced pro-inflammatory reactions seem to be suppressed to the healthy population levels in lung recipients without allograft rejection.
Collapse
Affiliation(s)
- Lada Rumora
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Ivona Markelić
- Clinic for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Iva Hlapčić
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Andrea Hulina Tomašković
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Marija Fabijanec
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
- Centre for Applied Medical Biochemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Feđa Džubur
- Clinic for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Miroslav Samaržija
- Clinic for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Andrea Vukić Dugac
- Clinic for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, Zagreb, Croatia.
- School of Medicine, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
3
|
Chan NJ, Chen YY, Hsu CC, Lin YS, Zakeri M, Kim S, Khosravi M, Lee LY. Release of ATP in the lung evoked by inhalation of irritant gases in rats. J Appl Physiol (1985) 2024; 137:581-590. [PMID: 38932688 PMCID: PMC11424173 DOI: 10.1152/japplphysiol.00137.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Abstract
Adenosine triphosphate (ATP) can be released into the extracellular milieu from various types of cells in response to a wide range of physical or chemical stresses. In the respiratory tract, extracellular ATP is recognized as an important signal molecule and trigger of airway inflammation. Chlorine (Cl2), sulfur dioxide (SO2), and ammonia (NH3) are potent irritant gases and common industrial air pollutants due to their widespread uses as chemical agents. This study was carried out to determine if acute inhalation challenges of these irritant gases, at the concentration and duration simulating the accidental exposures to these chemical gases in industrial operations, triggered the release of ATP in the rat respiratory tract; and if so, whether the level of ATP in bronchoalveolar lavage fluid (BALF) evoked by inhalation challenge of a given irritant gas was elevated by chronic allergic airway inflammation. Our results showed: 1) inhalation of these irritant gases caused significant increases in the ATP level in BALF, and the magnitude of evoked ATP release was in the order of Cl2 > SO2 > NH3. 2) Chronic airway inflammation induced by ovalbumin-sensitization markedly elevated the ATP level in BALF during baseline (breathing room air) but did not potentiate the release of ATP in the lung triggered by inhalation challenges of these irritant gases. These findings suggested a possible involvement of the ATP release in the lung in the regulation of overall airway responses to acute inhalation of irritant gases and the pathogenesis of chronic allergic airway inflammation.NEW & NOTEWORTHY Extracellular adenosine triphosphate (ATP) is a contributing factor and signaling molecule of airway inflammation. This study demonstrated for the first time that the ATP release in the lung was markedly elevated after acute inhalation challenges of three common industrial air pollutants; the order of the response magnitude was chlorine > sulfur dioxide > ammonia. These findings provided new information and improved our understanding of the adverse pulmonary effects caused by accidental inhalation exposures to these irritant gases.
Collapse
Affiliation(s)
- Nai-Ju Chan
- Department of Physiology, University of Kentucky Medical Center, Lexington, Kentucky, United States
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yueh-Yin Chen
- Department of Physiology, University of Kentucky Medical Center, Lexington, Kentucky, United States
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Chun Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - You Shuei Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Maxwell Zakeri
- Department of Physiology, University of Kentucky Medical Center, Lexington, Kentucky, United States
| | - Seonwook Kim
- Department of Physiology, University of Kentucky Medical Center, Lexington, Kentucky, United States
| | - Mehdi Khosravi
- Department of Medicine, University of Kentucky Medical Center, Lexington, Kentucky, United States
| | - Lu-Yuan Lee
- Department of Physiology, University of Kentucky Medical Center, Lexington, Kentucky, United States
| |
Collapse
|
4
|
Gairola S, Sinha A, Kaundal RK. Linking NLRP3 inflammasome and pulmonary fibrosis: mechanistic insights and promising therapeutic avenues. Inflammopharmacology 2024; 32:287-305. [PMID: 37991660 DOI: 10.1007/s10787-023-01389-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023]
Abstract
Pulmonary fibrosis is a devastating disorder distinguished by redundant inflammation and matrix accumulation in the lung interstitium. The early inflammatory cascade coupled with recurring tissue injury orchestrates a set of events marked by perturbed matrix hemostasis, deposition of matrix proteins, and remodeling in lung tissue. Numerous investigations have corroborated a direct correlation between the NLR family pyrin domain-containing 3 (NLRP3) activation and the development of pulmonary fibrosis. Dysregulated activation of NLRP3 within the pulmonary microenvironment exacerbates inflammation and may incite fibrogenic responses. Nevertheless, the precise mechanisms through which the NLRP3 inflammasome elicits pro-fibrogenic responses remain inadequately defined. Contemporary findings suggest that the pro-fibrotic consequences stemming from NLRP3 signaling primarily hinge on the action of interleukin-1β (IL-1β). IL-1β instigates IL-1 receptor signaling, potentiating the activity of transforming growth factor-beta (TGF-β). This signaling cascade, in turn, exerts influence over various transcription factors, including SNAIL, TWIST, and zinc finger E-box-binding homeobox 1 (ZEB 1/2), which collectively foster myofibroblast activation and consequent lung fibrosis. Here, we have connected the dots to illustrate how the NLRP3 inflammasome orchestrates a multitude of signaling events, including the activation of transcription factors that facilitate myofibroblast activation and subsequent lung remodeling. In addition, we have highlighted the prominent role played by various cells in the formation of myofibroblasts, the primary culprit in lung fibrosis. We also provided a concise overview of various compounds that hold the potential to impede NLRP3 inflammasome signaling, thus offering a promising avenue for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Shobhit Gairola
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India
| | - Antarip Sinha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India.
| |
Collapse
|
5
|
Fang H, Dong T, Li S, Zhang Y, Han Z, Liu M, Dong W, Hong Z, Fu M, Zhang H. A Bibliometric Analysis of Comorbidity of COPD and Lung Cancer: Research Status and Future Directions. Int J Chron Obstruct Pulmon Dis 2023; 18:3049-3065. [PMID: 38149238 PMCID: PMC10750778 DOI: 10.2147/copd.s425735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023] Open
Abstract
Objective Although studies on the association between COPD and lung cancer are of great significance, no bibliometric analysis has been conducted in the field of their comorbidity. This bibliometric analysis explores the current situation and frontier trends in the field of COPD and lung cancer comorbidity, and to lay a new direction for subsequent research. Methods Articles in the field of COPD and cancer comorbidity were retrieved from Web of Science Core Collections (WoSCC) from 2004 to 2023, and analyzed by VOSviewer, CiteSpace, Biblimatrix and WPS Office. Results In total, 3330 publications were included. The USA was the leading country with the most publications and great influence. The University of Groningen was the most productive institution. Edwin Kepner Silverman was the most influential scholar in this field. PLOS One was found to be the most prolific journal. Mechanisms and risk factors were of vital importance in this research field. Environmental pollution and pulmonary fibrosis may be future research prospects. Conclusion This bibliometric analysis provided new guidance for the development of the field of COPD and lung cancer comorbidity by visualizing current research hotspots, and predicting possible hot research directions in the future.
Collapse
Affiliation(s)
- Hanyu Fang
- Graduate School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China, 100029
- Department of Traditional Chinese Medicine for Pulmonary Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Tairan Dong
- Graduate School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China, 100029
| | - Shanlin Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China, 100029
| | - Yihan Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China, 100029
| | - Zhuojun Han
- Graduate School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China, 100029
| | - Mingfei Liu
- Graduate School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China, 100029
- Department of Traditional Chinese Medicine for Pulmonary Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Wenjun Dong
- Graduate School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China, 100029
- Department of Traditional Chinese Medicine for Pulmonary Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Zheng Hong
- Graduate School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China, 100029
- Department of Traditional Chinese Medicine for Pulmonary Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Min Fu
- Department of Infectious Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100029, People’s Republic of China
| | - Hongchun Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China, 100029
- Department of Traditional Chinese Medicine for Pulmonary Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| |
Collapse
|
6
|
Shen Y, Chen L, Chen J, Qin J, Wang T, Wen F. Mitochondrial damage-associated molecular patterns in chronic obstructive pulmonary disease: Pathogenetic mechanism and therapeutic target. J Transl Int Med 2023; 11:330-340. [PMID: 38130648 PMCID: PMC10732348 DOI: 10.2478/jtim-2022-0019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common inflammatory airway disease characterized by enhanced inflammation. Recent studies suggest that mitochondrial damage-associated molecular patterns (DAMPs) may play an important role in the regulation of inflammation and are involved in a serial of inflammatory diseases, and they may also be involved in COPD. This review highlights the potential role of mitochondrial DAMPs during COPD pathogenesis and discusses the therapeutic potential of targeting mitochondrial DAMPs and their related signaling pathways and receptors for COPD. Research progress on mitochondrial DAMPs may enhance our understanding of COPD inflammation and provide novel therapeutic targets.
Collapse
Affiliation(s)
- Yongchun Shen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Lei Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Jun Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Jiangyue Qin
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Fuqiang Wen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| |
Collapse
|
7
|
Kotlyarov S. The Role of Smoking in the Mechanisms of Development of Chronic Obstructive Pulmonary Disease and Atherosclerosis. Int J Mol Sci 2023; 24:8725. [PMID: 37240069 PMCID: PMC10217854 DOI: 10.3390/ijms24108725] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Tobacco smoking is a major cause of chronic obstructive pulmonary disease (COPD) and atherosclerotic cardiovascular disease (ASCVD). These diseases share common pathogenesis and significantly influence each other's clinical presentation and prognosis. There is increasing evidence that the mechanisms underlying the comorbidity of COPD and ASCVD are complex and multifactorial. Smoking-induced systemic inflammation, impaired endothelial function and oxidative stress may contribute to the development and progression of both diseases. The components present in tobacco smoke can have adverse effects on various cellular functions, including macrophages and endothelial cells. Smoking may also affect the innate immune system, impair apoptosis, and promote oxidative stress in the respiratory and vascular systems. The purpose of this review is to discuss the importance of smoking in the mechanisms underlying the comorbid course of COPD and ASCVD.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
8
|
Airway Smooth Muscle Regulated by Oxidative Stress in COPD. Antioxidants (Basel) 2023; 12:antiox12010142. [PMID: 36671004 PMCID: PMC9854973 DOI: 10.3390/antiox12010142] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Since COPD is a heterogeneous disease, a specific anti-inflammatory therapy for this disease has not been established yet. Oxidative stress is recognized as a major predisposing factor to COPD related inflammatory responses, resulting in pathological features of small airway fibrosis and emphysema. However, little is known about effects of oxidative stress on airway smooth muscle. Cigarette smoke increases intracellular Ca2+ concentration and enhances response to muscarinic agonists in human airway smooth muscle. Cigarette smoke also enhances proliferation of these cells with altered mitochondrial protein. Hydrogen peroxide and 8-isoprostans are increased in the exhaled breath condensate in COPD. These endogenous oxidants cause contraction of tracheal smooth muscle with Ca2+ dynamics through Ca2+ channels and with Ca2+ sensitization through Rho-kinase. TNF-α and growth factors potentiate proliferation of these cells by synthesis of ROS. Oxidative stress can alter the function of airway smooth muscle through Ca2+ signaling. These phenotype changes are associated with manifestations (dyspnea, wheezing) and pathophysiology (airflow limitation, airway remodeling, airway hyperresponsiveness). Therefore, airway smooth muscle is a therapeutic target against COPD; oxidative stress should be included in treatable traits for COPD to advance precision medicine. Research into Ca2+ signaling related to ROS may contribute to the development of a novel agent for COPD.
Collapse
|
9
|
Yousefzadeh Y, Soltani-Zangbar MS, Kalafi L, Tarbiat A, Shahmohammadi Farid S, Aghebati-Maleki L, Parhizkar F, Danaii S, Taghavi S, Jadidi-Niaragh F, Samadi Kafil H, Mahmoodpoor A, Ahmadian Heris J, Hojjat-Farsangi M, Yousefi M. Evaluation of CD39, CD73, HIF-1α, and their related miRNAs expression in decidua of preeclampsia cases compared to healthy pregnant women. Mol Biol Rep 2022; 49:10183-10193. [PMID: 36048381 DOI: 10.1007/s11033-022-07887-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The Preeclampsia (PE) molecular mechanisms are not fully revealed and different biological processes are involved in the pathogenesis of PE. We aimed to evaluate adenosine and hypoxia-related signaling molecules in PE patients in the current study. METHODS Decidua tissue and peripheral blood samples were taken from 25 healthy pregnant and 25 PE women at delivery time. CD39, CD73, and Hypoxia-inducible factor-alpha (HIF-α) were evaluated in mRNA and protein level using real-time PCR and western blotting techniques, respectively. Also, miR-30a, miR-206, and miR-18a expression were evaluated by real-time PCR. At last, secretion levels of IGF and TGF-β in the taken serum of blood samples were measured by ELISA. RESULTS Our results revealed that Expression of CD39 is decreased in PE cases versus healthy controls at mRNA and protein levels (p = 0.0003 for both). CD73 and HIF-α showed an increased level of expression in PE patients at RNA and protein status (p = 0.0157 and p < 0.0001 for protein evaluation of CD73 and HIF-α, respectively). The miRNA-30a (p = 0.0037) and miR-206 (p = 0.0113) showed elevated expression in the decidua of the PE group. The concentration of secreted IGF-1 (p = 0.0002) and TGF-β (p = 0.0101) in serum samples of PE cases compared to the healthy group were decreased. CONCLUSION In conclusion, our results showed that aberrant expression of molecules that are involved in ATP catabolism and the hypoxic conditions is observed in PE cases and involved in their hypertension and inflammation could be served as PE prognosis by more confirming in comprehensive future studies. miR-206 and miR-30a play a role by regulating CD39 and CD73 as molecules that are involved in ATP catabolism as well as regulating the production of IGF-1 in the process of hypertension, which is the main feature in patients with preeclampsia. On the other hand, decreased level of miR-18a lead to upregulation of HIF-1a, and the consequence condition of hypoxia increases hypertension and inflammation in these patients.
Collapse
Affiliation(s)
- Yousef Yousefzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Mohammad Sadegh Soltani-Zangbar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Ladan Kalafi
- Gynecology Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Tarbiat
- Department of Cardiology, Medical Faculty, Urmia University of Medical Sciences, Urmia, Iran
| | - Sima Shahmohammadi Farid
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | | | - Forough Parhizkar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART Center, Eastern Azerbaijan Branch of ACECR, Tabriz, Iran
| | - Simin Taghavi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran.
| |
Collapse
|
10
|
MIR-548ar-3p increases cigarette smoke extractinduced chronic obstructive pulmonary disease (COPD) injury through solute carrier family 17 member 9 (SLC17A9). ARCH BIOL SCI 2022. [DOI: 10.2298/abs220201008z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
This study investigated the effect of microRNA mir-548ar-3p on cigarette
smoke extract (CSE)-induced chronic obstructive pulmonary disease (COPD).
High-throughput sequencing was performed on peripheral blood from smoking
COPD patients and non-smoking individuals with normal pulmonary function,
and mir-548ar-3p RNA, possessing large differential expression was selected.
Experimental groups were divided into control, experimental model (EM),
EM+mimic miRNA, negative control (NC) and EM+miR-548ar-3p groups; an empty
vector or miR-548ar-3p mimic was transfected into human bronchial epithelial
(HBE) cells. A COPD model was established by treating HBE cells with CSE.
Cell viability, apoptosis and solute carrier family 17 member 9 (SLC17A9)
protein expression were examined by cell counting kit-8, flow cytometry and
Western blotting, respectively. Cell viability in the EM+miR-548ar-3p group
decreased significantly, and the apoptosis rate and SLC17A9 protein
expression increased significantly compared with the control (P<0.05, all
groups). In smoking COPD patients, interferon (IFN)-? and interleukin
(IL)-17? expression detected by ELISA was significantly higher than in
normal individuals. miR-548ar-3p expression was significantly lower (P<0.05,
all groups). These findings suggest that miR-548ar-3p was expressed at a
lower level in COPD patients. miR-548ar-3p may increase the extent of
CSE-induced COPD injury through SLC17A9.
Collapse
|
11
|
Zhang J, Xu Q, Sun W, Zhou X, Fu D, Mao L. New Insights into the Role of NLRP3 Inflammasome in Pathogenesis and Treatment of Chronic Obstructive Pulmonary Disease. J Inflamm Res 2021; 14:4155-4168. [PMID: 34471373 PMCID: PMC8405160 DOI: 10.2147/jir.s324323] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/06/2021] [Indexed: 11/23/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an inflammatory lung disease characterized by chronic airway obstruction and emphysema. Accumulating studies have shown that the onset and development of COPD are related to an aberrant immune response induced by the dysregulation of a number of genetic and environmental factors, while the exact pathogenesis of this disease is not well defined. Emerging studies based on tests on samples from COPD patients, animal models, pharmacological and genetic data suggest that the NLR family pyrin domain containing 3 (NLRP3) inflammasome activation is required in the lung inflammatory responses in the development of COPD. Although the available clinical studies targeting the inflammasome effector cytokine, IL-1β, or IL-1 signaling do not show positive outcomes for COPD treatment, many alternative strategies have been proposed by recent emerging studies. Here, we highlight the recent progress in our understanding of the role of the NLRP3 inflammasome in COPD and propose possible future studies that may further elucidate the roles of the inflammasome in the pathogenesis or the intervention of this inflammatory lung disease.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, 226019, People's Republic of China.,Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226019, People's Republic of China
| | - Qiuyun Xu
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, 226019, People's Republic of China
| | - Weichen Sun
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, 226019, People's Republic of China
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, 226019, People's Republic of China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, 226019, People's Republic of China.,Basic Medical Research Center, School of Medicine, Nantong University, Nantong, Jiangsu, 226019, People's Republic of China
| |
Collapse
|
12
|
Bardsley EN, Pen DK, McBryde FD, Ford AP, Paton JFR. The inevitability of ATP as a transmitter in the carotid body. Auton Neurosci 2021; 234:102815. [PMID: 33993068 DOI: 10.1016/j.autneu.2021.102815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/10/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022]
Abstract
Atmospheric oxygen concentrations rose markedly at several points in evolutionary history. Each of these increases was followed by an evolutionary leap in organismal complexity, and thus the cellular adaptions we see today have been shaped by the levels of oxygen within our atmosphere. In eukaryotic cells, oxygen is essential for the production of adenosine 5'-triphosphate (ATP) which is the 'Universal Energy Currency' of life. Aerobic organisms survived by evolving precise mechanisms for converting oxygen within the environment into energy. Higher mammals developed specialised organs for detecting and responding to changes in oxygen content to maintain gaseous homeostasis for survival. Hypoxia is sensed by the carotid bodies, the primary chemoreceptor organs which utilise multiple neurotransmitters one of which is ATP to evoke compensatory reflexes. Yet, a paradox is presented in oxygen sensing cells of the carotid body when during periods of low oxygen, ATP is seemingly released in abundance to transmit this signal although the synthesis of ATP is theoretically halted because of its dependence on oxygen. We propose potential mechanisms to maintain ATP production in hypoxia and summarise recent data revealing elevated sensitivity of purinergic signalling within the carotid body during conditions of sympathetic overactivity and hypertension. We propose the carotid body is hypoxic in numerous chronic cardiovascular and respiratory diseases and highlight the therapeutic potential for modulating purinergic transmission.
Collapse
Affiliation(s)
- Emma N Bardsley
- Auckland University, Department of Physiology, Faculty of Health and Medical Sciences, 85 Park Road, Grafton 1023, New Zealand
| | - Dylan K Pen
- Auckland University, Department of Physiology, Faculty of Health and Medical Sciences, 85 Park Road, Grafton 1023, New Zealand
| | - Fiona D McBryde
- Auckland University, Department of Physiology, Faculty of Health and Medical Sciences, 85 Park Road, Grafton 1023, New Zealand
| | - Anthony P Ford
- CuraSen, 930 Brittan Avenue #306, San Carlos, CA 94070, USA
| | - Julian F R Paton
- Auckland University, Department of Physiology, Faculty of Health and Medical Sciences, 85 Park Road, Grafton 1023, New Zealand.
| |
Collapse
|
13
|
Xue M, Zeng Y, Lin R, Qu HQ, Zhang T, Zhang XD, Liang Y, Zhen Y, Chen H, Huang Z, Hu H, Zheng P, Hakonarson H, Zhou L, Sun B. Metabolomic profiling of anaerobic and aerobic energy metabolic pathways in chronic obstructive pulmonary disease. Exp Biol Med (Maywood) 2021; 246:1586-1596. [PMID: 33957804 DOI: 10.1177/15353702211008808] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
While there is no cure for chronic obstructive pulmonary disease (COPD), its progressive nature and the formidable challenge to manage its symptoms warrant a more extensive study of the pathogenesis and related mechanisms. A new emphasis on COPD study is the change of energy metabolism. For the first time, this study investigated the anaerobic and aerobic energy metabolic pathways in COPD using the metabolomic approach. Metabolomic analysis was used to investigate energy metabolites in 140 COPD patients. The significance of energy metabolism in COPD was comprehensively explored by the Global Initiative for Chronic Obstructive Lung Disease-GOLD grading, acute exacerbation vs. stable phase (either clinical stability or four-week stable phase), age group, smoking index, lung function, and COPD Assessment Test (CAT) score. Through comprehensive evaluation, we found that COPD patients have a significant imbalance in the aerobic and anaerobic energy metabolisms in resting state, and a high tendency of anaerobic energy supply mechanism that correlates positively with disease progression. This study highlighted the significance of anaerobic and low-efficiency energy supply pathways in lung injury and linked it to the energy-inflammation-lung ventilatory function and the motion limitation mechanism in COPD patients, which implies a novel therapeutic direction for this devastating disease.
Collapse
Affiliation(s)
- Mingshan Xue
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yifeng Zeng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Runpei Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Hui-Qi Qu
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Teng Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao 999078, China
| | - Xiaohua Douglas Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao 999078, China
| | - Yueting Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yingjie Zhen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Hao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Zhifeng Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Haisheng Hu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Peiyan Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Divisions of Human Genetics and Pulmonary Medicine, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luqian Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Baoqing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
14
|
Rashidi M, Wicks IP, Vince JE. Inflammasomes and Cell Death: Common Pathways in Microparticle Diseases. Trends Mol Med 2020; 26:1003-1020. [DOI: 10.1016/j.molmed.2020.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
|
15
|
Ijomone OK, Erukainure OL, Shallie P, Naicker T. Neurotoxicity in pre-eclampsia involves oxidative injury, exacerbated cholinergic activity and impaired proteolytic and purinergic activities in cortex and cerebellum. Hum Exp Toxicol 2020; 40:158-171. [PMID: 32772714 DOI: 10.1177/0960327120946477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Women with a history of pre-eclampsia (PE) tend to have a higher risk of developing cardiovascular and neurological diseases later in life. Imbalance in oxidative markers and purinergic enzymes have been implicated in the pathogenesis of neurological disease. This study investigated the effect of PE on oxidative imbalance, purinergic enzyme inhibitory activity, acetylcholinesterase and chymotrypsin activities in the brain of PE rat model at post-partum/post-natal day (PP/PND) 60. Pregnant rats divided into early-onset and late-onset groups were administered with Nω-nitro-l-arginine methyl through drinking water at gestational days 8-17. Rats were allowed free access to water throughout the pregnancy and allowed to deliver on their own. The mother and the pups were euthanized at PP and PND 60, respectively, the cortex and the cerebellum excised, homogenized and stored for analyses of the enzymes. Results showed an increase in nitric oxide and malondialdehyde with a concomitant decrease in reduced glutathione and superoxide dismutase, an indication of oxidative damage. Also, there was an increase in acetylcholinesterase activity with a decrease in chymotrypsin, adenylpyrophosphatase and ecto-nucleoside triphosphate diphosphohydrolase activities in both the cortex and the cerebellum of the mother and the pups at PND 60. These results indicate the involvement of oxidative stress, increased cholinergic activity and depleted proteolytic and purinergic activities in PE-induced neurotoxicity.
Collapse
Affiliation(s)
- O K Ijomone
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, 72753University of KwaZulu-Natal, Durban, South Africa
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Ondo State, Nigeria
| | - O L Erukainure
- Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - P Shallie
- Department of Anatomy, 361901Olabisi Onabanjo University, Ikenne, Ogun State, Nigeria
| | - T Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, 72753University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
16
|
Rosli S, Kirby FJ, Lawlor KE, Rainczuk K, Drummond GR, Mansell A, Tate MD. Repurposing drugs targeting the P2X7 receptor to limit hyperinflammation and disease during influenza virus infection. Br J Pharmacol 2019; 176:3834-3844. [PMID: 31271646 PMCID: PMC6780046 DOI: 10.1111/bph.14787] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022] Open
Abstract
Background and Purpose Severe influenza A virus (IAV) infections are associated with damaging hyperinflammation that can be fatal. There is an urgent need to identify new therapeutic agents to treat severe and pathogenic IAV infections. Repurposing of drugs with an existing and studied pharmacokinetic and safety profile is a highly attractive potential strategy. We have previously demonstrated that the NLRP3 inflammasome plays time‐dependent roles during severe IAV infection with early protective responses and later dysregulation leading to excessive inflammation, contributing to disease severity. Experimental Approach We tested two existing drugs, probenecid and AZ11645373, to target P2X7 receptor signalling and dampen NLRP3 inflammasome responses during severe IAV infection. In vitro, the drugs were assessed for their ability to limit NLRP3 inflammasome‐dependent IL‐1β secretion in macrophage cultures. In vivo, their effects were assessed on hyperinflammation and disease during severe IAV infection in C57BL/6 mice. Key Results Treatment of macrophages with probenecid or AZ11645373 in vitro diminished NLRP3 inflammasome‐dependent IL‐1β secretion. Intranasal therapeutic treatment of mice displaying severe influenza disease with probenecid or AZ11645373 reduced pro‐inflammatory cytokine production, cellular infiltrates in the lung, and provided protection against disease. Importantly, these drugs could be administered at either early or late stage of disease and provide therapeutic efficacy. Conclusions and Implications Our study demonstrates that the anti‐inflammatory drugs probenecid and AZ11645373, which have documented pharmacokinetics and safety profiles in humans, are effective at dampening hyperinflammation and severe influenza disease providing potentially new therapeutic strategies for treating severe or pathogenic IAV infections.
Collapse
Affiliation(s)
- Sarah Rosli
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Francis J Kirby
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Kate E Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Kate Rainczuk
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Ashley Mansell
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
17
|
Antonioli L, Blandizzi C, Pacher P, Haskó G. The Purinergic System as a Pharmacological Target for the Treatment of Immune-Mediated Inflammatory Diseases. Pharmacol Rev 2019; 71:345-382. [PMID: 31235653 PMCID: PMC6592405 DOI: 10.1124/pr.117.014878] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Immune-mediated inflammatory diseases (IMIDs) encompass a wide range of seemingly unrelated conditions, such as multiple sclerosis, rheumatoid arthritis, psoriasis, inflammatory bowel diseases, asthma, chronic obstructive pulmonary disease, and systemic lupus erythematosus. Despite differing etiologies, these diseases share common inflammatory pathways, which lead to damage in primary target organs and frequently to a plethora of systemic effects as well. The purinergic signaling complex comprising extracellular nucleotides and nucleosides and their receptors, the P2 and P1 purinergic receptors, respectively, as well as catabolic enzymes and nucleoside transporters is a major regulatory system in the body. The purinergic signaling complex can regulate the development and course of IMIDs. Here we provide a comprehensive review on the role of purinergic signaling in controlling immunity, inflammation, and organ function in IMIDs. In addition, we discuss the possible therapeutic applications of drugs acting on purinergic pathways, which have been entering clinical development, to manage patients suffering from IMIDs.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| | - Pál Pacher
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| | - György Haskó
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| |
Collapse
|
18
|
Grygorczyk R, Boudreault F, Tan JJ, Ponomarchuk O, Sokabe M, Furuya K. Mechanosensitive ATP release in the lungs: New insights from real-time luminescence imaging studies. CURRENT TOPICS IN MEMBRANES 2019; 83:45-76. [PMID: 31196610 DOI: 10.1016/bs.ctm.2019.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular ATP and other nucleotides are important autocrine/paracrine mediators that stimulate purinergic receptors and regulate diverse processes in the normal lungs. They are also associated with pathogenesis of a number of respiratory diseases and clinical complications including acute respiratory distress syndrome and ventilator induced lung injury. Mechanical forces are major stimuli for cellular ATP release but precise mechanisms responsible for this release are still debated. The present review intends to provide the current state of knowledge of the mechanisms of ATP release in the lung. Putative pathways of the release, including the contribution of cell membrane injury and cell lysis are discussed addressing their strength, weaknesses and missing evidence that requires future study. We also provide an overview of the recent technical advances in studying cellular ATP release in vitro and ex vivo. Special attention is given to new insights into lung ATP release obtained with the real-time luminescence ATP imaging. This includes recent data on stretch-induced mechanosensitive ATP release in a model and primary cells of lung alveoli in vitro as well as inflation-induced ATP release in airspaces and pulmonary blood vessels of lungs, ex vivo.
Collapse
Affiliation(s)
- Ryszard Grygorczyk
- Department of Medicine, Université de Montréal, Montréal, QC, Canada; Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
| | - Francis Boudreault
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Ju Jing Tan
- Department of Medicine, Université de Montréal, Montréal, QC, Canada; Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Olga Ponomarchuk
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Kishio Furuya
- Mechanobiology Laboratory, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
19
|
Careta O, Cuevas E, Muñoz-Esquerre M, López-Sánchez M, Pascual-González Y, Dorca J, Aliagas E, Santos S. Imbalance in the Expression of Genes Associated with Purinergic Signalling in the Lung and Systemic Arteries of COPD Patients. Sci Rep 2019; 9:2796. [PMID: 30808894 PMCID: PMC6391454 DOI: 10.1038/s41598-019-39233-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/18/2019] [Indexed: 12/14/2022] Open
Abstract
Growing evidence indicates that purinergic signalling is involved in the pathogenesis of chronic obstructive pulmonary disease (COPD) and in the vascular remodelling that occurs in other disorders; however, its role in initial vascular changes of COPD is not entirely known. We hypothesised that expression of genes regulating extracellular ATP and adenosine levels would be altered in the lung and systemic arteries of COPD patients. Quantitative real-time PCR was performed to analyse the relative expression of 17 genes associated with purinergic signalling and inflammation in lungs and intercostal arteries of never smokers (NS) (n = 16), non-obstructed smokers (NOS) (n = 17) and COPD patients (n = 21). Gene expression of ATP-degrading enzymes was decreased in both tissues of NOS and COPD patients compared to NS. NT5E expression (gene transcribing for an AMP hydrolyzing ectonucleotidase) was increased in both tissues in NOS compared to the other groups. P1 and P2 receptors did not show changes in expression. Expression of genes associated with inflammation (interleukin-13) was upregulated only in lung tissues of COPD. These findings suggest that the expression of different extracellular ATP-degrading enzymes is altered in smokers (NOS and COPD patients), promoting inflammation. However, the high NT5E expression found only in NOS could compensate this inflammatory environment.
Collapse
Affiliation(s)
- Oriol Careta
- Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Respiratory Medicine, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ester Cuevas
- Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Respiratory Medicine, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mariana Muñoz-Esquerre
- Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Respiratory Medicine, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Marta López-Sánchez
- Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Respiratory Medicine, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Yuliana Pascual-González
- Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Respiratory Medicine, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jordi Dorca
- Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Respiratory Medicine, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Elisabet Aliagas
- Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.
- Department of Respiratory Medicine, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain.
- Department of Clinical Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Salud Santos
- Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.
- Department of Respiratory Medicine, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain.
- Department of Clinical Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.
- Research Network in Respiratory Diseases (CIBERES), Madrid, Spain.
| |
Collapse
|
20
|
Aliagas E, Muñoz-Esquerre M, Cuevas E, Careta O, Huertas D, López-Sánchez M, Escobar I, Dorca J, Santos S. Is the purinergic pathway involved in the pathology of COPD? Decreased lung CD39 expression at initial stages of COPD. Respir Res 2018; 19:103. [PMID: 29807526 PMCID: PMC5972409 DOI: 10.1186/s12931-018-0793-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/27/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Extracellular adenosine triphosphate (ATP) is up-regulated in the airways of patients with chronic obstructive pulmonary disease (COPD), resulting in increased inflammation, bronchoconstriction, and cough. Although extracellular ATP levels are tightly controlled by nucleoside triphosphate diphosphohydrolase-1 (NTPDase1; also known as CD39) in the lungs, the role of CD39 in the pathology of COPD is unknown. We hypothesized that alterations in the expression and activity of CD39 could be part of the mechanisms for initiating and perpetuating the disease. METHODS We analyzed CD39 gene and protein expression as well as ATPase enzyme activity in lung tissue samples of patients with COPD (n = 17), non-obstructed smokers (NOS) (n = 16), and never smokers (NS) (n = 13). Morphometry studies were performed to analyze pulmonary vascular remodeling. RESULTS There was significantly decreased CD39 gene expression in the lungs of the COPD group (1.17 [0.85-1.81]) compared with the NOS group (1.88 [1.35-4.41]) and NS group (3.32 [1.23-5.39]) (p = 0.037). This attenuation correlated with higher systemic inflammation and intimal thickening of muscular pulmonary arteries in the COPD group. Lung CD39 protein levels were also lower in the COPD group (0.34 [0.22-0.92]) compared with the NOS group (0.67 [0.32-1.06]) and NS group (0.95 [0.4-1.1) (p = 0.133). Immunohistochemistry showed that CD39 was downregulated in lung parenchyma, epithelial bronchial cells, and the endothelial cells of pulmonary muscular arteries in the COPD group. ATPase activity in human pulmonary structures was reduced in the lungs of patients with COPD. CONCLUSION An attenuation of CD39 expression and activity is presented in lung tissue of stable COPD patients, which could lead to pulmonary ATP accumulation, favoring the development of pulmonary inflammation and emphysema. This may be a mechanism underlying the development of COPD.
Collapse
Affiliation(s)
- Elisabet Aliagas
- Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Respiratory Medicine, Unit of Chronic Obstructive Pulmonary Disease, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mariana Muñoz-Esquerre
- Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Respiratory Medicine, Unit of Chronic Obstructive Pulmonary Disease, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ester Cuevas
- Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Respiratory Medicine, Unit of Chronic Obstructive Pulmonary Disease, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Oriol Careta
- Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Respiratory Medicine, Unit of Chronic Obstructive Pulmonary Disease, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Daniel Huertas
- Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Respiratory Medicine, Unit of Chronic Obstructive Pulmonary Disease, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Marta López-Sánchez
- Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Respiratory Medicine, Unit of Chronic Obstructive Pulmonary Disease, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ignacio Escobar
- Department of Clinical Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Thoracic Surgery, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jordi Dorca
- Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Respiratory Medicine, Unit of Chronic Obstructive Pulmonary Disease, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Salud Santos
- Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain. .,Department of Respiratory Medicine, Unit of Chronic Obstructive Pulmonary Disease, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain. .,Department of Clinical Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain. .,Research Network in Respiratory Diseases (CIBERES), Madrid, Spain. .,Department of Respiratory Medicine, Bellvitge University Hospital - IDIBELL, University of Barcelona, c/ Feixa Llarga s/n. CP 08907, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
21
|
Bonvini SJ, Belvisi MG. Cough and airway disease: The role of ion channels. Pulm Pharmacol Ther 2017; 47:21-28. [PMID: 28669932 DOI: 10.1016/j.pupt.2017.06.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 01/07/2023]
Abstract
Cough is the most common reason for patients to visit a primary care physician, yet it remains an unmet medical need. It can be idiopathic in nature but can also be a troublesome symptom across chronic lung diseases such as asthma, COPD and idiopathic pulmonary fibrosis (IPF). Chronic cough affects up to 12% of the population and yet there are no safe and effective therapies. The cough reflex is regulated by vagal, sensory afferent nerves which innervate the airway. The Transient Receptor Potential (TRP) family of ion channels are expressed on sensory nerve terminals, and when activated can evoke cough. This review focuses on the role of 4 TRP channels; TRP Vannilloid 1 (TRPV1), TRP Ankyrin 1 (TRPA1), TRP Vannilloid 4 (TRPV4) and TRP Melastatin 8 (TRPM8) and the purinergic P2X3 receptor and their possible role in chronic cough. We conclude that these ion channels, given their expression profile and their role in the activation of sensory afferents and the cough reflex, may represent excellent therapeutic targets for the treatment of respiratory symptoms in chronic lung disease.
Collapse
Affiliation(s)
- Sara J Bonvini
- Respiratory Pharmacology Group, Airway Disease Section, National Heart & Lung Institute, Imperial College, Exhibition Road, London SW7 2AZ, UK
| | - Maria G Belvisi
- Respiratory Pharmacology Group, Airway Disease Section, National Heart & Lung Institute, Imperial College, Exhibition Road, London SW7 2AZ, UK.
| |
Collapse
|
22
|
Colarusso C, Terlizzi M, Molino A, Pinto A, Sorrentino R. Role of the inflammasome in chronic obstructive pulmonary disease (COPD). Oncotarget 2017; 8:81813-81824. [PMID: 29137224 PMCID: PMC5669850 DOI: 10.18632/oncotarget.17850] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/19/2017] [Indexed: 01/05/2023] Open
Abstract
Inflammation is central to the development of chronic obstructive pulmonary disease (COPD), a pulmonary disorder characterized by chronic bronchitis, chronic airway obstruction, emphysema, associated to progressive and irreversible decline of lung function. Emerging genetic and pharmacological evidence suggests that IL-1-like cytokines are highly detected in the sputum and broncho-alveolar lavage (BAL) of COPD patients, implying the involvement of the multiprotein complex inflammasome. So far, scientific evidence has focused on nucleotide-binding oligomerization domain-like receptors protein 3 (NLRP3) inflammasome, a specialized inflammatory signaling platform that governs the maturation and secretion of IL-1-like cytokines through the regulation of caspase-1-dependent proteolytic processing. Some studies revealed that it is involved during airway inflammation typical of COPD. Based on the influence of cigarette smoke in various respiratory diseases, including COPD, in this view we report its effects in inflammatory and immune responses in COPD mouse models and in human subjects affected by COPD. In sharp contrast to what reported on experimental and clinical studies, randomized clinical trials show that indirect inflammasome inhibitors did not have any beneficial effect in moderate to severe COPD patients.
Collapse
Affiliation(s)
- Chiara Colarusso
- Department of Pharmacy, University of Salerno, ImmunePharma s.r.l., Fisciano, Salerno, Italy
| | - Michela Terlizzi
- Department of Pharmacy, University of Salerno, ImmunePharma s.r.l., Fisciano, Salerno, Italy
| | - Antonio Molino
- Department of Medicine and Surgery, Respiratory Division, University of Naples “Federico II”, Naples, Italy
| | - Aldo Pinto
- Department of Pharmacy, University of Salerno, ImmunePharma s.r.l., Fisciano, Salerno, Italy
| | - Rosalinda Sorrentino
- Department of Pharmacy, University of Salerno, ImmunePharma s.r.l., Fisciano, Salerno, Italy
| |
Collapse
|
23
|
Abstract
Chronic obstructive pulmonary disease (COPD) and asthma are both common respiratory diseases that are associated with airflow reduction/obstruction and pulmonary inflammation. Whilst drug therapies offer adequate symptom control for many mild to moderate asthmatic patients, severe asthmatics and COPD patients symptoms are often not controlled, and in these cases, irreversible structural damage occurs with disease progression over time. Transient receptor potential (TRP) channels, in particular TRPV1, TRPA1, TRPV4 and TRPM8, have been implicated with roles in the regulation of inflammation and autonomic nervous control of the lungs. Evidence suggests that inflammation elevates levels of activators and sensitisers of TRP channels and additionally that TRP channel expression may be increased, resulting in excessive channel activation. The enhanced activity of these channels is thought to then play a key role in the propagation and maintenance of the inflammatory disease state and neuronal symptoms such as bronchoconstriction and cough. For TRPM8 the evidence is less clear, but as with TRPV1, TRPA1 and TRPV4, antagonists are being developed by multiple companies for indications including asthma and COPD, which will help in elucidating their role in respiratory disease.
Collapse
|
24
|
Wirsdörfer F, Jendrossek V. Modeling DNA damage-induced pneumopathy in mice: insight from danger signaling cascades. Radiat Oncol 2017; 12:142. [PMID: 28836991 PMCID: PMC5571607 DOI: 10.1186/s13014-017-0865-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/07/2017] [Indexed: 02/08/2023] Open
Abstract
Radiation-induced pneumonitis and fibrosis represent severe and dose-limiting side effects in the radiotherapy of thorax-associated neoplasms leading to decreased quality of life or - as a consequence of treatment with suboptimal radiation doses - to fatal outcomes by local recurrence or metastatic disease. It is assumed that the initial radiation-induced damage to the resident cells triggers a multifaceted damage-signalling cascade in irradiated normal tissues including a multifactorial secretory program. The resulting pro-inflammatory and pro-angiogenic microenvironment triggers a cascade of events that can lead within weeks to a pronounced lung inflammation (pneumonitis) or after months to excessive deposition of extracellular matrix molecules and tissue scarring (pulmonary fibrosis).The use of preclinical in vivo models of DNA damage-induced pneumopathy in genetically modified mice has helped to substantially advance our understanding of molecular mechanisms and signalling molecules that participate in the pathogenesis of radiation-induced adverse late effects in the lung. Herein, murine models of whole thorax irradiation or hemithorax irradiation nicely reproduce the pathogenesis of the human disease with respect to the time course and the clinical symptoms. Alternatively, treatment with the radiomimetic DNA damaging chemotherapeutic drug Bleomycin (BLM) has frequently been used as a surrogate model of radiation-induced lung disease. The advantage of the BLM model is that the symptoms of pneumonitis and fibrosis develop within 1 month.Here we summarize and discuss published data about the role of danger signalling in the response of the lung tissue to DNA damage and its cross-talk with the innate and adaptive immune systems obtained in preclinical studies using immune-deficient inbred mouse strains and genetically modified mice. Interestingly we observed differences in the role of molecules involved in damage sensing (TOLL-like receptors), damage signalling (MyD88) and immune regulation (cytokines, CD73, lymphocytes) for the pathogenesis and progression of DNA damage-induced pneumopathy between the models of pneumopathy induced by whole thorax irradiation or treatment with the radiomimetic drug BLM. These findings underline the importance to pursue studies in the radiation model(s) if we are to unravel the mechanisms driving radiation-induced adverse late effects.A better understanding of the cross-talk of danger perception and signalling with immune activation and repair mechanisms may allow a modulation of these processes to prevent or treat radiation-induced adverse effects. Vice-versa an improved knowledge of the normal tissue response to injury is also particularly important in view of the increasing interest in combining radiotherapy with immune checkpoint blockade or immunotherapies to avoid exacerbation of radiation-induced normal tissue toxicity.
Collapse
Affiliation(s)
- Florian Wirsdörfer
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Virchowstrasse 173, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Virchowstrasse 173, Essen, Germany.
| |
Collapse
|
25
|
Stallaert W, van der Westhuizen ET, Schönegge AM, Plouffe B, Hogue M, Lukashova V, Inoue A, Ishida S, Aoki J, Le Gouill C, Bouvier M. Purinergic Receptor Transactivation by the β2-Adrenergic Receptor Increases Intracellular Ca 2+ in Nonexcitable Cells. Mol Pharmacol 2017; 91:533-544. [PMID: 28280061 DOI: 10.1124/mol.116.106419] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 03/06/2017] [Indexed: 12/11/2022] Open
Abstract
The β2 adrenergic receptor (β2AR) increases intracellular Ca2+ in a variety of cell types. By combining pharmacological and genetic manipulations, we reveal a novel mechanism through which the β2AR promotes Ca2+ mobilization (pEC50 = 7.32 ± 0.10) in nonexcitable human embryonic kidney (HEK)293S cells. Downregulation of Gs with sustained cholera toxin pretreatment and the use of Gs-null HEK293 (∆Gs-HEK293) cells generated using the clustered regularly interspaced short palindromic repeat-associated protein-9 nuclease (CRISPR/Cas9) system, combined with pharmacological modulation of cAMP formation, revealed a Gs-dependent but cAMP-independent increase in intracellular Ca2+ following β2AR stimulation. The increase in cytoplasmic Ca2+ was inhibited by P2Y purinergic receptor antagonists as well as a dominant-negative mutant form of Gq, a Gq-selective inhibitor, and an inositol 1,4,5-trisphosphate (IP3) receptor antagonist, suggesting a role for this Gq-coupled receptor family downstream of the β2AR activation. Consistent with this mechanism, β2AR stimulation promoted the extracellular release of ATP, and pretreatment with apyrase inhibited the β2AR-promoted Ca2+ mobilization. Together, these data support a model whereby the β2AR stimulates a Gs-dependent release of ATP, which transactivates Gq-coupled P2Y receptors through an inside-out mechanism, leading to a Gq- and IP3-dependent Ca2+ mobilization from intracellular stores. Given that β2AR and P2Y receptors are coexpressed in various tissues, this novel signaling paradigm could be physiologically important and have therapeutic implications. In addition, this study reports the generation and validation of HEK293 cells deleted of Gs using the CRISPR/Cas9 genome editing technology that will undoubtedly be powerful tools to study Gs-dependent signaling.
Collapse
Affiliation(s)
- Wayne Stallaert
- Department of Biochemistry (W.S., E.T.v.d.W., A.-M.S., B.P., M.B.) and Institute for Research in Immunology and Cancer (W.S., E.T.v.d.W., A.-M.S., B.P., M.H., V.L., C.L.G., M.B.), Université de Montréal, Montréal, QC, Canada; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (A.I., S.I., J.A.); Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan (A.I.); and Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan (J.A.)
| | - Emma T van der Westhuizen
- Department of Biochemistry (W.S., E.T.v.d.W., A.-M.S., B.P., M.B.) and Institute for Research in Immunology and Cancer (W.S., E.T.v.d.W., A.-M.S., B.P., M.H., V.L., C.L.G., M.B.), Université de Montréal, Montréal, QC, Canada; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (A.I., S.I., J.A.); Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan (A.I.); and Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan (J.A.)
| | - Anne-Marie Schönegge
- Department of Biochemistry (W.S., E.T.v.d.W., A.-M.S., B.P., M.B.) and Institute for Research in Immunology and Cancer (W.S., E.T.v.d.W., A.-M.S., B.P., M.H., V.L., C.L.G., M.B.), Université de Montréal, Montréal, QC, Canada; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (A.I., S.I., J.A.); Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan (A.I.); and Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan (J.A.)
| | - Bianca Plouffe
- Department of Biochemistry (W.S., E.T.v.d.W., A.-M.S., B.P., M.B.) and Institute for Research in Immunology and Cancer (W.S., E.T.v.d.W., A.-M.S., B.P., M.H., V.L., C.L.G., M.B.), Université de Montréal, Montréal, QC, Canada; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (A.I., S.I., J.A.); Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan (A.I.); and Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan (J.A.)
| | - Mireille Hogue
- Department of Biochemistry (W.S., E.T.v.d.W., A.-M.S., B.P., M.B.) and Institute for Research in Immunology and Cancer (W.S., E.T.v.d.W., A.-M.S., B.P., M.H., V.L., C.L.G., M.B.), Université de Montréal, Montréal, QC, Canada; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (A.I., S.I., J.A.); Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan (A.I.); and Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan (J.A.)
| | - Viktoria Lukashova
- Department of Biochemistry (W.S., E.T.v.d.W., A.-M.S., B.P., M.B.) and Institute for Research in Immunology and Cancer (W.S., E.T.v.d.W., A.-M.S., B.P., M.H., V.L., C.L.G., M.B.), Université de Montréal, Montréal, QC, Canada; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (A.I., S.I., J.A.); Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan (A.I.); and Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan (J.A.)
| | - Asuka Inoue
- Department of Biochemistry (W.S., E.T.v.d.W., A.-M.S., B.P., M.B.) and Institute for Research in Immunology and Cancer (W.S., E.T.v.d.W., A.-M.S., B.P., M.H., V.L., C.L.G., M.B.), Université de Montréal, Montréal, QC, Canada; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (A.I., S.I., J.A.); Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan (A.I.); and Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan (J.A.)
| | - Satoru Ishida
- Department of Biochemistry (W.S., E.T.v.d.W., A.-M.S., B.P., M.B.) and Institute for Research in Immunology and Cancer (W.S., E.T.v.d.W., A.-M.S., B.P., M.H., V.L., C.L.G., M.B.), Université de Montréal, Montréal, QC, Canada; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (A.I., S.I., J.A.); Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan (A.I.); and Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan (J.A.)
| | - Junken Aoki
- Department of Biochemistry (W.S., E.T.v.d.W., A.-M.S., B.P., M.B.) and Institute for Research in Immunology and Cancer (W.S., E.T.v.d.W., A.-M.S., B.P., M.H., V.L., C.L.G., M.B.), Université de Montréal, Montréal, QC, Canada; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (A.I., S.I., J.A.); Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan (A.I.); and Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan (J.A.)
| | - Christian Le Gouill
- Department of Biochemistry (W.S., E.T.v.d.W., A.-M.S., B.P., M.B.) and Institute for Research in Immunology and Cancer (W.S., E.T.v.d.W., A.-M.S., B.P., M.H., V.L., C.L.G., M.B.), Université de Montréal, Montréal, QC, Canada; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (A.I., S.I., J.A.); Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan (A.I.); and Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan (J.A.)
| | - Michel Bouvier
- Department of Biochemistry (W.S., E.T.v.d.W., A.-M.S., B.P., M.B.) and Institute for Research in Immunology and Cancer (W.S., E.T.v.d.W., A.-M.S., B.P., M.H., V.L., C.L.G., M.B.), Université de Montréal, Montréal, QC, Canada; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (A.I., S.I., J.A.); Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan (A.I.); and Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan (J.A.)
| |
Collapse
|
26
|
Takahashi K, Ito S, Furuya K, Asano S, Sokabe M, Hasegawa Y. Real-time imaging of mechanically and chemically induced ATP release in human lung fibroblasts. Respir Physiol Neurobiol 2017; 242:96-101. [PMID: 28442443 DOI: 10.1016/j.resp.2017.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 12/26/2022]
Abstract
Extracellular adenosine 5'-triphosphate (ATP) acts as an inflammatory mediator of pulmonary fibrosis. We investigated the effects of mechanical and chemical stimuli on ATP release from primary normal human lung fibroblasts. We visualized the ATP release from fibroblasts in real time using a luminescence imaging system while acquiring differential interference contrast cell images with infrared optics. Immediately following a single uniaxial stretch for 1s, ATP was released from a certain population of cells and spread to surrounding spaces. Hypotonic stress, which causes plasma membrane stretching, also induced the ATP release. Compared with the effects of mechanical stretch, ATP-induced release sites were homogeneously distributed. In contrast to the effects of mechanical stimuli, application of platelet-derived growth factor caused ATP release from small numbers of the cells. Our real-time ATP imaging demonstrates that there is a heterogeneous nature of ATP release from lung fibroblasts in response to mechanical and chemical stimuli.
Collapse
Affiliation(s)
- Kota Takahashi
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Satoru Ito
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Department of Respiratory Medicine and Allergology, Aichi Medical University, Nagakute 480-1195, Japan.
| | - Kishio Furuya
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shuichi Asano
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
27
|
Furuya K, Tan JJ, Boudreault F, Sokabe M, Berthiaume Y, Grygorczyk R. Real-time imaging of inflation-induced ATP release in the ex vivo rat lung. Am J Physiol Lung Cell Mol Physiol 2016; 311:L956-L969. [PMID: 27638905 DOI: 10.1152/ajplung.00425.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 09/13/2016] [Indexed: 12/25/2022] Open
Abstract
Extracellular ATP and other nucleotides are important autocrine/paracrine mediators that regulate diverse processes critical for lung function, including mucociliary clearance, surfactant secretion, and local blood flow. Cellular ATP release is mechanosensitive; however, the impact of physical stimuli on ATP release during breathing has never been tested in intact lungs in real time and remains elusive. In this pilot study, we investigated inflation-induced ATP release in rat lungs ex vivo by real-time luciferin-luciferase (LL) bioluminescence imaging coupled with simultaneous infrared tissue imaging to identify ATP-releasing sites. With LL solution introduced into air spaces, brief inflation of such edematous lung (1 s, ∼20 cmH2O) induced transient (<30 s) ATP release in a limited number of air-inflated alveolar sacs during their recruitment/opening. Released ATP reached concentrations of ∼10-6 M, relevant for autocrine/paracrine signaling, but it remained spatially restricted to single alveolar sacs or their clusters. ATP release was stimulus dependent: prolonged (100 s) inflation evoked long-lasting ATP release that terminated upon alveoli deflation/derecruitment while cyclic inflation/suction produced cyclic ATP release. With LL introduced into blood vessels, inflation induced transient ATP release in many small patchlike areas the size of alveolar sacs. Findings suggest that inflation induces ATP release in both alveoli and the surrounding blood capillary network; the functional units of ATP release presumably consist of alveolar sacs or their clusters. Our study demonstrates the feasibility of real-time ATP release imaging in ex vivo lungs and provides the first direct evidence of inflation-induced ATP release in lung air spaces and in pulmonary blood capillaries, highlighting the importance of purinergic signaling in lung function.
Collapse
Affiliation(s)
- Kishio Furuya
- Mechanobiology Laboratory, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Ju Jing Tan
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Francis Boudreault
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yves Berthiaume
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada; and.,Institut de recherches cliniques de Montréal (IRCM), Quebec, Canada
| | - Ryszard Grygorczyk
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; .,Department of Medicine, Université de Montréal, Montreal, Quebec, Canada; and
| |
Collapse
|
28
|
Hao Y, Chow AW, Yip WC, Li CH, Wan TF, Tong BC, Cheung KH, Chan WY, Chen Y, Cheng CH, Ko WH. G protein-coupled estrogen receptor inhibits the P2Y receptor-mediated Ca(2+) signaling pathway in human airway epithelia. Pflugers Arch 2016; 468:1489-503. [PMID: 27271044 PMCID: PMC4951515 DOI: 10.1007/s00424-016-1840-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/11/2016] [Accepted: 05/22/2016] [Indexed: 12/18/2022]
Abstract
P2Y receptor activation causes the release of inflammatory cytokines in the bronchial epithelium, whereas G protein-coupled estrogen receptor (GPER), a novel estrogen (E2) receptor, may play an anti-inflammatory role in this process. We investigated the cellular mechanisms underlying the inhibitory effect of GPER activation on the P2Y receptor-mediated Ca2+ signaling pathway and cytokine production in airway epithelia. Expression of GPER in primary human bronchial epithelial (HBE) or 16HBE14o- cells was confirmed on both the mRNA and protein levels. Stimulation of HBE or 16HBE14o- cells with E2 or G1, a specific agonist of GPER, attenuated the nucleotide-evoked increases in [Ca2+]i, whereas this effect was reversed by G15, a GPER-specific antagonist. G1 inhibited the secretion of two proinflammatory cytokines, interleukin (IL)-6 and IL-8, in cells stimulated by adenosine 5′-(γ-thio)triphosphate (ATPγS). G1 stimulated a real-time increase in cAMP levels in 16HBE14o- cells, which could be inhibited by adenylyl cyclase inhibitors. The inhibitory effects of E2 or G1 on P2Y receptor-induced increases in Ca2+ were reversed by treating the cells with a protein kinase A (PKA) inhibitor. These results demonstrated that the inhibitory effects of G1 or E2 on P2Y receptor-mediated Ca2+ mobilization and cytokine secretion were due to GPER-mediated activation of a cAMP-dependent PKA pathway. This study has reported, for the first time, the expression and function of GPER as an anti-inflammatory component in human bronchial epithelia, which may mediate through its opposing effects on the pro‐inflammatory pathway activated by the P2Y receptors in inflamed airway epithelia.
Collapse
Affiliation(s)
- Yuan Hao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Alison W Chow
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wallace C Yip
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chi H Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Tai F Wan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Benjamin C Tong
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - King H Cheung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wood Y Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yangchao Chen
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Christopher H Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Wing H Ko
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
29
|
Ito S, Furuya K, Sokabe M, Hasegawa Y. Cellular ATP release in the lung and airway. AIMS BIOPHYSICS 2016. [DOI: 10.3934/biophy.2016.4.571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
30
|
Takahara N, Ito S, Furuya K, Naruse K, Aso H, Kondo M, Sokabe M, Hasegawa Y. Real-time imaging of ATP release induced by mechanical stretch in human airway smooth muscle cells. Am J Respir Cell Mol Biol 2015; 51:772-82. [PMID: 24885163 DOI: 10.1165/rcmb.2014-0008oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Airway smooth muscle (ASM) cells within the airway walls are continually exposed to mechanical stimuli, and exhibit various functions in response to these mechanical stresses. ATP acts as an extracellular mediator in the airway. Moreover, extracellular ATP is considered to play an important role in the pathophysiology of asthma and chronic obstructive pulmonary disease. However, it is not known whether ASM cells are cellular sources of ATP secretion in the airway. We therefore investigated whether mechanical stretch induces ATP release from ASM cells. Mechanical stretch was applied to primary human ASM cells cultured on a silicone chamber coated with type I collagen using a stretching apparatus. Concentrations of ATP in cell culture supernatants measured by luciferin-luciferase bioluminescence were significantly elevated by cyclic stretch (12 and 20% strain). We further visualized the stretch-induced ATP release from the cells in real time using a luminescence imaging system, while acquiring differential interference contrast cell images with infrared optics. Immediately after a single uniaxial stretch for 1 second, strong ATP signals were produced by a certain population of cells and spread to surrounding spaces. The cyclic stretch-induced ATP release was significantly reduced by inhibitors of Ca(2+)-dependent vesicular exocytosis, 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester, monensin, N-ethylmaleimide, and bafilomycin. In contrast, the stretch-induced ATP release was not inhibited by a hemichannel blocker, carbenoxolone, or blockade of transient receptor potential vanilloid 4 by short interfering RNA transfection or ruthenium red. These findings reveal a novel property of ASM cells: mechanically induced ATP release may be a cellular source of ATP in the airway.
Collapse
|
31
|
Hao Y, Liang JF, Chow AW, Cheung WT, Ko WH. P2Y6 receptor-mediated proinflammatory signaling in human bronchial epithelia. PLoS One 2014; 9:e106235. [PMID: 25243587 PMCID: PMC4171090 DOI: 10.1371/journal.pone.0106235] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 08/04/2014] [Indexed: 11/18/2022] Open
Abstract
P2Y receptors are expressed in virtually all epithelia and are responsible for the control of fluid and electrolyte transport. In asthmatic inflammation, the bronchial epithelia are damaged by eosinophil-derived, highly toxic cationic proteins, such as major basic protein (MBP). Consequently, extracellular nucleotides are released into the extracellular space from airway epithelial cells, and act in an autocrine or paracrine fashion to regulate immune functions. Our data show damage to the human bronchial epithelial cell line, 16HBE14o-, by poly-L-arginine-induced UDP release into the extracellular medium. Activation of P2Y6 receptor by its natural ligand, UDP, or its specific agonist, MRS 2693, led to the production of two proinflammatory cytokines, interleukin (IL)-6 and IL-8. This may have resulted from increased IL-6 and IL-8 mRNA expression, and activation of p38 and ERK1/2 MAPK, and NF-κB pathways. Our previous study demonstrated that UDP stimulated transepithelial Cl- secretion via both Ca2+- and cAMP-dependent pathways in 16HBE14o- epithelia. This was further confirmed in this study by simultaneous imaging of Ca2+ and cAMP levels in single cells using the Fura-2 fluorescence technique and a FRET-based approach, respectively. Moreover, the P2Y6 receptor-mediated production of IL-6 and IL-8 was found to be dependent on Ca2+, but not the cAMP/PKA pathway. Together, these studies show that nucleotides released during the airway inflammatory processes will activate P2Y6 receptors, which will lead to further release of inflammatory cytokines. The secretion of cytokines and the formation of such "cytokine networks" play an important role in sustaining the airway inflammatory disease.
Collapse
Affiliation(s)
- Yuan Hao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Jocelyn F. Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Alison W. Chow
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Wing-tai Cheung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Wing-hung Ko
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
- * E-mail:
| |
Collapse
|
32
|
Smyrniotis CJ, Barbour SR, Xia Z, Hixon MS, Holman TR. ATP allosterically activates the human 5-lipoxygenase molecular mechanism of arachidonic acid and 5(S)-hydroperoxy-6(E),8(Z),11(Z),14(Z)-eicosatetraenoic acid. Biochemistry 2014; 53:4407-19. [PMID: 24893149 PMCID: PMC4215895 DOI: 10.1021/bi401621d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
5-Lipoxygenase
(5-LOX) reacts with arachidonic acid (AA) to first
generate 5(S)-hydroperoxy-6(E),8(Z),11(Z),14(Z)-eicosatetraenoic
acid [5(S)-HpETE] and then an epoxide from 5(S)-HpETE to form leukotriene A4, from a single
polyunsaturated fatty acid. This work investigates the kinetic mechanism
of these two processes and the role of ATP in their activation. Specifically,
it was determined that epoxidation of 5(S)-HpETE
(dehydration of the hydroperoxide) has a rate of substrate capture
(Vmax/Km)
significantly lower than that of AA hydroperoxidation (oxidation of
AA to form the hydroperoxide); however, hyperbolic kinetic parameters
for ATP activation indicate a similar activation for AA and 5(S)-HpETE. Solvent isotope effect results for both hydroperoxidation
and epoxidation indicate that a specific step in its molecular mechanism
is changed, possibly because of a lowering of the dependence of the
rate-limiting step on hydrogen atom abstraction and an increase in
the dependency on hydrogen bond rearrangement. Therefore, changes
in ATP concentration in the cell could affect the production of 5-LOX
products, such as leukotrienes and lipoxins, and thus have wide implications
for the regulation of cellular inflammation.
Collapse
Affiliation(s)
- Christopher J Smyrniotis
- Department of Chemistry and Biochemistry, University of California , Santa Cruz, California 95064, United States
| | | | | | | | | |
Collapse
|
33
|
Belchamber K, Hall DA, Hourani SMO. Smoking enhances the proinflammatory effects of nucleotides on cytokine release from human lung. PLoS One 2014; 9:e99711. [PMID: 24978193 PMCID: PMC4076178 DOI: 10.1371/journal.pone.0099711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/16/2014] [Indexed: 12/03/2022] Open
Abstract
Nucleotides have effects on immune cells which are complex but generally proinflammatory, and have been suggested to play a role in smoking-related lung diseases. However, there have been no studies directly measuring functional responses to nucleotides in human lungs taken from smokers. We used fragments of post mortem human lung from smokers and non-smokers, incubated them with a range of nucleotides (4–1000 µM) in the presence of lipopolysaccharide (LPS; 10 µg/ml) for 24 hours and measured cytokines (IL-1β, IFNγ, IL-17, TNFα, IL-6, IL-8, IL-2 and IL-10) in the supernatants using multiplex immunoassays. Although the basal cytokine levels in the smokers were generally higher in the smokers than the non-smokers, there were no significant differences in either the basal release or the LPS-stimulated release of any of the cytokines when lungs from smokers and non-smokers were compared. There were no significant effects of ATP, ADP, AMP, UTP, α,β-methylene-ATP, P1, P4-diATP, 2-methylthio-ATP or Bz-ATP on the release of cytokines from the lungs. However, the stable ATP analogue ATPγS increased the release of IL-1β and IFNγ, and the effect was greatly increased in lungs from smokers. In non-smokers but not in smokers ATPγS increased the release of IL-17. Overall these results clearly demonstrate for the first time that in normal human lung a stable ATP analogue can enhance LPS-induced pro-inflammatory cytokine release, and that these effects are greatly altered by a prior history of smoking. This provides strong support for the suggestion that nucleotides are involved in the pathogenesis of smoking-related diseases.
Collapse
Affiliation(s)
- Kylie Belchamber
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - David A. Hall
- Fibrosis Discovery Performance Unit, GlaxoSmithKline, Stevenage, Hertfordshire, United Kingdom
- * E-mail:
| | - Susanna M. O. Hourani
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| |
Collapse
|
34
|
Marcelino MY, Fuoco NL, de Faria CA, Kozma RDLH, Marques LF, Ribeiro-Paes JT. Animal models in chronic obstructive pulmonary disease-an overview. Exp Lung Res 2014; 40:259-71. [PMID: 24785359 DOI: 10.3109/01902148.2014.908250] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
ABSTRACT Chronic obstructive pulmonary disease (COPD) is characterized by progressive airway obstruction resultant from an augmented inflammatory response of the respiratory tract to noxious particles and gases. Previous reports present a number of different hypotheses about the etiology and pathophysiology of COPD. The generating mechanisms of the disease are subject of much speculation, and a series of questions and controversies among experts still remain. In this context, several experimental models have been proposed in order to broaden the knowledge on the pathophysiological characteristics of the disease, as well as the search for new therapeutic approaches for acute or chronically injured lung tissue. This review aims to present the main experimental models of COPD, more specifically emphysema, as well as to describe the main characteristics, advantages, disadvantages, possibilities of application, and potential contribution of each of these models for the knowledge on the pathophysiological aspects and to test new treatment options for obstructive lung diseases.
Collapse
Affiliation(s)
- Monica Yonashiro Marcelino
- 1Program of Post-Graduation in Biotechnology, Universidade de São Paulo-Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
35
|
Spaans F, de Vos P, Bakker WW, van Goor H, Faas MM. Danger signals from ATP and adenosine in pregnancy and preeclampsia. Hypertension 2014; 63:1154-60. [PMID: 24688119 DOI: 10.1161/hypertensionaha.114.03240] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Floor Spaans
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
36
|
DAMPs activating innate and adaptive immune responses in COPD. Mucosal Immunol 2014; 7:215-26. [PMID: 24150257 DOI: 10.1038/mi.2013.77] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/16/2013] [Accepted: 08/27/2013] [Indexed: 02/04/2023]
Abstract
Chronic obstructive pulmonary disease (COPD), a progressive lung disease characterized by sustained neutrophilic airway inflammation, is caused by chronic exposure to noxious stimuli, e.g., cigarette smoke. This chronic exposure can induce immunogenic cell death of structural airway cells, inducing the release of damage-associated molecular patterns (DAMPs). Levels of several DAMPs, including S100 proteins, defensins, and high-mobility group box-1 (HMGB1), are increased in extracellular lung fluids of COPD patients. As DAMPs can attract and activate immune cells upon binding to pattern recognition receptors, we propose that their release may contribute to neutrophilic airway inflammation. In this review, we discuss the novel role of DAMPs in COPD pathogenesis. Relevant DAMPs are categorized based on their subcellular origin, i.e. cytoplasm, endoplasmic reticulum, nucleus, and mitochondria. Furthermore, their potential role in the pathophysiology of COPD will be discussed.
Collapse
|
37
|
Affiliation(s)
- Danielle Morse
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115;
| | - Ivan O. Rosas
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115;
- Pulmonary Fibrosis Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108
| |
Collapse
|
38
|
De Nardo D, De Nardo CM, Latz E. New insights into mechanisms controlling the NLRP3 inflammasome and its role in lung disease. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:42-54. [PMID: 24183846 DOI: 10.1016/j.ajpath.2013.09.007] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 09/10/2013] [Accepted: 09/18/2013] [Indexed: 01/13/2023]
Abstract
Inflammasomes are large macromolecular signaling complexes that control the proteolytic activation of two highly proinflammatory IL-1 family cytokines, IL-1β and IL-18. The NLRP3 inflammasome is of special interest because it can assemble in response to a diverse array of stimuli and because the inflammation it triggers has been implicated in a wide variety of disease pathologies. To avoid aberrant activation, the NLRP3 inflammasome is modulated on multiple levels, ranging from transcriptional control to post-translational protein modifications. Emerging genetic and pharmacological evidence suggests that NLRP3 inflammasome activation may also be involved in acute lung inflammation after viral infection and during progression of several chronic pulmonary diseases, including idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, and asthma. Here, we review the most recent contributions to our understanding of the regulatory mechanisms controlling activation of the NLRP3 inflammasome and discuss the contribution of the NLRP3 inflammasome to the pathology of lung diseases.
Collapse
Affiliation(s)
- Dominic De Nardo
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Christine M De Nardo
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
39
|
Lee IT, Lin CC, Lin WN, Wu WL, Hsiao LD, Yang CM. Lung inflammation caused by adenosine-5'-triphosphate is mediated via Ca2+/PKCs-dependent COX-2/PGE2 induction. Int J Biochem Cell Biol 2013; 45:1657-68. [PMID: 23680674 DOI: 10.1016/j.biocel.2013.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/30/2013] [Accepted: 05/06/2013] [Indexed: 12/13/2022]
Abstract
Up-regulation of cyclooxygenase (COX)-2 and prostaglandin E2 (PGE2) are implicated in lung inflammation. Adenosine 5'-triphosphate (ATP) has been shown to act via activation of P2 purinoceptors, leading to COX-2 expression in various inflammatory diseases. The mechanisms of ATP-induced COX-2 expression and PGE2 release remain unclear. We showed that pretreatment with the inhibitors of P2 receptors (PPADS and Suramin), Gq protein (GPA2A), phosphatidylcholine-phospholipase C (PC-PLC; D609), phosphoinositide-phospholipase C (PI-PLC; ET-18-OCH3), Ca(2+)/calmodulin-dependent protein kinase II (CaMKII; KN62), protein kinase C (PKC; Gö6976, Ro-318220, GF109203X, and rottlerin), MEK1/2 (PD98059), p38 MAPK (SB202190), and nuclear factor-kappaB (NF-κB; Bay11-7082) and the intracellular calcium chelator (BAPTA/AM) or transfection with siRNAs of these molecules and cPLA2 reduced ATPγS-induced COX-2 expression or PGE2 production in A549 cells. In addition, ATPγS-induced elevation of intracellular Ca(2+) concentration was attenuated by PPADS, Suramin, D609, or ET-18-OCH3. ATPγS-induced p38 MAPK, p42/p44 MAPK, and NF-κB p65 activation were inhibited by Gö6976, Ro-318220, GF109203X, or rottlerin. ATPγS also induced cPLA2 phosphorylation and activity, which were reduced via inhibition of P2 receptors, PKCs, p38 MAPK, and p42/p44 MAPK. ATPγS-induced cPLA2 expression was inhibited by SB202190, PD98059, or Bay11-7082. In the in vitro study, we established that ATPγS induced PGE2 generation via a cPLA2/COX-2-dependent pathway. In the in vivo study, we found that ATPγS induced COX-2 mRNA expression in the lungs and leukocyte (mainly eosinophils and neutrophils) count in bronchoalveolar lavage (BAL) fluid in mice via a P2 receptors-dependent signaling pathway. We concluded that ATPγS may induce lung inflammation via a cPLA2/COX-2/PGE2-dependent pathway.
Collapse
Affiliation(s)
- I-Ta Lee
- Department of Anesthetics, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | | | | | | | | | | |
Collapse
|
40
|
Allen-Gipson DS, Zimmerman MC, Zhang H, Castellanos G, O'Malley JK, Alvarez-Ramirez H, Kharbanda K, Sisson JH, Wyatt TA. Smoke extract impairs adenosine wound healing: implications of smoke-generated reactive oxygen species. Am J Respir Cell Mol Biol 2013; 48:665-73. [PMID: 23371060 PMCID: PMC3707376 DOI: 10.1165/rcmb.2011-0273oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 01/11/2013] [Indexed: 11/24/2022] Open
Abstract
Adenosine concentrations are elevated in the lungs of patients with asthma and chronic obstructive pulmonary disease, where it balances between tissue repair and excessive airway remodeling. We previously demonstrated that the activation of the adenosine A2A receptor promotes epithelial wound closure. However, the mechanism by which adenosine-mediated wound healing occurs after cigarette smoke exposure has not been investigated. The present study investigates whether cigarette smoke exposure alters adenosine-mediated reparative properties via its ability to induce a shift in the oxidant/antioxidant balance. Using an in vitro wounding model, bronchial epithelial cells were exposed to 5% cigarette smoke extract, were wounded, and were then stimulated with either 10 μM adenosine or the specific A2A receptor agonist, 5'-(N-cyclopropyl)-carboxamido-adenosine (CPCA; 10 μM), and assessed for wound closure. In a subset of experiments, bronchial epithelial cells were infected with adenovirus vectors encoding human superoxide dismutase and/or catalase or control vector. In the presence of 5% smoke extract, significant delay was evident in both adenosine-mediated and CPCA-mediated wound closure. However, cells pretreated with N-acetylcysteine (NAC), a nonspecific antioxidant, reversed smoke extract-mediated inhibition. We found that cells overexpressing mitochondrial catalase repealed the smoke extract inhibition of CPCA-stimulated wound closure, whereas superoxide dismutase overexpression exerted no effect. Kinase experiments revealed that smoke extract significantly reduced the A2A-mediated activation of cyclic adenosine monophosphate-dependent protein kinase. However, pretreatment with NAC reversed this effect. In conclusion, our data suggest that cigarette smoke exposure impairs A2A-stimulated wound repair via a reactive oxygen species-dependent mechanism, thereby providing a better understanding of adenosine signaling that may direct the development of pharmacological tools for the treatment of chronic inflammatory lung disorders.
Collapse
Affiliation(s)
- Diane S Allen-Gipson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida Health, Tampa, FL 33612, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Anti-inflammatory effects of inosine in allergic lung inflammation in mice: evidence for the participation of adenosine A2A and A 3 receptors. Purinergic Signal 2013; 9:325-36. [PMID: 23355189 DOI: 10.1007/s11302-013-9351-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/10/2013] [Indexed: 01/17/2023] Open
Abstract
Inosine, a naturally occurring purine formed from the breakdown of adenosine, is associated with immunoregulatory effects. Evidence shows that inosine modulates lung inflammation and regulates cytokine generation. However, its role in controlling allergen-induced lung inflammation has yet to be identified. In this study, we aimed to investigate the role of inosine and adenosine receptors in a murine model of lung allergy induced by ovalbumin (OVA). Intraperitoneal administration of inosine (0.001-10 mg/kg, 30 min before OVA challenge) significantly reduced the number of leukocytes, macrophages, lymphocytes and eosinophils recovered in the bronchoalveolar lavage fluid of sensitized mice compared with controls. Interestingly, our results showed that pre-treatment with the selective A2A receptor antagonist (ZM241385), but not with the selective A2B receptor antagonist (alloxazine), reduced the inhibitory effects of inosine against macrophage count, suggesting that A2A receptors mediate monocyte recruitment into the lungs. In addition, the pre-treatment of mice with selective A3 antagonist (MRS3777) also prevented inosine effects against macrophages, lymphocytes and eosinophils. Histological analysis confirmed the effects of inosine and A2A adenosine receptors on cell recruitment and demonstrated that the treatment with ZM241385 and alloxazine reverted inosine effects against mast cell migration into the lungs. Accordingly, the treatment with inosine reduced lung elastance, an effect related to A2 receptors. Moreover, inosine reduced the levels of Th2-cytokines, interleukin-4 and interleukin-5, an effect that was not reversed by A2A or A2B selective antagonists. Our data show that inosine acting on A2A or A3 adenosine receptors can regulate OVA-induced allergic lung inflammation and also implicate inosine as an endogenous modulator of inflammatory processes observed in the lungs of asthmatic patients.
Collapse
|
42
|
ATP mediates NADPH oxidase/ROS generation and COX-2/PGE2 expression in A549 cells: role of P2 receptor-dependent STAT3 activation. PLoS One 2013; 8:e54125. [PMID: 23326583 PMCID: PMC3543320 DOI: 10.1371/journal.pone.0054125] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 12/06/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Up-regulation of cyclooxygenase (COX)-2 and its metabolite prostaglandin E(2) (PGE(2)) are frequently implicated in lung inflammation. Extracellular nucleotides, such as ATP have been shown to act via activation of P2 purinoceptors, leading to COX-2 expression in various inflammatory diseases, such as lung inflammation. However, the mechanisms underlying ATP-induced COX-2 expression and PGE(2) release remain unclear. PRINCIPAL FINDINGS Here, we showed that ATPγS induced COX-2 expression in A549 cells revealed by western blot and real-time PCR. Pretreatment with the inhibitors of P2 receptor (PPADS and suramin), PKC (Gö6983, Gö6976, Ro318220, and Rottlerin), ROS (Edaravone), NADPH oxidase [diphenyleneiodonium chloride (DPI) and apocynin], Jak2 (AG490), and STAT3 [cucurbitacin E (CBE)] and transfection with siRNAs of PKCα, PKCι, PKCμ, p47(phox), Jak2, STAT3, and cPLA(2) markedly reduced ATPγS-induced COX-2 expression and PGE(2) production. In addition, pretreatment with the inhibitors of P2 receptor attenuated PKCs translocation from the cytosol to the membrane in response to ATPγS. Moreover, ATPγS-induced ROS generation and p47(phox) translocation was also reduced by pretreatment with the inhibitors of P2 receptor, PKC, and NADPH oxidase. On the other hand, ATPγS stimulated Jak2 and STAT3 activation which were inhibited by pretreatment with PPADS, suramin, Gö6983, Gö6976, Ro318220, GF109203X, Rottlerin, Edaravone, DPI, and apocynin in A549 cells. SIGNIFICANCE Taken together, these results showed that ATPγS induced COX-2 expression and PGE(2) production via a P2 receptor/PKC/NADPH oxidase/ROS/Jak2/STAT3/cPLA(2) signaling pathway in A549 cells. Increased understanding of signal transduction mechanisms underlying COX-2 gene regulation will create opportunities for the development of anti-inflammation therapeutic strategies.
Collapse
|
43
|
Van Scott MR, Chandler J, Olmstead S, Brown JM, Mannie M. Airway Anatomy, Physiology, and Inflammation. THE TOXICANT INDUCTION OF IRRITANT ASTHMA, RHINITIS, AND RELATED CONDITIONS 2013. [PMCID: PMC7122617 DOI: 10.1007/978-1-4614-9044-9_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Experimental Basis and New Insights for Cell Therapy in Chronic Obstructive Pulmonary Disease. Stem Cell Rev Rep 2012; 8:1236-44. [DOI: 10.1007/s12015-012-9410-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
45
|
Abstract
Evidence for a significant role and impact of purinergic signaling in normal and diseased airways is now beyond dispute. The present review intends to provide the current state of knowledge of the involvement of purinergic pathways in the upper and lower airways and lungs, thereby differentiating the involvement of different tissues, such as the epithelial lining, immune cells, airway smooth muscle, vasculature, peripheral and central innervation, and neuroendocrine system. In addition to the vast number of well illustrated functions for purinergic signaling in the healthy respiratory tract, increasing data pointing to enhanced levels of ATP and/or adenosine in airway secretions of patients with airway damage and respiratory diseases corroborates the emerging view that purines act as clinically important mediators resulting in either proinflammatory or protective responses. Purinergic signaling has been implicated in lung injury and in the pathogenesis of a wide range of respiratory disorders and diseases, including asthma, chronic obstructive pulmonary disease, inflammation, cystic fibrosis, lung cancer, and pulmonary hypertension. These ostensibly enigmatic actions are based on widely different mechanisms, which are influenced by the cellular microenvironment, but especially the subtypes of purine receptors involved and the activity of distinct members of the ectonucleotidase family, the latter being potential protein targets for therapeutic implementation.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Royal Free Campus, London, UK.
| | | | | | | |
Collapse
|
46
|
Théâtre E, Frederix K, Guilmain W, Delierneux C, Lecut C, Bettendorff L, Bours V, Oury C. Overexpression of CD39 in mouse airways promotes bacteria-induced inflammation. THE JOURNAL OF IMMUNOLOGY 2012; 189:1966-74. [PMID: 22802412 DOI: 10.4049/jimmunol.1102600] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In airways, the ecto-nucleoside triphosphate diphosphohydrolase CD39 plays a central role in the regulation of physiological mucosal nucleotide concentrations and likely contributes to the control of inflammation because accelerated ATP metabolism occurs in chronic inflammatory lung diseases. We sought to determine whether constant elevated CD39 activity in lung epithelia is sufficient to cause inflammation and whether this affects the response to acute LPS or Pseudomonas aeruginosa exposure. We generated transgenic mice overexpressing human CD39 under the control of the airway-specific Clara cell 10-kDa protein gene promoter. Transgenic mice did not develop any spontaneous lung inflammation. However, intratracheal instillation of LPS resulted in accelerated recruitment of neutrophils to the airways of transgenic mice. Macrophage clearance was delayed, and the amounts of CD8(+) T and B cells were augmented. Increased levels of keratinocyte chemoattractant, IL-6, and RANTES were produced in transgenic lungs. Similarly, higher numbers of neutrophils and macrophages were found in the lungs of transgenic mice infected with P. aeruginosa, which correlated with improved bacteria clearance. The transgenic phenotype was partially and differentially restored by coinstillation of P2X(1) or P2X(7) receptor antagonists or of caffeine with LPS. Thus, a chronic increase of epithelial CD39 expression and activity promotes airway inflammation in response to bacterial challenge by enhancing P1 and P2 receptor activation.
Collapse
Affiliation(s)
- Emilie Théâtre
- Interdisciplinary Cluster of Applied Genoproteomics-Inflammation, Infection, Immunity, Unit of Human Genetics, Laboratory of Thrombosis and Haemostasis, University of Liège, Liège 4000, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kluess HA, Stafford J, Evanson KW, Stone AJ, Worley J, Wideman RF. Intrapulmonary arteries respond to serotonin and adenosine triphosphate in broiler chickens susceptible to idiopathic pulmonary arterial hypertension. Poult Sci 2012; 91:1432-40. [PMID: 22582304 DOI: 10.3382/ps.2011-01919] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This study examined factors contributing to increased vascular resistance and plexiform lesion formation in broiler chickens susceptible to idiopathic pulmonary arterial hypertension (IPAH). A diet supplemented with excess tryptophan (high-Trp diet), the precursor for serotonin, was used to accelerate the development of IPAH. Broilers fed the high-Trp diet had higher pulmonary arterial pressures than broilers fed the control diet, and plexiform lesion incidences tended to be higher (P = 0.11) in the high-Trp group than in the control group at 30 d of age. The intrapulmonary arteries were assessed for vasoconstriction in response to serotonin and adenosine triphosphate (ATP) and for activities of key metabolic enzymes for serotonin and ATP. The pulmonary artery (defined as the first major branch of the pulmonary artery inside the lung) and the primary pulmonary arterial rami (defined as the second major branch of the pulmonary artery inside the lung) both exhibited vasoconstriction in response to serotonin and ATP. This is the first study to demonstrate purinergic-mediated vasoconstriction in intrapulmonary arteries from broilers. Arteriole responsiveness did not differ between broilers fed the control diet or the high-Trp diet. Therefore, the high-Trp diet enhanced the development of IPAH but did not affect the artery's sensitivity to serotonin or ATP. Monoamine oxidase activity, responsible for the breakdown of serotonin, was severely impaired in pulmonary arteries from broilers in the high-Trp group. Accordingly, serotonin may persist longer and elicit an amplified response in broilers fed the high-Trp diet.
Collapse
Affiliation(s)
- H A Kluess
- Department of Kinesiology, Auburn University, AL 36849, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Hardison MT, Brown MD, Snelgrove RJ, Blalock JE, Jackson P. Cigarette smoke enhances chemotaxis via acetylation of proline-glycine-proline. Front Biosci (Elite Ed) 2012; 4:2402-9. [PMID: 22652647 PMCID: PMC5796637 DOI: 10.2741/e552] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Several chronic lung diseases have been linked to cigarette smoking (Chronic Obstructive Pulmonary Disease (COPD), and cancer are associated with increased tobacco use). We recently described a collagen fragment, proline-glycine-proline (PGP), chemotactic for neutrophils, that appears to play a role in COPD, cystic fibrosis, and bronchiolitis obliterans syndrome. PGP can exist in either its native or acetylated form (NAcPGP), although the mechanism of N-terminal-acetylation remains unknown. This work investigates the possibility that cigarette smoke (CS) and its components acetylate PGP, describing a possible mechanism for some of the chronic inflammation seen in tobacco-associated disease. CSE and CSC (3.56 and 12.38 ng/ml NAcPGP respectively, p less than 0.01) and its components (acrolein, acetaldehyde, and methyl glyoxal) acetylated PGP (0.51, 1.03, and 0.23 ng/ml NAcPGP, p less than 0.01). Both N-acetyl-cysteine and carbocysteine (scavengers of reactive aldehydes) blocked chemical acetylation of PGP by CS (100 percent and 97 percent inhibition, respectively, p less than 0.01). NAcPGP is more chemoattractive to neutrophils, and less susceptible to degradation by Leukotriene-A4-Hydrolase (detected in the lung). These experiments propose a mechanism for the increased neutrophil recruitment seen in smoking-associated lung diseases.
Collapse
Affiliation(s)
- Matthew Thomas Hardison
- Department of Medicine, University of Alabama at Birmingham 1918 University Blvd., Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
49
|
de Liz R, Horst H, Pizzolatti MG, Fröde TS, Girard D. Activation of human neutrophils by Esenbeckia leiocarpa: comparison between the crude hydroalcoholic extract (CHE) and an alkaloid (Alk) fraction. JOURNAL OF INFLAMMATION-LONDON 2012; 9:19. [PMID: 22640922 PMCID: PMC3403994 DOI: 10.1186/1476-9255-9-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 05/28/2012] [Indexed: 11/10/2022]
Abstract
Esenbeckia leiocarpa, a wide spread native Brazilian tree, was reported recently to possess anti-inflammatory effects in vivo, but the mechanisms involved are still not fully understood and its role in neutrophils is poorly documented. The aim of this study was to compare the effects of a crude hydroalcoholic extract (CHE) and an alkaloid-enriched (Alk) fraction obtained from Esenbeckia leiocarpa bark on human neutrophils by investigating the effect of each fraction alone or in a mixture with classical neutrophil agonists. CHE inhibited intracellular reactive oxygen species (ROS) production but increased the extracellular superoxide (O2-) production, while Alk increased the former and also slightly increased O2- production. We found that CHE and Alk also induced phagocytosis accompanied by Syk activation, adhesion and degranulation. However, neither CHE nor Alk potentiated the effect of classical neutrophil agonists, namely the cytokines GM-CSF for phagocytosis and TNF-α for adhesion or N-formyl-methionyl-leucyl-phenylalanine (fMLP) for degranulation. In addition, based on catalase treatment, CHE and Alk induced neutrophil apoptosis by a hydrogen peroxide (H2O2)-dependent mechanism. Since the elimination of apoptotic neutrophils by professional phagocytes is important for the resolution of inflammation, the ability of CHE and Alk to induce neutrophil apoptosis has to be considered as one possible mechanism associated with the anti-inflammatory activity of these fractions previously reported in vivo.
Collapse
Affiliation(s)
- Rafael de Liz
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, QC, Canada.
| | | | | | | | | |
Collapse
|
50
|
Ford AP. P2X3 antagonists: novel therapeutics for afferent sensitization and chronic pain. Pain Manag 2012; 2:267-77. [DOI: 10.2217/pmt.12.16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
SUMMARY Despite decades of innovation and effort, the pharmaceutical needs of countless patients with chronic pain remain underserved. Effective and safe treatments must clearly come from novel approaches, yet targets and molecules selected hitherto have returned little benefit. Antagonism of P2X3 purinoceptors on pain-conveying nerves is a highly novel approach, and compounds from this class are advancing into patient studies. P2X3 channels are found in C- and Aδ-primary afferent neurons in most tissues, and are strikingly specific to pain detection. P2X3 antagonists block peripheral activation of these fibers via ATP, released from most cells by inflammation, injury, stress and distension, and clearly provide an alternative pharmacological mechanism to attenuate pain signals. P2X3 is also expressed presynaptically at central spinal terminals of afferent neurons, where ATP further sensitizes painful signals en route to the brain. The selectivity of P2X3 expression allows hope of a lower potential for adverse effects in brain, gut and cardiovascular tissues – limiting factors for most analgesics. P2X3 receptor-mediated sensitization has been implicated in rodent models in inflammatory, visceral, neuropathic and cancer pain states, as well as in airways hyper-reactivity, migraine and visceral organ irritability. Although we are often reminded that the effects of new medicines can translate poorly into clinical effectiveness, the broad efficacy seen following P2X3 inhibition in rodent models strengthens the prospect that an unprecedented mechanism to counter sensitization of afferent pathways may offer some merciful relief to millions of patients struggling daily with persistent discomfort and pain.
Collapse
Affiliation(s)
- Anthony P Ford
- Afferent Pharmaceuticals, 2755 Campus Drive, Suite 100, San Mateo, CA 94403, USA
| |
Collapse
|