1
|
Ma Y, Hu C, Zhang J, Xu C, Ma L, Chang Y, Hussain MA, Ma J, Hou J, Jiang Z. Lactobacillus plantarum 69-2 combined with α-lactalbumin hydrolysate alleviates DSS-induced ulcerative colitis through the TLR4/NF-κB inflammatory pathway and the gut microbiota in mice. Food Funct 2024; 15:10987-11004. [PMID: 39400032 DOI: 10.1039/d4fo02975e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Ulcerative colitis (UC), an inflammatory bowel disease, seriously affects people's quality of life. Diet-derived active peptides and Lactobacillus plantarum have shown promise for mitigating symptoms of UC. This investigation explored the combined effects of α-lactalbumin (α-LA) hydrolysate, which boasts a high antioxidant capacity, and L. plantarum 69-2 (L69-2) on a colitis mouse model. The results showed that α-LA hydrolysate with a molecular weight <3 kDa obtained with neutral protease had excellent antioxidant activity and potential to enhance probiotic proliferation. Furthermore, the synergistic application of α-LA hydrolysate and L69-2 could alleviate the adverse impact of colon inflammation by reducing oxidative stress and regulating immune disorders. It maintains the intestinal epithelial barrier, thereby reducing immune system over-activation, promoting the colonization of beneficial bacteria, and regulating intestinal immune responses. Simultaneously, it remodels the structure of the disrupted intestinal flora. The increase in the richness and diversity of the flora leads to the production of beneficial metabolites, which in turn inhibits the activation of the TLR4/NF-κB inflammatory pathway. This study provides a novel perspective on milk-derived peptide synergism with probiotics in alleviating UC.
Collapse
Affiliation(s)
- Yue Ma
- College of Food Science and Engineering, Guiyang University, Guiyang, 550005, China. houjuncai88@126com
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Chuanbing Hu
- College of Food Science and Engineering, Guiyang University, Guiyang, 550005, China. houjuncai88@126com
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Jing Zhang
- College of Food Science and Engineering, Guiyang University, Guiyang, 550005, China. houjuncai88@126com
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Cong Xu
- College of Food Science and Engineering, Guiyang University, Guiyang, 550005, China. houjuncai88@126com
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Lizhi Ma
- College of Food Science and Engineering, Guiyang University, Guiyang, 550005, China. houjuncai88@126com
- Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa of National Forestry and Grassland Administration, Guiyang, 550005, China
| | - Yunhe Chang
- College of Food Science and Engineering, Guiyang University, Guiyang, 550005, China. houjuncai88@126com
- Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa of National Forestry and Grassland Administration, Guiyang, 550005, China
| | - Muhammad Altaf Hussain
- Faculty of Veterinary and Animal Science Lasbela University of Agriculture Water and Marine Sciences, Balochistan, 90159, Pakistan
| | - Jiage Ma
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Juncai Hou
- College of Food Science and Engineering, Guiyang University, Guiyang, 550005, China. houjuncai88@126com
- Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa of National Forestry and Grassland Administration, Guiyang, 550005, China
| | - Zhanmei Jiang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
2
|
Khajah MA, Fateel MM, Ananthalakshmi KV, Luqmani YA. Anti-inflammatory action of angiotensin 1-7 in experimental colitis may be mediated through modulation of serum cytokines/chemokines and immune cell functions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 74:200-208. [PMID: 28487234 DOI: 10.1016/j.dci.2017.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/23/2017] [Accepted: 05/05/2017] [Indexed: 06/07/2023]
Abstract
We recently demonstrated Ang 1-7 reduced inflammation in the dextran sulfate sodium (DSS) colitis model. In this study we examined the effect of Ang 1-7 on modulation of plasma levels of selected cytokines and chemokines and immune cell effector functions (apoptosis, chemotaxis and superoxide release) in vitro. The degree of neutrophil recruitment to the colon was assessed by immunofluorescence and myeloperoxidase activity. Daily Ang 1-7 treatment at 0.01 mg/kg dose which previously ameliorated colitis severity, showed a significant reduction in circulating levels of several cytokines and chemokines, and neutrophil recruitment to the colonic tissue. It also significantly enhanced immune cell apoptosis, and reduced neutrophil chemotaxis and superoxide release in vitro. In contrast, daily administration of the Ang 1-7R antagonist A779 which previously worsened colitis severity showed significant up-regulation of specific mediators. Our results demonstrate a novel anti-inflammatory action of Ang 1-7 through modulation of plasma levels of cytokines/chemokines and immune cell activity.
Collapse
Affiliation(s)
- Maitham A Khajah
- Faculty of Pharmacy, Kuwait University, PO Box 24923, Safat 13110, Kuwait.
| | - Maryam M Fateel
- Faculty of Pharmacy, Kuwait University, PO Box 24923, Safat 13110, Kuwait.
| | | | - Yunus A Luqmani
- Faculty of Pharmacy, Kuwait University, PO Box 24923, Safat 13110, Kuwait.
| |
Collapse
|
3
|
Farombi EO, Adedara IA, Awoyemi OV, Njoku CR, Micah GO, Esogwa CU, Owumi SE, Olopade JO. Dietary protocatechuic acid ameliorates dextran sulphate sodium-induced ulcerative colitis and hepatotoxicity in rats. Food Funct 2016; 7:913-21. [PMID: 26691887 DOI: 10.1039/c5fo01228g] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The present study investigated the antioxidant and anti-inflammatory effects of dietary protocatechuic acid (PCA), a simple hydrophilic phenolic compound commonly found in many edible vegetables, on dextran sulphate sodium (DSS)-induced ulcerative colitis and its associated hepatotoxicity in rats. PCA was administered orally at 10 mg kg(-1) to dextran sulphate sodium exposed rats for five days. The result revealed that administration of PCA significantly (p < 0.05) prevented the incidence of diarrhea and bleeding, the decrease in the body weight gain, shortening of colon length and the increase in colon mass index in DSS-treated rats. Furthermore, PCA prevented the increase in the plasma levels of pro-inflammatory cytokines, markers of liver toxicity and markedly suppressed the DSS-mediated elevation in colonic nitric oxide concentration and myeloperoxidase activity in the treated rats. Administration of PCA significantly protected against colonic and hepatic oxidative damage by increasing the antioxidant status and concomitantly decreased hydrogen peroxide and lipid peroxidation levels in the DSS-treated rats. Moreover, histological examinations confirmed PCA chemoprotection against colon and liver damage. Immunohistochemical analysis showed that PCA significantly inhibited cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) protein expression in the colon of DSS-treated rats. In conclusion, the effective chemoprotective role of PCA in colitis and the associated hepatotoxicity is related to its intrinsic anti-inflammatory and anti-oxidative properties.
Collapse
Affiliation(s)
- Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Omolola V Awoyemi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Chinonye R Njoku
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Gabriel O Micah
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Cynthia U Esogwa
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Solomon E Owumi
- Cancer Research and Molecular Biology Unit, Department of Biochemistry, College of Medicine, Nigeria
| | - James O Olopade
- Department of Veterinary Anatomy, University of Ibadan, Nigeria
| |
Collapse
|
4
|
Hydrostatin-TL1, an Anti-Inflammatory Active Peptide from the Venom Gland of Hydrophis cyanocinctus in the South China Sea. Int J Mol Sci 2016; 17:ijms17111940. [PMID: 27879679 PMCID: PMC5133935 DOI: 10.3390/ijms17111940] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/31/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor (TNF)-α is a pleiotropic cytokine with intense pro-inflammatory and immunomodulatory properties, and anti-TNF-α biologics are effective therapies for various inflammatory diseases such as inflammatory bowel disease (IBD) and sepsis. Snake venom, as a traditional Chinese medicine, has been used in the treatment of inflammatory diseases in China for centuries. In this research, we constructed a venom gland T7 phage display library of the sea snake Hydrophis cyanocinctus to screen bioactive compounds that antagonize TNF-α and identified a novel nine-amino-acid peptide, termed hydrostatin-TL1 (H-TL1). In enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) analyses, H-TL1 inhibited the interaction between TNF-α and TNF receptor 1 (TNFR1). Further, H-TL1 attenuated the cytotoxicity of TNF-α in L929 cells as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. H-TL1 also decreased the mRNA expression of TNF-α/TNFR1 downstream targets and suppressed the phosphorylation of well-characterized proteins of downstream signal transduction pathways in HEK-293 cells. In vivo data demonstrated that H-TL1 protects animals against dextran sodium sulfate (DSS)-induced acute colitis and lipopolysaccharide (LPS)-induced acute shock. Given its significant anti-inflammatory activity in vitro and in vivo, H-TL1 is a potential peptide for the development of new agents to treat TNF-α-associated inflammatory diseases.
Collapse
|
5
|
Liu YW, Ong WK, Su YW, Hsu CC, Cheng TH, Tsai YC. Anti-inflammatory effects of Lactobacillus brevis K65 on RAW 264.7 cells and in mice with dextran sulphate sodium-induced ulcerative colitis. Benef Microbes 2016; 7:387-96. [PMID: 26925602 DOI: 10.3920/bm2015.0109] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lactic acid bacteria (LAB) with anti-inflammatory effects may be beneficial to the prevention or treatment for inflammation-related diseases, such as inflammatory bowel diseases. In an in vitro assay, heat-killed Lactobacillus brevis K65 (K65) reduced lipopolysaccharide-induced production of nitric oxide, tumour necrosis factor (TNF)-α and prostaglandin E2 in RAW 264.7 cells. In RAW 264.7 cells stably expressing an ind=ucible nitric oxide synthase (iNOS) reporter, viable K65 showed greater inhibition of iNOS production than its heat-killed form. In order to further examine the in vivo anti-inflammatory effect of K65, viable K65 was orally administered to BALB/c mice before and during the period of dextran sulphate sodium (DSS)-induced ulcerative colitis (UC). K65 improved UC symptoms, including reduced the levels of the pro-inflammatory cytokines, TNF-α, interleukin (IL)-6 and IL-1β, and lowered the activity of myeloperoxidase. Furthermore, K65 inhibited TNF-α, cyclo-oxygenase 2, forkhead box P3, and Toll-like receptor 4 mRNA expression in the colonic tissue of DSS-induced UC mice. Taken together, K65, a LAB with in vitro anti-inflammatory activity showed preventive effects on mice with DSS-induced UC by lowering the expression of inflammatory molecules.
Collapse
Affiliation(s)
- Y-W Liu
- 1 Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Sec. 2, Linong Street, 11221 Taipei City, Taiwan, ROC
| | - W-K Ong
- 1 Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Sec. 2, Linong Street, 11221 Taipei City, Taiwan, ROC
| | - Y-W Su
- 1 Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Sec. 2, Linong Street, 11221 Taipei City, Taiwan, ROC
| | - C-C Hsu
- 2 Bened Biomedicals Co., Ltd., 2F.-2, No.129, Sec. 2, Zhongshan N. Rd., Zhongshan Dist., 10448 Taipei City, Taiwan, ROC
| | - T-H Cheng
- 1 Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Sec. 2, Linong Street, 11221 Taipei City, Taiwan, ROC
| | - Y-C Tsai
- 1 Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Sec. 2, Linong Street, 11221 Taipei City, Taiwan, ROC
| |
Collapse
|
6
|
Screening of an anti-inflammatory peptide from Hydrophis cyanocinctus and analysis of its activities and mechanism in DSS-induced acute colitis. Sci Rep 2016; 6:25672. [PMID: 27158082 PMCID: PMC4860709 DOI: 10.1038/srep25672] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/20/2016] [Indexed: 12/20/2022] Open
Abstract
Snake has been used for centuries as a traditional Chinese medicine, especially for therapeutic treatment for inflammatory diseases; however, its mechanisms of action and active constituents remain controversial. In our study, a tumor necrosis factor receptor 1 (TNFR1) selective binding peptide, Hydrostatin-SN1 (H-SN1), which was screened from a Hydrophis cyanocinctus venom gland T7 phage display library, was shown to exhibit significant anti-inflammatory activity in vitro and in vivo. As a TNFR1 antagonist, it reduced cytotoxicity mediated by TNF-α in L929 fibroblasts and effectively inhibited the combination between TNF-α with TNFR1 in surface plasmon resonance analysis. H-SN1 was also shown to suppress TNFR1–associated signaling pathways as it minimized TNF-α-induced NF-кB and MAPK activation in HEK293 embryonic kidney and HT29 adenocarcinoma cell lines. We next determined the effect of H-SN1 in vivo using a murine model of acute colitis induced by dextran sodium sulfate, demonstrating that H-SN1 lowered the clinical parameters of acute colitis including the disease activity index and histologic scores. H-SN1 also inhibited TNF/TNFR1 downstream targets at both mRNA and protein levels. These results indicate that H-SN1 might represent a suitable candidate for use in the treatment of TNF-α-associated inflammatory diseases such as inflammatory bowel diseases.
Collapse
|
7
|
Alapati A, Deosarkar SP, Lanier OL, Qi C, Carlson GE, Burdick MM, Schwartz FL, McCall KD, Bergmeier SC, Goetz DJ. Simple modifications to methimazole that enhance its inhibitory effect on tumor necrosis factor-α-induced vascular cell adhesion molecule-1 expression by human endothelial cells. Eur J Pharmacol 2015; 751:59-66. [PMID: 25641748 PMCID: PMC5019189 DOI: 10.1016/j.ejphar.2015.01.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/14/2015] [Accepted: 01/19/2015] [Indexed: 12/31/2022]
Abstract
The expression of vascular cell adhesion molecule-1 (VCAM-1) on the vascular endothelium can be increased by pro-inflammatory cytokines [e.g. tumor necrosis factor-α (TNF-α)]. VCAM-1 contributes to leukocyte adhesion to, and emigration from, the vasculature which is a key aspect of pathological inflammation. As such, a promising therapeutic approach for pathological inflammation is to inhibit the expression of VCAM-1. Methimazole [3-methyl-1, 3 imidazole-2 thione (MMI)] is routinely used for the treatment of Graves׳ disease and patients treated with MMI have decreased levels of circulating VCAM-1. In this study we used cultured human umbilical vein endothelial cells (HUVEC) to investigate the effect of MMI structural modifications on TNF-α induced VCAM-1 expression. We found that addition of a phenyl ring at the 4-nitrogen of MMI yields a compound that is significantly more potent than MMI at inhibiting 24h TNF-α-induced VCAM-1 protein expression. Addition of a para methoxy to the appended phenyl group increases the inhibition while substitution of a thiazole ring for an imidazole ring in the phenyl derivatives yields no clear difference in inhibition. Addition of the phenyl ring to MMI appears to increase toxicity as does substitution of a thiazole ring for an imidazole ring in the phenyl MMI derivatives. Each of the compounds reduced TNF-α-induced VCAM-1 mRNA expression and had a functional inhibitory effect, i.e. each inhibited monocytic cell adhesion to 24h TNF-α-activated HUVEC under fluid flow conditions. Combined, these studies provide important insights into the design of MMI-related anti-inflammatory compounds.
Collapse
Affiliation(s)
- Anuja Alapati
- Biomedical Engineering Program, Ohio University, Athens, OH 45701, USA; Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701, USA
| | | | - Olivia L Lanier
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701, USA
| | - Chunyan Qi
- Biomedical Engineering Program, Ohio University, Athens, OH 45701, USA; Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701, USA
| | - Grady E Carlson
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701, USA
| | - Monica M Burdick
- Biomedical Engineering Program, Ohio University, Athens, OH 45701, USA; Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701, USA
| | - Frank L Schwartz
- Department of Specialty Medicine, Ohio University, Athens, OH 45701, USA
| | - Kelly D McCall
- Biomedical Engineering Program, Ohio University, Athens, OH 45701, USA; Department of Specialty Medicine, Ohio University, Athens, OH 45701, USA
| | - Stephen C Bergmeier
- Biomedical Engineering Program, Ohio University, Athens, OH 45701, USA; Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | - Douglas J Goetz
- Biomedical Engineering Program, Ohio University, Athens, OH 45701, USA; Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
8
|
Deosarkar SP, Bhatt P, Gillespie J, Goetz DJ, McCall KD. Inhibition of LPS-Induced TLR4 Signaling Products in Murine Macrophages by Phenylmethimazole: An Assay Methodology for Screening Potential Phenylmethimazole Analogs. Drug Dev Res 2014; 75:497-509. [DOI: 10.1002/ddr.21231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/05/2014] [Indexed: 12/13/2022]
Affiliation(s)
| | - Pooja Bhatt
- Department of Biological Sciences; Molecular and Cellular Biology Program; College or Arts and Sciences; Ohio University; Athens Ohio 45701 United States
| | | | - Douglas J. Goetz
- Department of Chemical and Biomolecular Engineering; Biomedical Engineering Program; Ohio University; Athens Ohio 45701 United States
| | - Kelly D. McCall
- Department of Biological Sciences; Molecular and Cellular Biology Program; College or Arts and Sciences; Ohio University; Athens Ohio 45701 United States
- Department of Specialty Medicine; Heritage College of Osteopathic Medicine; Ohio University; Athens Ohio 45701 United States
- Department of Biomedical Sciences; Heritage College of Osteopathic Medicine; Ohio University; Athens Ohio 45701 United States
- The Diabetes Institute at Ohio University; Heritage College of Osteopathic Medicine; Ohio University; Athens Ohio 45701 United States
- Biomedical Engineering Program; Russ College of Engineering and Technology; Ohio University; Athens Ohio 45701 United States
| |
Collapse
|
9
|
Ishihara H, Tanaka I, Yakumaru H, Tanaka M, Yokochi K, Akashi M. Pharmaceutical drugs supporting regeneration of small-intestinal mucosa severely damaged by ionizing radiation in mice. JOURNAL OF RADIATION RESEARCH 2013; 54:1057-64. [PMID: 23728323 PMCID: PMC3823793 DOI: 10.1093/jrr/rrt077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/25/2013] [Accepted: 04/28/2013] [Indexed: 05/22/2023]
Abstract
Accidental exposure of the abdomen to high-dose radiation leads to severe consequences initiated by disruption of the mucosa in the small intestine. Therapeutic options are limited, even though various treatments have been investigated, particularly in the field of regenerative therapy. In order to identify readily available treatment methods, we included several current pharmaceutical drugs, for which the clinical trials have already been completed, in tests on mice that had undergone severe mucosal damage by radiation. The drugs were injected into mice 24 h after exposure to 15.7 Gy X-rays. The effects of the drugs on the damaged mucosa of the small intestine were evaluated using early regeneration indices [the expression of c-myb mRNA, and proliferation of epithelial cells in the form of microcolonies (MCs) by Days 4 and 5 post-irradiation] and the survival rate of the mice. Enhancement of mucosal regeneration at Day 4 (c-myb: P < 0.01, MC: P < 0.05) and improvement of the survival rate (P < 0.05) were observed when a clinical dose of gonadotropin, a stimulator of androgen, was injected. Similarly, a clinical dose of thiamazole (which prevents secretion of thyroid hormone) stimulated mucosal growth by Day 5 (c-myb: P < 0.01, MC: P < 0.05) and also improved the survival rate (P < 0.05). The nonclinical drugs histamine and high-dose octreotide (a growth hormone antagonist) also gave significant survival-enhancing benefits (P < 0.01 and P < 0.05, respectively). These results can be used to construct therapeutic programs and applied in various experimental studies to control the regeneration of damaged mucosa.
Collapse
Affiliation(s)
- Hiroshi Ishihara
- Corresponding author. Internal Decorporation Research Team, Research Program for Radiation Medicine, Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan. Tel: +81-43-206-3162; Fax: +81-43-284-1769;
| | | | | | | | | | | |
Collapse
|
10
|
Hayashi Y, Narumi K, Tsuji S, Tsubokawa T, Nakaya MA, Wakayama T, Zuka M, Ohshima T, Yamagishi M, Okada T. Impact of adrenomedullin on dextran sulfate sodium-induced inflammatory colitis in mice: insights from in vitro and in vivo experimental studies. Int J Colorectal Dis 2011; 26:1453-62. [PMID: 21674139 DOI: 10.1007/s00384-011-1254-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/30/2011] [Indexed: 02/08/2023]
Abstract
BACKGROUND Although adrenomedullin (AM) is known to ameliorate inflammatory processes, few data exist regarding the effect of AM on inflammatory colitis. Therefore, we examined the effect of AM on inflammatory response in vitro and in vivo colitis model. METHODS In mice experimental colitis induced by 3% dextran sulfate sodium (DSS) in drinking water for 7 days, AM with 225-900 μg/kg in 0.5 ml of saline or saline alone were given intraperitoneally once a day. In the in vitro experiment, we determined the cytokine response in THP-1 cell activated by lipopolysaccharide with or without AM of 10 nM. Additionally, we performed wound healing assay in Caco-2 cell interfered by DSS with or without AM of 100 nM. RESULTS In the colitis model, AM significantly reduced the disease activity index, histological score, and local production of inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in accordance with reduction of serum amyloid A levels. Secretion of TNF-α in lipopolysaccharide-stimulated THP-1 cells was significantly reduced in the presence of AM. The distance of wound healing interfered by 0.25% DSS was significantly improved in the presence of AM of 100 nM. CONCLUSIONS These results demonstrate that AM could ameliorate DSS-induced experimental colitis possibly through suppression of systemic and local production of cytokines such as TNF-α, associated with acceleration of ulcer reepithelialization and colon tissue regeneration.
Collapse
Affiliation(s)
- Yoshiaki Hayashi
- Department of Internal Medicine, Kanazawa University Graduate School of Medicine, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Oral administration of Lactobacillus plantarum K68 ameliorates DSS-induced ulcerative colitis in BALB/c mice via the anti-inflammatory and immunomodulatory activities. Int Immunopharmacol 2011; 11:2159-66. [PMID: 21996541 DOI: 10.1016/j.intimp.2011.09.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 09/13/2011] [Accepted: 09/25/2011] [Indexed: 02/07/2023]
Abstract
Many different kinds of fermented food are consumed daily in Taiwan, such as stinky tofu, suan-tsai, and fu-tsai. We have previously reported the diversity of lactic acid bacteria (LAB) at different stages of fermentation in the production of suan-tsai and fu-tsai. In this study, the anti-inflammatory and immunomodulatory activities of Lactobacillus plantarum K68 (K68) isolated from fu-tsai were evaluated. K68 significantly inhibited the production of tumor necrosis factor-α (TNF-α) and prostaglandin E(2) (PGE(2)) in lipopolysaccharide (LPS)-induced murine macrophage RAW 264.7 cells and stimulated interferon-γ (IFN-γ) production in human peripheral blood mononuclear cells (hPBMCs). Additionally, orally administered K68 ameliorated dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in BALB/c mice. Both the disease activity index (DAI) and histological scores (HIS) showed that the severity of UC was significantly reduced by oral administration of K68. Furthermore, the production of pro inflammatory cytokines TNF-α, interleukin-1β (IL-1β), and interleukin-6 (IL-6) was significantly reduced in K68-administered group. Colonic mRNA expression levels of TNF-α, cyclooxygenase-2 (COX-2), forkhead box P3 (Foxp3), suppressors of cytokine signaling 3 (SOCS3), and toll like receptor 4 (TLR4), were also reduced in the K68-administered group. These results suggest that K68 exhibits anti-inflammatory and immunomodulatory activities that ameliorate DSS-induced experimental colitis.
Collapse
|