1
|
Kwon OW, Hwang Park Y, Kim D, Kwon HY, Yang HJ. Korean Red Ginseng and Rb1 restore altered social interaction, gene expressions in the medial prefrontal cortex, and gut metabolites under post-weaning social isolation in mice. J Ginseng Res 2024; 48:481-493. [PMID: 39263309 PMCID: PMC11385175 DOI: 10.1016/j.jgr.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/18/2024] [Accepted: 03/19/2024] [Indexed: 09/13/2024] Open
Abstract
Background Post-weaning social isolation (SI) reduces sociability, gene expressions including myelin genes in the medial prefrontal cortex (mPFC), and alters microbiome compositions in rodent models. Korean Red Ginseng (KRG) and its major ginsenoside Rb1 have been reported to affect myelin formation and gut metabolites. However, their effects under post-weaning SI have not been investigated. This study investigated the effects of KRG and Rb1 on sociability, gene expressions in the mPFC, and gut metabolites under post-weaning SI. Methods C57BL/6J mice were administered with water or KRG (150, 400 mg/kg) or Rb1 (0.1 mg/kg) under SI or regular environment (RE) for 2 weeks during the post-weaning period (P21-P35). After this period, mice underwent a sociability test, and then brains and ceca were collected for qPCR/immunohistochemistry and non-targeted metabolomics, respectively. Results SI reduced sociability compared to RE; however, KRG (400 mg/kg) and Rb1 significantly restored sociability under SI. In the mPFC, expressions of genes related to myelin, neurotransmitter, and oxidative stress were significantly reduced in mice under SI compared to RE conditions. Under SI, KRG and Rb1 recovered the altered expressions of several genes in the mPFC. In gut metabolomics, 313 metabolites were identified as significant among 3027 detected metabolites. Among the significantly changed metabolites in SI, some were recovered by KRG or Rb1, including metabolites related to stress axis, inflammation, and DNA damage. Conclusion Altered sociability, gene expression levels in the mPFC, and gut metabolites induced by two weeks of post-weaning SI were at least partially recovered by KRG and Rb1.
Collapse
Affiliation(s)
- Oh Wook Kwon
- Department of Integrative Biosciences, University of Brain Education, Cheonan, Republic of Korea
| | - Youngja Hwang Park
- Metabolomics Laboratory, College of Pharmacy, Korea University, Sejong, Republic of Korea
- Omics Research Center, Korea University, Sejong, Republic of Korea
| | - Dalnim Kim
- Korea Institute of Brain Science, Seoul, Republic of Korea
| | - Hyog Young Kwon
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hyun-Jeong Yang
- Department of Integrative Biosciences, University of Brain Education, Cheonan, Republic of Korea
- Korea Institute of Brain Science, Seoul, Republic of Korea
- Department of Integrative Healthcare, University of Brain Education, Cheonan, Republic of Korea
| |
Collapse
|
2
|
Zhu S, Kong X, Han F, Tian H, Sun S, Sun Y, Feng W, Wu Y. Association between social isolation and depression: Evidence from longitudinal and Mendelian randomization analyses. J Affect Disord 2024; 350:182-187. [PMID: 38220103 DOI: 10.1016/j.jad.2024.01.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND Increasing evidence shows that social isolation and depression are likely to interact with each other, yet the direction and causality of the association are not clear. This study aims to examine the possible reciprocity in the relationship between social isolation and depression. METHODS This study fitted a cross-lagged panel model (CLPM) by using data from the English Longitudinal Study of Aging (ELSA, 2014-2019, n = 6787) to examine the temporal relationship between social isolation and depressive symptoms in older adults. We then conducted two-sample bidirectional Mendelian randomization (MR) analyses by using independent genetic variants associated with multiple social isolation phenotypes (n = 448,858-487,647) and with depression (n = 215,644-2,113,907) as genetic instruments from genome-wide association studies to assess the causality between social isolation and onset of depression. RESULTS The CLPM in the ELSA cohort showed a significant and positive lagged effect of social isolation on depressive symptoms (β = 0.037, P < .001). The reverse cross-lagged path from depressive symptoms to social isolation was also statistically significant (β = 0.039, P < .001). In two-sample bidirectional MR, the genetically predicted loneliness and social isolation combined phenotype (LNL-ISO) was positively associated with occurrence of depression (OR = 1.88, 95 % CI: 1.41-2.50, P < .001), vice versa (OR = 1.16, 95 % CI:1.13-1.20, P < .001). LIMITATIONS The self-report nature of the assessments and missing data are study limitations. CONCLUSIONS These findings suggest a bidirectional relationship between social isolation and depression. It is important to develop interventions that highlight the reciprocal consequences of improving either mental health or social connection in older adults.
Collapse
Affiliation(s)
- Shuai Zhu
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Xiangjie Kong
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Fulei Han
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Huimin Tian
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Shuqin Sun
- Department of Geriatrics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanping Sun
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjing Feng
- Department of Geriatrics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yili Wu
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Heng V, Zigmond M, Smeyne RJ. Neuroanatomical and neurochemical effects of prolonged social isolation in adult mice. Front Neuroanat 2023; 17:1190291. [PMID: 37662476 PMCID: PMC10471319 DOI: 10.3389/fnana.2023.1190291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction As social animals, our health depends in part on interactions with other human beings. Yet millions suffer from chronic social isolation, including those in nursing/assisted living facilities, people experiencing chronic loneliness as well as those in enforced isolation within our criminal justice system. While many historical studies have examined the effects of early isolation on the brain, few have examined its effects when this condition begins in adulthood. Here, we developed a model of adult isolation using mice (C57BL/6J) born and raised in an enriched environment. Methods From birth until 4 months of age C57BL/6J mice were raised in an enriched environment and then maintained in that environment or moved to social isolation for 1 or 3 months. We then examined neuronal structure and catecholamine and brain derived neurotrophic factor (BDNF) levels from different regions of the brain, comparing animals from social isolation to enriched environment controls. Results We found significant changes in neuronal volume, dendritic length, neuronal complexity, and spine density that were dependent on brain region, sex, and duration of the isolation. Isolation also altered dopamine in the striatum and serotonin levels in the forebrain in a sex-dependent manner, and also reduced levels of BDNF in the motor cortex and hippocampus of male but not female mice. Conclusion These studies show that isolation that begins in adulthood imparts a significant change on the homeostasis of brain structure and chemistry.
Collapse
Affiliation(s)
- Vibol Heng
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| | - Michael Zigmond
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Richard Jay Smeyne
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
4
|
Rubinstein MR, Burgueño AL, Quiroga S, Wald MR, Genaro AM. Current Understanding of the Roles of Gut-Brain Axis in the Cognitive Deficits Caused by Perinatal Stress Exposure. Cells 2023; 12:1735. [PMID: 37443769 PMCID: PMC10340286 DOI: 10.3390/cells12131735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The term 'perinatal environment' refers to the period surrounding birth, which plays a crucial role in brain development. It has been suggested that dynamic communication between the neuro-immune system and gut microbiota is essential in maintaining adequate brain function. This interaction depends on the mother's status during pregnancy and/or the newborn environment. Here, we show experimental and clinical evidence that indicates that the perinatal period is a critical window in which stress-induced immune activation and altered microbiota compositions produce lasting behavioral consequences, although a clear causative relationship has not yet been established. In addition, we discuss potential early treatments for preventing the deleterious effect of perinatal stress exposure. In this sense, early environmental enrichment exposure (including exercise) and melatonin use in the perinatal period could be valuable in improving the negative consequences of early adversities. The evidence presented in this review encourages the realization of studies investigating the beneficial role of melatonin administration and environmental enrichment exposure in mitigating cognitive alteration in offspring under perinatal stress exposure. On the other hand, direct evidence of microbiota restoration as the main mechanism behind the beneficial effects of this treatment has not been fully demonstrated and should be explored in future studies.
Collapse
Affiliation(s)
- Mara Roxana Rubinstein
- Laboratorio de Psiconeuroendocrinoinmunologia, Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Pontificia Universidad Católica Argentina, Buenos Aires C1107AFF, Argentina; (A.L.B.); (S.Q.); (M.R.W.)
| | | | | | | | - Ana María Genaro
- Laboratorio de Psiconeuroendocrinoinmunologia, Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Pontificia Universidad Católica Argentina, Buenos Aires C1107AFF, Argentina; (A.L.B.); (S.Q.); (M.R.W.)
| |
Collapse
|
5
|
Grigoryan GA, Pavlova IV, Zaichenko MI. Effects of Social Isolation on the Development of Anxiety and Depression-Like Behavior in Model Experiments in Animals. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2022; 52:722-738. [PMID: 36119650 PMCID: PMC9471030 DOI: 10.1007/s11055-022-01297-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/02/2021] [Indexed: 11/24/2022]
Abstract
This review describes the role of social isolation in the development of anxiety and depression-like behavior in rodents. The duration of social isolation, age from onset of social isolation, sex, species, and strain of animals, the nature of the model used, and other factors have been shown to have influences. The molecular-cellular mechanisms of development of anxiety and depression-like behavior under the influence of social isolation and the roles of the HHAS, oxidative and nitrosative stress, neuroinflammation, BDNF, neurogenesis, synaptic plasticity, as well as monoamines in these mechanisms are discussed. This review presents data on sex differences in the effects of social isolation, along with the effects of interactions with other types of stress, and the roles of an enriched environment and other factors in ameliorating the negative sequelae of social isolation.
Collapse
Affiliation(s)
- G. A. Grigoryan
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - I. V. Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - M. I. Zaichenko
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Keloglan Musuroglu S, Ozturk DM, Sahin L, Cevik OS, Cevik K. Environmental enrichment as a strategy: Attenuates the anxiety and memory impairment in social isolation stress. Int J Dev Neurosci 2022; 82:499-512. [PMID: 35724417 DOI: 10.1002/jdn.10205] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/12/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Social isolation (SI) early in life produces behavioral and cognitive abnormalities. On the contrary, environmental enrichment (EE) offers beneficial effects on brain plasticity and development. This study was designed to examine how EE affects memory functions, anxiety level, and the expression levels of memory/anxiety-related genes such as NR2A, NR2B, BDNF, and cFos in the hippocampus of socially isolated rats. MATERIALS AND METHODS Wistar albino male rats (n = 40) were separated into the five groups: Standard cage (SC), SI, EE, SI + SC, and SI + EE group. For each group, eight rats were housed, either grouped or isolated, in a standard or 3-week EE, respectively. Morris water maze test (MWMT) was used for measuring the learning and memory function. Elevated plus maze (EPM) and open field (OF) were used for the evaluation of anxiety behavior. Blood corticosterone level was evaluated by the ELISA method. The expression levels of genes were measured by the RT-PCR method. RESULTS Results showed that EE increased memory performance in the SI group (p < 0.05). SI caused anxiety while EE improved anxiety behavior (p < 0.05). There was no significant difference between the groups in the OF test. Corticosterone levels did not change between groups. BDNF expression level was downregulated in EE and SI + SC compared with the SC group (respectively; p = 0.012; p = 0.011). NR2A, NR2B, and cFos expression levels did not change between groups significantly. CONCLUSIONS SI impaired memory performance while EE has beneficial effects on memory in socially isolated rats. EE alone was insufficient to cause alterations in the memory performance. The therapeutic effects of EE became strengthened while applied together with stress protocol. Together with improving the effectiveness of memory function, EE has the potential to decrease anxiety behavior. EE seemed to be the reason for decreasing in BDNF.
Collapse
Affiliation(s)
| | - Duygu Murat Ozturk
- Midwifery Department, Faculty of Health Sciences, Amasya University, Amasya, Turkey
| | - Leyla Sahin
- Physiology Department, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Ozge Selin Cevik
- Physiology Department, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Kenan Cevik
- Health Sciences Institute, Faculty of Medicine, Mersin University, Mersin, Turkey
| |
Collapse
|
7
|
Du W, Li M, Zhou H, Shao F, Wang W. Alteration of the PKA-CREB cascade in the mPFC accompanying prepulse inhibition deficits: evidence from adolescent social isolation and chronic SKF38393 injection during early adolescence. Behav Pharmacol 2021; 32:487-496. [PMID: 34148969 DOI: 10.1097/fbp.0000000000000643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Prepulse inhibition (PPI) refers to the inhibition of the startle reflex that occurs when the startling stimulus is preceded by a weak prestimulus. Altered adolescent mPFC circuitry induced by early-life adversity might be a key source of PPI deficits. The current study focused on variations in the cyclic AMP (cAMP)/protein kinase A (PKA)-cAMP-response element-binding protein (CREB) pathway in the medial prefrontal cortex (mPFC). We found a negative relationship between PPI and the PKA-CREB cascade during adolescence by employing both developmental and pharmacologic manipulations. Experiment 1, with the early adolescent social isolation model [postnatal days (PNDs), 21-34), displayed a disrupted PPI at PND 35 and significantly altered PKA, phosphorylated CREB (p-CREB) and the ratio of p-CREB to CREB. In particular, the level of p-CREB was negatively related to PPI performance. In Experiment 2, SKF38393, a well-characterized activator of adenylate cyclase and cAMP/PKA, was chronically injected during early adolescence (PNDs 28-34). We sought to mimic potential biochemical changes, particularly PKA activation, which is possibly altered by adolescent social isolation, and to determine if PPI was disrupted, similar to the disruption associated with adolescent social isolation. On PND 35, PPI deficits were detected, as well as increased PKA, marginally increased CREB and no change occurred in p-CREB or the ratio of p-CREB to CREB. In particular, PKA activity was negatively related to PPI performance. Although these results are limited in suggesting a causal link between PPI deficits and PKA-CREB signaling, they may help to elucidate the role played by PKA-CREB in the mPFC in regulating PPI.
Collapse
Affiliation(s)
- Wei Du
- School of Psychological and Cognitive Science, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing
| | - Man Li
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University
- Faculty of Psychology, Tianjin Normal University
- Tianjin Social Science Laboratory of Students' Mental Development and Learning, Tianjin
| | - Hao Zhou
- School of Psychological and Cognitive Science, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing
| | - Feng Shao
- School of Psychological and Cognitive Science, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing
| | - Weiwen Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences
- The University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Salihu SA, Ghafari H, Ahmadimanesh M, Gortany NK, Shafaroodi H, Ghazi-Khansari M. Glatiramer acetate attenuates depressive/anxiety-like behaviors and cognitive deficits induced by post-weaning social isolation in male mice. Psychopharmacology (Berl) 2021; 238:2121-2132. [PMID: 33797571 DOI: 10.1007/s00213-021-05836-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
RATIONALE Major depressive disorder (MDD) is a debilitating disorder with adverse effects on mood, memory, and quality of life. OBJECTIVES In this study, the antidepressant potential of glatiramer acetate (GA), a drug used in the management of multiple sclerosis, was investigated in acute and chronic models of depression in male mice. The acute antidepressant screening was performed with the forced swim (FST) and tail suspension (TST) tests. In the chronic phase, post-weaning social isolation (SI) was used to induce depressive-/anxiety-like behaviors. METHODS Mice were reared in two different groups of social (SG) and isolated (IG) for 4 weeks. IG mice were treated with 0.5, 1.0, and 2.0 mg/kg of GA for the last 2 weeks of the SI period. Animals were assessed by the behavioral tests of depression, anxiety, learning, and memory, and hippocampal brain-derived neurotrophic factor (BDNF) level was measured. RESULTS The acute tests confirmed the antidepressant potential of GA. In the chronic phase, GA could reduce immobility time in FST (P < 0.05), increase exploration activity in open field test (P < 0.05), increase open arms duration (P < 0.05) and entries in elevated plus maze (P<0.001), and improve memory and learning in passive avoidance test (P < 0.05). The BDNF level was increased in IG mice and decreased in IG mice treated with GA. CONCLUSIONS Our results showed that GA improved depressive-/anxiety-like behaviors and cognitive dysfunction of SI reared mice without increasing the BDNF level which may be associated with other mechanisms of actions of GA.
Collapse
Affiliation(s)
- Sanusi Andah Salihu
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Homanaz Ghafari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Mahnaz Ahmadimanesh
- Department of Pharmacodynamics and Toxicology, Mashhad University of Medical Sciences, Mashhad, Iran
- Food and Drug Control Laboratory, Food and Drug Vice Presidency, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges K Gortany
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Hamed Shafaroodi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| |
Collapse
|
9
|
Begni V, Zampar S, Longo L, Riva MA. Sex Differences in the Enduring Effects of Social Deprivation during Adolescence in Rats: Implications for Psychiatric Disorders. Neuroscience 2020; 437:11-22. [PMID: 32334072 DOI: 10.1016/j.neuroscience.2020.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/14/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022]
Abstract
The exposure to adverse environmental situations during sensitive periods of development may induce re-organizational effects on different systems and increase the vulnerability to develop psychiatric disorders later in life. The adolescent period has been demonstrated extremely susceptible to stressful events. However, most of the studies focused on the immediate effects of stress exposure and few of them investigated sex differences. This raised the question if these modulations might also be long-lasting and how the differential maturational events taking place during adolescence between males and females might have a role in the detrimental effects of stress. Given the importance of social play for the right maturation of behavior during adolescence, we used the preclinical model of social deprivation, based on the lack of all social contacts, for four weeks after weaning, followed by re-socialization until adulthood. We found that both male and female animals reared in isolation during adolescence developed an anhedonic phenotype at adulthood, without any impairments in the cognitive domain. At molecular level, these functional changes were associated with sex-specific impairments in the expression of neuroplastic markers as well as of hypothalamic-pituitary-adrenal axis-related genes. Lastly, we also reported anatomically-selective changes associated with the enduring effects of social isolation.
Collapse
Affiliation(s)
- Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan Italy.
| | - Silvia Zampar
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan Italy
| | - Linda Longo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan Italy
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan Italy.
| |
Collapse
|
10
|
Wang Q, Liu Y, Zhang J, Wang W. Corticotropin-Releasing Factor Receptors in the Locus Coeruleus Modulate the Enhancement of Active Coping Behaviors Induced by Chronic Predator Odor Inoculation in Mice. Front Psychol 2020; 10:3028. [PMID: 31998206 PMCID: PMC6965494 DOI: 10.3389/fpsyg.2019.03028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/20/2019] [Indexed: 01/09/2023] Open
Abstract
Stress inoculation has been proved to induce active coping behaviors to subsequent stress. However, the specific neural mechanisms underlying this effect remain unclear. In this study, a chronic and mild predator odor exposure model was established to investigate the effect of predator odor stress inoculation on behaviors in novel predator odor exposure, open field test and forced swimming test (FST), and on the expression of CRF receptors in locus coeruleus (LC) and dorsal raphe nuclei (DRN). The results showed that predator odor stress inoculation increased the active coping of mice under the severe stress environment without changing the stress response to a new predator odor. Meanwhile, in LC, the CRFR1 expression was increased by predator odor stress inoculation. These results suggested that predator odor stress inoculation can be used as an effective training method to improve active response to later severe stress and the function of CRFR1 in LC might be a potential underlying biological mechanism.
Collapse
Affiliation(s)
- Qiong Wang
- School of Education, Zhengzhou University, Zhengzhou, China
| | - Yingjuan Liu
- School of Life Sciences and Technology, Nanyang Normal University, Nanyang, China
| | - Jianxu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Weiwen Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Larsen B, Luna B. Adolescence as a neurobiological critical period for the development of higher-order cognition. Neurosci Biobehav Rev 2018; 94:179-195. [PMID: 30201220 PMCID: PMC6526538 DOI: 10.1016/j.neubiorev.2018.09.005] [Citation(s) in RCA: 412] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/29/2018] [Accepted: 09/06/2018] [Indexed: 01/08/2023]
Abstract
The transition from adolescence to adulthood is characterized by improvements in higher-order cognitive abilities and corresponding refinements of the structure and function of the brain regions that support them. Whereas the neurobiological mechanisms that govern early development of sensory systems are well-understood, the mechanisms that drive developmental plasticity of association cortices, such as prefrontal cortex (PFC), during adolescence remain to be explained. In this review, we synthesize neurodevelopmental findings at the cellular, circuit, and systems levels in PFC and evaluate them through the lens of established critical period (CP) mechanisms that guide early sensory development. We find remarkable correspondence between these neurodevelopmental processes and the mechanisms driving CP plasticity, supporting the hypothesis that adolescent development is driven by CP mechanisms that guide the rapid development of neurobiology and cognitive ability during adolescence and their subsequent stability in adulthood. Critically, understanding adolescence as a CP not only provides a mechanism for normative adolescent development, it provides a framework for understanding the role of experience and neurobiology in the emergence of psychopathology that occurs during this developmental period.
Collapse
Affiliation(s)
- Bart Larsen
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 15213, United States; Center for the Neural Basis of Cognition, Pittsburgh, PA, 15213, United States.
| | - Beatriz Luna
- Center for the Neural Basis of Cognition, Pittsburgh, PA, 15213, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| |
Collapse
|
12
|
Petrović J, Stanić D, Bulat Z, Puškaš N, Labudović-Borović M, Batinić B, Mirković D, Ignjatović S, Pešić V. Acth-induced model of depression resistant to tricyclic antidepressants: Neuroendocrine and behavioral changes and influence of long-term magnesium administration. Horm Behav 2018; 105:1-10. [PMID: 30025718 DOI: 10.1016/j.yhbeh.2018.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 07/14/2018] [Accepted: 07/14/2018] [Indexed: 11/20/2022]
Abstract
Magnesium (Mg), is not only a modulator of the glutamatergic NMDA receptors' affinity, it also prevents HPA axis hyperactivity, thus possibly being implicated in neurobiological features of mood disorders. Further uncovering of molecular mechanisms underlying magnesium's proposed effects is needed due to the recent shift in research of treatment resistant depression (TRD) towards glutamatergic pathways. Here, we applied Mg via drinking water for 28 days (50 mg/kg/day), in ACTH-treated rats, an established animal model of depression resistant to tricyclic antidepressants. Using this model in male rats we measured (1) changes in hippocampal neurogenesis and behavioral alterations, (2) adrenal hormones response to acute stress challenge and (3) levels of biometals involved in regulation of monoamines turnover in rat prefrontal cortex. Our results support beneficial behavioral impact of Mg in TRD model together with increased hippocampal neurogenesis and BDNF expression. Furthermore, Mg prevented ACTH-induced disruption in HPA axis function, by normalizing the levels of plasma ACTH, corticosterone and interleukin-6, and by increasing the peripheral release of adrenaline, noradrenaline and serotonin after the acute stress challenge. Finally, the influence on copper/zinc ratio suggested probable magnesium's involvement in monoamine turnover in PFC. Our findings provide further insights into the possible pathways implicated in the behavioral modulation effects of Mg, as well as its central and peripheral effects in ACTH-induced TRD model. Thus, further investigation of molecular signaling related to the glutamatergic transmission and role of Mg, could reveal prospects to novel treatment strategies that could be of particular importance for patients suffering from TRD.
Collapse
Affiliation(s)
- Jelena Petrović
- Department of Physiology, University of Belgrade, Faculty of Pharmacy, Serbia
| | - Dušanka Stanić
- Department of Physiology, University of Belgrade, Faculty of Pharmacy, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, Faculty of Pharmacy, Serbia
| | - Nela Puškaš
- Institute of Histology and Embryology "Aleksandar Đ. Kostić", School of Medicine, University of Belgrade, Serbia
| | - Milica Labudović-Borović
- Institute of Histology and Embryology "Aleksandar Đ. Kostić", School of Medicine, University of Belgrade, Serbia
| | - Bojan Batinić
- Department of Physiology, University of Belgrade, Faculty of Pharmacy, Serbia
| | - Duško Mirković
- Department of Medical Biochemistry, University of Belgrade, Faculty of Pharmacy, Serbia
| | - Svetlana Ignjatović
- Department of Medical Biochemistry, University of Belgrade, Faculty of Pharmacy, Serbia
| | - Vesna Pešić
- Department of Physiology, University of Belgrade, Faculty of Pharmacy, Serbia.
| |
Collapse
|
13
|
Chen YW, Akad A, Aderogba R, Chowdhury TG, Aoki C. Dendrites of the dorsal and ventral hippocampal CA1 pyramidal neurons of singly housed female rats exhibit lamina-specific growths and retractions during adolescence that are responsive to pair housing. Synapse 2018; 72:e22034. [PMID: 29631321 DOI: 10.1002/syn.22034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/27/2018] [Accepted: 04/01/2018] [Indexed: 01/07/2023]
Abstract
Adolescence is accompanied by increased vulnerability to psychiatric illnesses, including anxiety, depression, schizophrenia, and eating disorders. The hippocampus is important for regulating emotional state through its ventral compartment and spatial cognition through its dorsal compartment. Previous animal studies have examined hippocampal development at stages before, after or at single time points during adolescence. However, only one study has investigated morphological changes at multiple time points during adolescence, and no study has yet compared developmental changes of dorsal versus ventral hippocampi. We analyzed the dorsal and ventral hippocampi of rats to determine the developmental trajectory of Golgi-stained hippocampal CA1 neurons by sampling at five time points, ranging from postnatal day (P) 35 (puberty) to 55 (end of adolescence). We show that the dorsal hippocampus undergoes transient dendritic retractions in stratum radiatum (SR), while the ventral hippocampus undergoes transient dendritic growths in SR. During adulthood, stress and hormonal fluctuations have been shown to alter the physiology and morphology of hippocampal neurons, but studies of the impact of these factors upon adolescent hippocampi are scarce. In addition, we show that female-female pair housing from P 36-44 significantly increases branching in the dorsal SR and reduces branching in the ventral SR. Taken together with data on spine density, these results indicate that pyramidal cells in the dorsal and ventral CA1 of female adolescents are remodeled differently following single housing. Social housing during adolescence elicits pathway-specific changes in the hippocampus that may underlie behavioral benefits, including stability of emotion regulation and superior cognition.
Collapse
Affiliation(s)
- Yi-Wen Chen
- Center for Neural Science, New York University, New York, New York 10003
| | - Ada Akad
- Center for Neural Science, New York University, New York, New York 10003
| | - Ruka Aderogba
- Center for Neural Science, New York University, New York, New York 10003
| | - Tara G Chowdhury
- Center for Neural Science, New York University, New York, New York 10003
| | - Chiye Aoki
- Center for Neural Science, New York University, New York, New York 10003.,Neuroscience Institute, Langone Medical Center, New York University, New York, New York 10016
| |
Collapse
|
14
|
Dandi Ε, Kalamari A, Touloumi O, Lagoudaki R, Nousiopoulou E, Simeonidou C, Spandou E, Tata DA. Beneficial effects of environmental enrichment on behavior, stress reactivity and synaptophysin/BDNF expression in hippocampus following early life stress. Int J Dev Neurosci 2018; 67:19-32. [PMID: 29545098 DOI: 10.1016/j.ijdevneu.2018.03.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 01/01/2023] Open
Abstract
Exposure to environmental enrichment can beneficially influence the behavior and enhance synaptic plasticity. The aim of the present study was to investigate the mediated effects of environmental enrichment on postnatal stress-associated impact with regard to behavior, stress reactivity as well as synaptic plasticity changes in the dorsal hippocampus. Wistar rat pups were submitted to a 3 h maternal separation (MS) protocol during postnatal days 1-21, while another group was left undisturbed. On postnatal day 23, a subgroup from each rearing condition (maternal separation, no-maternal separation) was housed in enriched environmental conditions until postnatal day 65 (6 weeks duration). At approximately three months of age, adult rats underwent behavioral testing to evaluate anxiety (Elevated Plus Maze), locomotion (Open Field Test), spatial learning and memory (Morris Water Maze) as well as non-spatial recognition memory (Novel Object Recognition Test). After completion of behavioral testing, blood samples were taken for evaluation of stress-induced plasma corticosterone using an enzyme-linked immunosorbent assay (ELISA), while immunofluorescence was applied to evaluate hippocampal BDNF and synaptophysin expression in dorsal hippocampus. We found that environmental enrichment protected against the effects of maternal separation as indicated by the lower anxiety levels and the reversal of spatial memory deficits compared to animals housed in standard conditions. These changes were associated with increased BDNF and synaptophysin expression in the hippocampus. Regarding the neuroendocrine response to stress, while exposure to an acute stressor potentiated corticosterone increases in maternally-separated rats, environmental enrichment of these rats prevented this effect. The current study aimed at investigating the compensatory role of enriched environment against the negative outcomes of adverse experiences early in life concurrently on emotional and cognitive behaviors, HPA function and neuroplasticity markers.
Collapse
Affiliation(s)
- Εvgenia Dandi
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Aikaterini Kalamari
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Olga Touloumi
- Laboratory of Neuroimmunology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Rosa Lagoudaki
- Laboratory of Neuroimmunology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Evangelia Nousiopoulou
- Laboratory of Neuroimmunology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Constantina Simeonidou
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Evangelia Spandou
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece.
| | - Despina A Tata
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece.
| |
Collapse
|
15
|
Watt MJ, Weber MA, Davies SR, Forster GL. Impact of juvenile chronic stress on adult cortico-accumbal function: Implications for cognition and addiction. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79. [PMID: 28642080 PMCID: PMC5610933 DOI: 10.1016/j.pnpbp.2017.06.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Repeated exposure to stress during childhood is associated with increased risk for neuropsychiatric illness, substance use disorders and other behavioral problems in adulthood. However, it is not clear how chronic childhood stress can lead to emergence of such a wide range of symptoms and disorders in later life. One possible explanation lies in stress-induced disruption to the development of specific brain regions associated with executive function and reward processing, deficits in which are common to the disorders promoted by childhood stress. Evidence of aberrations in prefrontal cortex and nucleus accumbens function following repeated exposure of juvenile (pre- and adolescent) organisms to a variety of different stressors would account not only for the similarity in symptoms across the wide range of childhood stress-associated mental illnesses, but also their persistence into adulthood in the absence of further stress. Therefore, the goal of this review is to evaluate the current knowledge regarding disruption to executive function and reward processing in adult animals or humans exposed to chronic stress over the juvenile period, and the underlying neurobiology, with particular emphasis on the prefrontal cortex and nucleus accumbens. First, the role of these brain regions in mediating executive function and reward processing is highlighted. Second, the neurobehavioral development of these systems is discussed to illustrate how juvenile stress may exert long-lasting effects on prefrontal cortex-accumbal activity and related behavioral functions. Finally, a critical review of current animal and human findings is presented, which strongly supports the supposition that exposure to chronic stress (particularly social aggression and isolation in animal studies) in the juvenile period produces impairments in executive function in adulthood, especially in working memory and inhibitory control. Chronic juvenile stress also results in aberrations to reward processing and seeking, with increased sensitivity to drugs of abuse particularly noted in animal models, which is in line with greater incidence of substance use disorders seen in clinical studies. These consequences are potentially mediated by monoamine and glutamatergic dysfunction in the prefrontal cortex and nucleus accumbens, providing translatable therapeutic targets. However, the predominant use of male subjects and social-based stressors in preclinical studies points to a clear need for determining how both sex differences and stressor heterogeneity may differentially contribute to stress-induced changes to substrates mediating executive function and reward processing, before the impact of chronic juvenile stress in promoting adult psychopathology can be fully understood.
Collapse
|
16
|
Zaletel I, Filipović D, Puškaš N. Hippocampal BDNF in physiological conditions and social isolation. Rev Neurosci 2017; 28:675-692. [DOI: 10.1515/revneuro-2016-0072] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 02/16/2017] [Indexed: 12/19/2022]
Abstract
AbstractExposure of an organism to chronic psychosocial stress may affect brain-derived neurotrophic factor (BDNF) expression that has been implicated in the etiology of psychiatric disorders, such as depression. Given that depression in humans has been linked with social stress, the chronic social stress paradigms for modeling psychiatric disorders in animals have thus been developed. Chronic social isolation in animal models generally causes changes in hypothalamic-pituitary-adrenal axis functioning, associated with anxiety- and depressive-like behaviors. Also, this chronic stress causes downregulation of BDNF protein and mRNA in the hippocampus, a stress-sensitive brain region closely related to the pathophysiology of depression. In this review, we discuss the current knowledge regarding the structure, function, intracellular signaling, inter-individual differences and epigenetic regulation of BDNF in both physiological conditions and depression and changes in corticosterone levels, as a marker of stress response. Since BDNF levels are age dependent in humans and rodents, this review will also highlight the effects of adolescent and adult chronic social isolation models of both genders on the BDNF expression.
Collapse
Affiliation(s)
- Ivan Zaletel
- Institute of Histology and Embryology “Aleksandar Ð. Kostić”, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Dragana Filipović
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences “Vinča”, University of Belgrade, 11000 Belgrade, Serbia
| | - Nela Puškaš
- Institute of Histology and Embryology “Aleksandar Ð. Kostić”, School of Medicine, University of Belgrade, Višegradska 26, 11000 Belgrade, Serbia
| |
Collapse
|
17
|
Murínová J, Hlaváčová N, Chmelová M, Riečanský I. The Evidence for Altered BDNF Expression in the Brain of Rats Reared or Housed in Social Isolation: A Systematic Review. Front Behav Neurosci 2017; 11:101. [PMID: 28620285 PMCID: PMC5449742 DOI: 10.3389/fnbeh.2017.00101] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/12/2017] [Indexed: 12/16/2022] Open
Abstract
There is evidence that development and maintenance of neural connections are disrupted in major mental disorders, which indicates that neurotrophic factors could play a critical role in their pathogenesis. Stress is a well-established risk factor for psychopathology and recent research suggests that disrupted signaling via brain-derived neurotrophic factor (BDNF) may be involved in mediating the negative effects of stress on the brain. Social isolation of rats elicits chronic stress and is widely used as an animal model of mental disorders such as schizophrenia and depression. We carried out a systematic search of published studies to review current evidence for an altered expression of BDNF in the brain of rats reared or housed in social isolation. Across all age groups (post-weaning, adolescent, adult), majority of the identified studies (16/21) reported a decreased expression of BDNF in the hippocampus. There are far less published data on BDNF expression in other brain regions. Data are also scarce to assess the behavioral changes as a function of BDNF expression, but the downregulation of BDNF seems to be associated with increased anxiety-like symptoms. The reviewed data generally support the putative involvement of BDNF in the pathogenesis of stress-related mental illness. However, the mechanisms linking chronic social isolation, BDNF expression and the elicited behavioral alterations are currently unknown.
Collapse
Affiliation(s)
- Jana Murínová
- Laboratory of Cognitive Neuroscience, Institute of Normal and Pathological Physiology, Slovak Academy of SciencesBratislava, Slovakia
| | - Nataša Hlaváčová
- Laboratory of Pharmacological Neuroendocrinology, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of SciencesBratislava, Slovakia
| | - Magdaléna Chmelová
- Laboratory of Pharmacological Neuroendocrinology, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of SciencesBratislava, Slovakia
| | - Igor Riečanský
- Laboratory of Cognitive Neuroscience, Institute of Normal and Pathological Physiology, Slovak Academy of SciencesBratislava, Slovakia
- Social, Cognitive and Affective Neuroscience Unit, Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of ViennaVienna, Austria
| |
Collapse
|
18
|
Wang Q, Shao F, Wang W. Maternal separation produces alterations of forebrain brain-derived neurotrophic factor expression in differently aged rats. Front Mol Neurosci 2015; 8:49. [PMID: 26388728 PMCID: PMC4555027 DOI: 10.3389/fnmol.2015.00049] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/18/2015] [Indexed: 01/06/2023] Open
Abstract
Early life adversity, such as postnatal maternal separation (MS), play a central role in the development of psychopathologies during individual ontogeny. In this study, we investigated the effects of repeated MS (4 h per day from postnatal day (PND) 1-21) on the brain-derived neurotrophic factor (BDNF) expression in the medial prefrontal cortex (mPFC), the nucleus accumbens (NAc) and the hippocampus of male and female juvenile (PND 21), adolescent (PND 35) and young adult (PND 56) Wistar rats. The results indicated that MS increased BDNF in the CA1 and the dentate gyrus (DG) of adolescent rats as well as in the DG of young adult rats. However, the expression of BDNF in the mPFC in the young adult rats was decreased by MS. Additionally, in the hippocampus, there was decreased BDNF expression with age in both the MS and non separated rats. However, in the mPFC, the BDNF expression was increased with age in the non separated rats; nevertheless, the BDNF expression was significantly decreased in the MS young adult rats. In the NAc, the BDNF expression was increased with age in the male non-maternal separation (NMS) rats, and the young adult female MS rats had less BDNF expression than the adolescent female MS rats. The present study shows unique age-differently changes on a molecular level induced by MS and advances the use of MS as a valid animal model to detect the underlying neurobiological mechanisms of mental disorders.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Psychology, Peking University Beijing, China
| | - Feng Shao
- Department of Psychology, Peking University Beijing, China
| | - Weiwen Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| |
Collapse
|
19
|
Xue X, Shao S, Wang W, Shao F. Maternal separation induces alterations in reversal learning and brain-derived neurotrophic factor expression in adult rats. Neuropsychobiology 2014; 68:243-9. [PMID: 24280707 DOI: 10.1159/000356188] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 10/01/2013] [Indexed: 11/19/2022]
Abstract
AIMS Early postnatal maternal and/or sibling separation (MS) can play an important role in the development of psychopathologies during ontogeny. The purpose of the present study is to investigate the effects of repeated MS on the cognitive and brain-derived neurotrophic factor (BDNF) function of rats. METHODS We investigated the effects of repeated MS that lasted 3 h/day during postnatal days 1-21 on spatial learning and reversal learning in Morris water maze tests in male rats. The rats were tested in 4 trials. Moreover, we examined the effects of MS on BDNF protein expression in the medial prefrontal cortex (mPFC), the nucleus accumbens, and the hippocampus via immunohistochemistry measurements. RESULTS We found that repeated MS modestly disrupted reversal learning performance in the Morris water maze and decreased BDNF protein expression in the mPFC. CONCLUSION The present study enhances our understanding of the neurobiological and behavioral consequences of repeated episodes of MS in rats to some degree.
Collapse
Affiliation(s)
- Xiaofang Xue
- Department of Psychology, Peking University, Beijing, China
| | | | | | | |
Collapse
|
20
|
Shao F, Han X, Shao S, Wang W. Adolescent social isolation influences cognitive function in adult rats. Neural Regen Res 2014; 8:1025-30. [PMID: 25206396 PMCID: PMC4145882 DOI: 10.3969/j.issn.1673-5374.2013.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 01/17/2013] [Indexed: 12/11/2022] Open
Abstract
Adolescence is a critical period for neurodevelopment. Evidence from animal studies suggests that isolated rearing can exert negative effects on behavioral and brain development. The present study aimed to investigate the effects of adolescent social isolation on latent inhibition and brain-derived neurotrophic factor levels in the forebrain of adult rats. Male Wistar rats were randomly divided into adolescent isolation (isolated housing, 38–51 days of age) and social groups. Latent inhibition was tested at adulthood. Brain-derived neurotrophic factor levels were measured in the medial prefrontal cortex and nucleus accumbens by an enzyme-linked immunosorbent assay. Adolescent social isolation impaired latent inhibition and increased brain-derived neurotrophic factor levels in the medial prefrontal cortex of young adult rats. These data suggest that adolescent social isolation has a profound effect on cognitive function and neurotrophin levels in adult rats and may be used as an animal model of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Feng Shao
- Department of Psychology, Peking University, Beijing 100871, China
| | - Xiao Han
- Department of Psychology, Peking University, Beijing 100871, China
| | - Shuang Shao
- Department of Psychology, Peking University, Beijing 100871, China
| | - Weiwen Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
21
|
Li M, Xue X, Shao S, Shao F, Wang W. Cognitive, emotional and neurochemical effects of repeated maternal separation in adolescent rats. Brain Res 2013; 1518:82-90. [PMID: 23623774 DOI: 10.1016/j.brainres.2013.04.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/12/2013] [Accepted: 04/12/2013] [Indexed: 02/06/2023]
Abstract
As an adverse early life experience, maternal separation (MS) induces profound neurochemical, cognitive and emotional dysfunction. Previous studies have reported that MS affected prepulse inhibition (PPI), anxiety-related behaviors, dopaminergic and serotonergic activity in adult rats, and in the present study, we investigated the effects of repeated (4h/day) maternal separation during postnatal days 1-21 on PPI and anxiety-related behaviors in an elevated plus maze, as well as dopamine D2 receptor (DRD2) and 5-HT1A receptor expression in the medial prefrontal cortex (mPFC), nucleus accumbens (NAc) and hippocampus in adolescent rats. Our findings show that repeated MS results in reduced PPI, increased anxiety-related behaviors, decreased DRD2 protein expression in the NAc and hippocampus, and decreased 5-HT1A protein expression in the mPFC and hippocampus in adolescent rats. These data further demonstrate that MS can be used as an animal model of neuropsychiatric disease.
Collapse
Affiliation(s)
- Man Li
- Department of Psychology, Peking University, 5 Yiheyuan Road, Beijing 100871, China
| | | | | | | | | |
Collapse
|
22
|
Wall VL, Fischer EK, Bland ST. Isolation rearing attenuates social interaction-induced expression of immediate early gene protein products in the medial prefrontal cortex of male and female rats. Physiol Behav 2012; 107:440-50. [PMID: 22982514 PMCID: PMC4529065 DOI: 10.1016/j.physbeh.2012.09.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/19/2012] [Accepted: 09/09/2012] [Indexed: 11/29/2022]
Abstract
Early life adversity and stress in humans have been related to a number of psychological disorders including anxiety, depression, and addiction. The present study used isolation rearing, a well-characterized animal model of early life adversity, to examine its effects on social behavior and immediate early gene (IEG) expression produced by exposure to a novel social experience. Male and female rats were housed in same-sex groups or in isolation for 4 weeks beginning at weaning and were tested during late adolescence. The protein products of the IEGs c-fos and Arc, as well as the neurotrophic factor BDNF were assessed in medial prefrontal cortex (mPFC) subregions (anterior cingulate, prelimbic and infralimbic) using immunohistochemistry. Aggressive and non-aggressive behaviors during novel social exposure were also assessed. Exposure to a novel conspecific produced increases in Arc and c-fos activation in the mPFC of group reared animals in a sex- and subregion-dependent fashion compared to no social exposure controls, but this increase was blunted or absent in isolated animals. Isolates engaged in more social interactions and more aggressive behavior than group reared rats. Sex differences in some behaviors as well as in Arc and BDNF expression were observed. These results indicate that isolation rearing alters IEG activation in the mPFC produced by exposure to a novel conspecific, in addition to changing social behavior, and that these effects depend in part on sex.
Collapse
Affiliation(s)
- Vanessa L. Wall
- Department of Psychology, University of Colorado Denver, Denver, CO
| | - Eva K. Fischer
- Department of Biology, Colorado State University, Fort Collins, CO
| | - Sondra T. Bland
- Department of Psychology, University of Colorado Denver, Denver, CO
| |
Collapse
|
23
|
Greenberg GD, van Westerhuyzen JA, Bales KL, Trainor BC. Is it all in the family? The effects of early social structure on neural-behavioral systems of prairie voles (Microtus ochrogaster). Neuroscience 2012; 216:46-56. [PMID: 22561732 DOI: 10.1016/j.neuroscience.2012.04.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 01/11/2023]
Abstract
The transition to parenthood is generally associated with a reduction in anxiety or anxiety-like behavior across a wide range of species. In some species, juveniles provide supplementary parental care for younger siblings, a behavior known as alloparenting. Although the fitness consequences of alloparenting behavior have been a focus of evolutionary research, less is known about how alloparenting behavior impacts affective states. In the socially monogamous prairie vole (Microtus ochrogaster), most juveniles exhibit alloparenting behavior, making the species an ideal model for examining the effects of alloparenting on future behavioral outcomes. We randomly assigned juvenile voles to alloparenting (AL) or no alloparenting (NoAL) groups and behaviorally phenotyped them for anxiety-like and social behaviors using the elevated plus maze (EPM), open field test (OFT), startle box, social interaction test, juvenile affiliation test, and partner preference test. AL voles displayed more anxiety-like and less exploratory behaviors than NoAL voles, spending significantly less time in the open arms of the EPM and center of an open field. We dissected the CA1 region of the hippocampus and the bed nucleus of the stria terminalis (BNST) from brains of behaviorally phenotyped voles and nontested siblings as well. Decreased brain-derived neurotrophic factor (BDNF) expression in CA1 has generally been associated with increased anxiety-like behavior in other rodents, while an anxiogenic role for BDNF in BNST is less established. Western blot analyses showed that alloparenting experience increased expression of BDNF in the BNST but decreased BDNF expression in the CA1 region of hippocampus (CA1) of nontested voles. There were similar differences in BNST BDNF of behaviorally phenotyped voles, and BDNF levels within this region were negatively correlated with exploratory behavior (i.e. time in center of OFT). Our results suggest that BDNF signaling in BNST and CA1 fluctuate with alloparenting experience, and they contribute to an increasingly complex "BDNF hypothesis" in which behavioral effects of this molecule are region-specific.
Collapse
Affiliation(s)
- G D Greenberg
- Neuroscience Graduate Group, University of California, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
24
|
Early social isolation disrupts latent inhibition and increases dopamine D2 receptor expression in the medial prefrontal cortex and nucleus accumbens of adult rats. Brain Res 2012; 1447:38-43. [DOI: 10.1016/j.brainres.2012.01.058] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/15/2011] [Accepted: 01/24/2012] [Indexed: 11/20/2022]
|
25
|
Han X, Wang W, Xue X, Shao F, Li N. Brief social isolation in early adolescence affects reversal learning and forebrain BDNF expression in adult rats. Brain Res Bull 2011; 86:173-8. [PMID: 21801814 DOI: 10.1016/j.brainresbull.2011.07.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 10/17/2022]
Abstract
Isolation rearing produces significant behavioral and neurochemical dysregulations in rodents. However, few studies have examined the effects of short-term isolation rearing during puberty compared to chronic social isolation from weaning to adulthood. In this study, we subjected weaning rats to a brief two-week social isolation and then re-socialized them until adulthood. We found that early isolation rearing affected reversal learning without interfering with spatial learning in the Morris water maze. We also found that brain-derived neurotrophic factor (BDNF) protein expression was increased in the medial prefrontal cortex (mPFC) but was decreased in the nucleus accumbens (NAc), CA1 and dentate gyrus of the hippocampus in isolation-reared rats. Together, our findings support the use of adolescent social isolation as a rodent model to study brain and behavior abnormalities induced by early environmental interruptions.
Collapse
Affiliation(s)
- Xiao Han
- Department of Psychology, Peking University, Beijing, China
| | | | | | | | | |
Collapse
|
26
|
Ray B, Gaskins DL, Sajdyk TJ, Spence JP, Fitz SD, Shekhar A, Lahiri DK. Restraint stress and repeated corticotrophin-releasing factor receptor activation in the amygdala both increase amyloid-β precursor protein and amyloid-β peptide but have divergent effects on brain-derived neurotrophic factor and pre-synaptic proteins in the prefrontal cortex of rats. Neuroscience 2011; 184:139-50. [PMID: 21477639 PMCID: PMC3391572 DOI: 10.1016/j.neuroscience.2011.03.067] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/11/2011] [Accepted: 03/29/2011] [Indexed: 11/22/2022]
Abstract
Both environmental stress and anxiety may represent important risk factors for Alzheimer's disease (AD) pathogenesis. Previous studies demonstrate that restraint stress is associated with increased amyloid beta (Aβ) and decreased brain-derived neurotrophic factor (BDNF) levels in the brain. Aβ deposition, synaptic loss, and neurodegeneration define major hallmarks of AD, and BDNF is responsible for the maintenance of neurons. In contrast to restraint stress, repeated injections of sub-anxiogenic doses of the corticotrophin releasing factor receptor agonist urocortin1 (Ucn1) administered in the basolateral amygdala (BLA) of rats elicits persistent anxiety-like responses. We hypothesized that both restraint stress and Ucn1-induced anxiety would contribute to a neurobiological abnormality that would change the levels of Aβ precursor protein (APP) and Aβ as well as BDNF and pre-synaptic markers. In the first experiment, adult male Wister rats (n=5) were subjected to 3-h restraint, as compared to unstressed controls. In the second experiment, adult male Wistar rats (n=6) were subjected to sub-anxiogenic doses of Ucn1 (6 fmol/100 nl) administered in the BLA for 5 consecutive days, as compared to controls. Following each respective treatment, the social interaction (SI) test was performed to measure anxiety-like behavior. Protein studies were then conducted to quantify levels of APP, Aβ, BDNF and presynaptic proteins in the prefrontal cortex (PFC). In both experiments, we detected differences in either corticosterone levels or the SI test associated with a stress response. Furthermore, our findings indicate that both restraint stress and Ucn1 administration in the BLA lead to increased APP and Aβ deposition. However, restraint-induced stress leads to reductions in the levels of BDNF and presynaptic markers, while Ucn1-induced anxiety is associated with increases in the levels of each respective protein. This demonstrates a convergent role for stress response and Ucn1-induced anxiety in the regulation of APP and Aβ, but opposing roles for each respective treatment in the regulation of BDNF and presynaptic markers.
Collapse
Affiliation(s)
- Balmiki Ray
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN 46202, USA
| | - Denise L. Gaskins
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN 46202, USA
| | - Tammy J. Sajdyk
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN 46202, USA
| | - John P. Spence
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN 46202, USA
| | - Stephanie D. Fitz
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN 46202, USA
| | - Anantha Shekhar
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN 46202, USA
| | - Debomoy K. Lahiri
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN 46202, USA
| |
Collapse
|
27
|
Sarnyai Z, Alsaif M, Bahn S, Ernst A, Guest PC, Hradetzky E, Kluge W, Stelzhammer V, Wesseling H. Behavioral and molecular biomarkers in translational animal models for neuropsychiatric disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 101:203-38. [PMID: 22050853 DOI: 10.1016/b978-0-12-387718-5.00008-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Modeling neuropsychiatric disorders in animals poses a significant challenge due to the subjective nature of diverse often overlapping symptoms, lack of objective biomarkers and diagnostics, and the rudimentary understanding of the pathophysiology. Successful translational research requires animal models that can inform about disease mechanisms and therapeutic targets. Here, we review behavioral and neurobiological findings from selected animal models, based on presumed etiology and risk factors, for schizophrenia, bipolar disorder, and major depressive disorder. We focus on the use of appropriate statistical tools and newly developed Research Domain Criteria (RDoC) to link biomarkers from animal models with the human disease. We argue that this approach will lead to development of only the most robust animal models for specific psychiatric disorders and may ultimately lead to better understanding of the pathophysiology and identification of novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Zoltán Sarnyai
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|