1
|
da Silva GB, Braga GDC, Simões JLB, Bagatini MD, Kempka AP. Mitochondrial dysfunction and carcinogenesis: The engagement of ion channels in cancer development. Cell Calcium 2025; 128:103010. [PMID: 40043325 DOI: 10.1016/j.ceca.2025.103010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/27/2025] [Accepted: 02/20/2025] [Indexed: 05/11/2025]
Abstract
Mitochondria represent a fundamental structure for cellular homeostasis, controlling multiple conditions regarding energetic functions and cellular survival. To maintain these organelles functioning in ideal conditions, their membranes count with ion channels for different inorganic ions, which must be balanced to offer the proper function for both the organelle and the cell. However, studies have shown that other health conditions impair the activities of mitochondrial ion channels, including cancer. In this sense, the altered activities of potassium, calcium, and calcium-activated potassium channels are mainly linked with cancer development and cellular homeostasis alteration, demonstrating their role as pharmacological targets. With that in mind, scientists have found significant mitochondrial and cellular responses related to apoptosis and reduction of cellular survival from cells with modulated ion channels, indicating the potential of this possible therapy in carcinogenic contexts. Nonetheless, few studies still evaluate mitochondrial ion channel modulation as a treatment against cancer. Hence, more research must be conducted on this subject.
Collapse
|
2
|
Li Y, Niu J, Sun Z, Liu J. FTO-mediated m6A Methylation of KCNAB2 Inhibits Tumor Property of Non-Small Cell Lung Cancer Cells and M2 Macrophage Polarization by Inactivating the PI3K/AKT Pathway. J Biochem Mol Toxicol 2025; 39:e70232. [PMID: 40114527 DOI: 10.1002/jbt.70232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 01/11/2025] [Accepted: 03/09/2025] [Indexed: 03/22/2025]
Abstract
Potassium voltage-gated channel subfamily A regulatory beta subunit 2 (KCNAB2) is a potassium voltage-gated channel subfamily A member that plays a role in non-small cell lung cancer (NSCLC). However, its functional impact and mechanism in NSCLC are not fully understood. Here, we analyzed its effects on NSCLC cell behaviors and the underlying mechanism.mRNA expression levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR),(qRT-PCR), while protein expression was quantified by western blotting blot analysis or immunohistochemistry assay. NSCLC cell proliferation, migration, invasion, macrophage polarization, and apoptosis were evaluated through cell-based assays including cell counting kit-8 (CCK-8)(CCK-8) assay, flow cytometry, Tunel assay, wound-healing assay, and transwell invasion assay. The role of FTO alpha-ketoglutarate dependent dioxygenase (FTO)-mediated(FTO)-mediated m6A methylation in the regulation of KCNAB2 expression and their impacts on NSCLC cell behavior and M2 macrophage polarization were assessed through m6A RNA immunoprecipitation assay and rescue experiments. Xenograft mouse model assay was used to determine the effect of KCNAB2 on tumor formation in vivo.in vivo.KCNAB2 expression was downregulated and FTO expression was upregulated in NSCLC tissues and cells when compared with controls. Moreover, the expression of KCNAB2 was found to be lower in stage III NSCLC patients compared to those at stages I and II, and it was also lower in patients with positive lymph node metastasis compared to those with negative lymph node metastasis. Overexpression of KCNAB2 inhibited NSCLC cell proliferation, migration, invasion, and M2 macrophage polarization, while inducing cell apoptosis. These effects were mediated, at least partially, by inactivating the phosphoinositide 3-kinase (PI3K)/AKT(PI3K)/AKT pathway. Moreover, ectopic expression of KCNAB2 delayed tumor formation in vivo. FTOin vivo. FTO was found to mediate m6A methylation of KCNAB2, and knockdown of FTO resulted in the upregulation of KCNAB2 expression, leading to inhibition of NSCLC cell behavior and M2 macrophage polarization.KCNAB2 overexpression inhibited NSCLC cell behavior and M2 macrophage polarization by inactivating the PI3KPI3K/AKT/AKT pathway. Furthermore, FTOFTO-mediated-mediated m6A methylation was involved in the regulation of KCNAB2 expression in NSCLC. These results enhance our understanding of the role of KCNAB2 in NSCLC and suggest its potential as a therapeutic target.
Collapse
Affiliation(s)
- Yanguang Li
- Department of thoracic surgery, Cangzhou Central Hospital, Cangzhou City, Hebei Province, China
| | - Jieting Niu
- Department of geriatric internal medicine, Cangzhou Central Hospital, Cangzhou City, Hebei Province, China
| | - Zhiguang Sun
- Department of thoracic surgery, Cangzhou Hospital of Integrated TCM-WM, Cangzhou City, Hebei Province, China
| | - Junfeng Liu
- Department 3 of thoracic, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| |
Collapse
|
3
|
Xin K, Sun R, Xiao W, Lu W, Sun C, Lou J, Xu Y, Chen T, Wu D, Gao Y. Short Peptides from Asian Scorpions: Bioactive Molecules with Promising Therapeutic Potential. Toxins (Basel) 2025; 17:114. [PMID: 40137887 PMCID: PMC11946205 DOI: 10.3390/toxins17030114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Scorpion venom peptides, particularly those derived from Asian species, have garnered significant attention, offering therapeutic potential in pain management, cancer, anticoagulation, and infectious diseases. This review provides a comprehensive analysis of scorpion venom peptides, focusing on their roles as voltage-gated sodium (Nav), potassium (Kv), and calcium (Cav) channel modulators. It analyzed Nav1.7 inhibition for analgesia, Kv1.3 blockade for anticancer activity, and membrane disruption for antimicrobial effects. While the low targeting specificity and high toxicity of some scorpion venom peptides pose challenges to their clinical application, recent research has made strides in overcoming these limitations. This review summarizes the latest progress in scorpion venom peptide research, discussing their mechanisms of action, therapeutic potential, and challenges in clinical translation. This work aims to provide new insights and directions for the development of novel therapeutic drugs.
Collapse
Affiliation(s)
- Kaiyun Xin
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (K.X.); (W.X.); (W.L.); (C.S.)
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (J.L.); (Y.X.)
| | - Ruize Sun
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK; (R.S.); (T.C.)
| | - Wanyang Xiao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (K.X.); (W.X.); (W.L.); (C.S.)
| | - Weijie Lu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (K.X.); (W.X.); (W.L.); (C.S.)
| | - Chenhui Sun
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (K.X.); (W.X.); (W.L.); (C.S.)
| | - Jietao Lou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (J.L.); (Y.X.)
| | - Yanyan Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (J.L.); (Y.X.)
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK; (R.S.); (T.C.)
| | - Di Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (J.L.); (Y.X.)
| | - Yitian Gao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (K.X.); (W.X.); (W.L.); (C.S.)
| |
Collapse
|
4
|
Monteiro IDS, de Araújo IFS, Camargos TS, Ortiz E, de Souza ACB, Lima JD, Possani LD, Schwartz EF, Tibery DV. The First K +-Channel Blocker Described from Tityus fasciolatus Venom: The Purification, Molecular Cloning, and Functional Characterization of α-KTx4.9 (Tf5). Toxins (Basel) 2025; 17:96. [PMID: 39998113 PMCID: PMC11861696 DOI: 10.3390/toxins17020096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 02/26/2025] Open
Abstract
Hundreds of toxins, particularly from scorpions of lesser medical significance, remain unknown, especially those from species endemic to specific ecosystems, such as Tityus fasciolatus. Their discovery could contribute to the development of new drugs for channelopathies and other diseases. Tf5 is a new peptide that has been identified from the venom of Tityus fasciolatus, a scorpion species endemic to the Brazilian Cerrado ecosystem. A full-length cDNA sequence of the Tf5 gene was obtained through a previously constructed transcriptomic library, where an ORF (Open Reading Frame) sequence with a length of 180 was found, including the 37 aa mature KTx domain, which has six Cys residues. Tf5 was purified from the crude venom, resulting in a peptide with a molecular mass of 3983.95 Da. Its K+ channel blocker activity was evaluated on Kv1.1, Kv1.2, Kv1.3, and Kv1.4 subtypes. Of these Kv channels, the peptide demonstrated an ability to block Kv1.2 and Kv1.3 with an IC50 of 15.53 nM and 116.41 nM, respectively. Additionally, Tf5 shares a high degree of sequence identity with toxins from the α-KTx4 subfamily, which led to it being classified as α-KTx4.9. This is the first Kv channel blocker described from the T. fasciolatus scorpion.
Collapse
Affiliation(s)
- Isolda de Sousa Monteiro
- Laboratory of Neuropharmacology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (I.d.S.M.); (I.F.S.d.A.); (T.S.C.); (A.C.B.d.S.); (J.D.L.); (E.F.S.)
| | - Israel Flor Silva de Araújo
- Laboratory of Neuropharmacology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (I.d.S.M.); (I.F.S.d.A.); (T.S.C.); (A.C.B.d.S.); (J.D.L.); (E.F.S.)
| | - Thalita Soares Camargos
- Laboratory of Neuropharmacology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (I.d.S.M.); (I.F.S.d.A.); (T.S.C.); (A.C.B.d.S.); (J.D.L.); (E.F.S.)
- Colégio Militar de Brasília, Brasília 70790-020, Brazil
| | - Ernesto Ortiz
- Institute of Biotechnology, National Autonomous University of Mexico, Cuernavaca 62210, Mexico; (E.O.); (L.D.P.)
| | - Adolfo Carlos Barros de Souza
- Laboratory of Neuropharmacology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (I.d.S.M.); (I.F.S.d.A.); (T.S.C.); (A.C.B.d.S.); (J.D.L.); (E.F.S.)
| | - Jonathan Dias Lima
- Laboratory of Neuropharmacology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (I.d.S.M.); (I.F.S.d.A.); (T.S.C.); (A.C.B.d.S.); (J.D.L.); (E.F.S.)
| | - Lourival D. Possani
- Institute of Biotechnology, National Autonomous University of Mexico, Cuernavaca 62210, Mexico; (E.O.); (L.D.P.)
| | - Elisabeth Ferroni Schwartz
- Laboratory of Neuropharmacology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (I.d.S.M.); (I.F.S.d.A.); (T.S.C.); (A.C.B.d.S.); (J.D.L.); (E.F.S.)
| | - Diogo Vieira Tibery
- Laboratory of Neuropharmacology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (I.d.S.M.); (I.F.S.d.A.); (T.S.C.); (A.C.B.d.S.); (J.D.L.); (E.F.S.)
| |
Collapse
|
5
|
Zhuang W, Mun SY, Park WS. Direct effects of antipsychotics on potassium channels. Biochem Biophys Res Commun 2025; 749:151344. [PMID: 39842331 DOI: 10.1016/j.bbrc.2025.151344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Schizophrenia (SCZ) and bipolar disorder (BD) and are severe psychiatric conditions that contribute to disability and increased healthcare costs globally. Although first-, second-, and third-generation antipsychotics are available for treating BD and SCZ, most have various side effects unrelated to their unique functions. Many antipsychotics affect K+ channels (Kv, KCa, Kir, K2P, and other channels), which change the functions of various organs. This review summarizes the biological actions of antipsychotics, including off-target side effects involving K+ channels.
Collapse
Affiliation(s)
- Wenwen Zhuang
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Seo-Yeong Mun
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea.
| |
Collapse
|
6
|
Rodriguez R, Müller S, Colombeau L, Solier S, Sindikubwabo F, Cañeque T. Metal Ion Signaling in Biomedicine. Chem Rev 2025; 125:660-744. [PMID: 39746035 PMCID: PMC11758815 DOI: 10.1021/acs.chemrev.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/10/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Complex multicellular organisms are composed of distinct tissues involving specialized cells that can perform specific functions, making such life forms possible. Species are defined by their genomes, and differences between individuals within a given species directly result from variations in their genetic codes. While genetic alterations can give rise to disease-causing acquisitions of distinct cell identities, it is now well-established that biochemical imbalances within a cell can also lead to cellular dysfunction and diseases. Specifically, nongenetic chemical events orchestrate cell metabolism and transcriptional programs that govern functional cell identity. Thus, imbalances in cell signaling, which broadly defines the conversion of extracellular signals into intracellular biochemical changes, can also contribute to the acquisition of diseased cell states. Metal ions exhibit unique chemical properties that can be exploited by the cell. For instance, metal ions maintain the ionic balance within the cell, coordinate amino acid residues or nucleobases altering folding and function of biomolecules, or directly catalyze specific chemical reactions. Thus, metals are essential cell signaling effectors in normal physiology and disease. Deciphering metal ion signaling is a challenging endeavor that can illuminate pathways to be targeted for therapeutic intervention. Here, we review key cellular processes where metal ions play essential roles and describe how targeting metal ion signaling pathways has been instrumental to dissecting the biochemistry of the cell and how this has led to the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Raphaël Rodriguez
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Sebastian Müller
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Ludovic Colombeau
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Stéphanie Solier
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
- Université
Paris-Saclay, UVSQ, 78180 Montigny-le-Bretonneux, France
| | | | - Tatiana Cañeque
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| |
Collapse
|
7
|
Yang Z, Li H, Chen L, Li S, Chen D, Lu T, Ding T, Han R, Cheng P, Wang X. Long-Term Intracranial Progression-Free Survival in Lung Cancer Brain Metastases Extended Beyond 50 Months with Gubenxiaoyi Formula (GBXY): A Groundbreaking Case Study. Integr Cancer Ther 2025; 24:15347354241313334. [PMID: 39882758 PMCID: PMC11780649 DOI: 10.1177/15347354241313334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/11/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND The prevalence of brain metastases (BM) in lung cancer patients is notably high and is associated with poor prognoses. The efficacy of standard treatment regimens in improving intracranial progression-free survival (IPFS) for lung cancer BM is markedly limited. While traditional Chinese medicine (TCM) has been effective in enhancing the quality of life and prognosis of lung cancer patients, its efficacy in treating BM remains unreported. CASE PRESENTATION Here, we present a case of a middle-aged female with lung cancer BM, whose condition was assessed as progressive post-standard treatment including two local surgeries (both involving resection of cerebellar space-occupying lesions), stereotactic radiotherapy, chemotherapy and EGFR-TKIs. Subsequently, she underwent treatment with the traditional Chinese herbal formula gubenxiaoyi (GBXY). The patient was treated with GBXY for a total duration of 55 months. After treatment, a significant reduction of about 50% in intracranial lesions was observed, accompanied by an extension of both Intracranial Progression-Free Survival (IPFS) and Cognitive Deterioration-Free Survival (CDFS) exceeding 50 months. CONCLUSION These results demonstrate that in patients with lung cancer brain metastases (BM) unresponsive to standard treatments, GBXY not only has the potential to effectively prolong IPFS and decelerate cognitive decline, but may also contribute to a reduction in intracranial tumor burden. This suggests that GBXY could be a promising therapeutic option that warrants further investigation.
Collapse
Affiliation(s)
- Zhengzheng Yang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Haiming Li
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Lei Chen
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Shujiao Li
- Eye Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Dong Chen
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Taicheng Lu
- Beijing University of Chinese Medicine, Beijing, China
| | - Tongjing Ding
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ruiyang Han
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Peiyu Cheng
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiaomin Wang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
El-Qassas J, Abd El-Atti M, El-Badri N. Harnessing the potency of scorpion venom-derived proteins: applications in cancer therapy. BIORESOUR BIOPROCESS 2024; 11:93. [PMID: 39361208 PMCID: PMC11450130 DOI: 10.1186/s40643-024-00805-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/10/2024] [Indexed: 10/06/2024] Open
Abstract
Despite breakthroughs in the development of cancer diagnosis and therapy, most current therapeutic approaches lack precise specificity and sensitivity, resulting in damage to healthy cells. Selective delivery of anti-cancer agents is thus an important goal of cancer therapy. Scorpion venom (SV) and/or body parts have been used since early civilizations for medicinal purposes, and in cultures, SV is still applied to the treatment of several diseases including cancer. SV contains numerous active micro and macromolecules with diverse pharmacological effects. These include potent anti-microbial, anti-viral, anti-inflammatory, and anti-cancer properties. This review focuses on the recent advances of SV-derived peptides as promising anti-cancer agents and their diagnostic and therapeutic potential applications in cancers such as glioma, breast cancer, prostate cancer, and colon cancer. Well-characterized SV-derived peptides are thus needed to serve as potent and selective adjuvant therapy for cancer, to significantly enhance the patients' survival and wellbeing.
Collapse
Affiliation(s)
- Jihad El-Qassas
- Department of Zoology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, 6th of October City, Giza, 12578, Egypt
| | - Mahmoud Abd El-Atti
- Department of Zoology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, 6th of October City, Giza, 12578, Egypt.
| |
Collapse
|
9
|
ElFessi R, Khamessi O, De Waard M, Srairi-Abid N, Ghedira K, Marrouchi R, Kharrat R. Structure-Function Relationship of a Novel MTX-like Peptide (MTX1) Isolated and Characterized from the Venom of the Scorpion Maurus palmatus. Int J Mol Sci 2024; 25:10472. [PMID: 39408804 PMCID: PMC11477167 DOI: 10.3390/ijms251910472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 10/20/2024] Open
Abstract
Maurotoxin (MTX) is a 34-residue peptide from Scorpio maurus venom. It is reticulated by four disulfide bridges with a unique arrangement compared to other scorpion toxins that target potassium (K+) channels. Structure-activity relationship studies have not been well performed for this toxin family. The screening of Scorpio maurus venom was performed by different steps of fractionation, followed by the ELISA test, using MTX antibodies, to isolate an MTX-like peptide. In vitro, in vivo and computational studies were performed to study the structure-activity relationship of the new isolated peptide. We isolated a new peptide designated MTX1, structurally related to MTX. It demonstrated toxicity on mice eight times more effectively than MTX. MTX1 blocks the Kv1.2 and Kv1.3 channels, expressed in Xenopus oocytes, with IC50 values of 0.26 and 180 nM, respectively. Moreover, MTX1 competitively interacts with both 125I-apamin (IC50 = 1.7 nM) and 125I-charybdotoxin (IC50 = 5 nM) for binding to rat brain synaptosomes. Despite its high sequence similarity (85%) to MTX, MTX1 exhibits a higher binding affinity towards the Kv1.2 and SKCa channels. Computational analysis highlights the significance of specific residues in the β-sheet region, particularly the R27, in enhancing the binding affinity of MTX1 towards the Kv1.2 and SKCa channels.
Collapse
Affiliation(s)
- Rym ElFessi
- Laboratory of Venoms and Therapeutic Biomolecules, Pasteur Institute of Tunis, University of Tunis El Manar, 13 Place Pasteur, BP74, Tunis 1002, Tunisia; (R.E.); (O.K.); (R.M.)
| | - Oussema Khamessi
- Laboratory of Venoms and Therapeutic Biomolecules, Pasteur Institute of Tunis, University of Tunis El Manar, 13 Place Pasteur, BP74, Tunis 1002, Tunisia; (R.E.); (O.K.); (R.M.)
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (LR20IPT09), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
| | - Michel De Waard
- l’Institut du Thorax, Nantes Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médical (INSERM), F-44000 Nantes, France;
| | - Najet Srairi-Abid
- LR20IPT01 Biomolécules, Venins et Applications Théranostiques, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (LR20IPT09), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
| | - Riadh Marrouchi
- Laboratory of Venoms and Therapeutic Biomolecules, Pasteur Institute of Tunis, University of Tunis El Manar, 13 Place Pasteur, BP74, Tunis 1002, Tunisia; (R.E.); (O.K.); (R.M.)
| | - Riadh Kharrat
- Laboratory of Venoms and Therapeutic Biomolecules, Pasteur Institute of Tunis, University of Tunis El Manar, 13 Place Pasteur, BP74, Tunis 1002, Tunisia; (R.E.); (O.K.); (R.M.)
| |
Collapse
|
10
|
Kofman K, Levin M. Bioelectric pharmacology of cancer: A systematic review of ion channel drugs affecting the cancer phenotype. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 191:25-39. [PMID: 38971325 DOI: 10.1016/j.pbiomolbio.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Cancer is a pernicious and pressing medical problem; moreover, it is a failure of multicellular morphogenesis that sheds much light on evolutionary developmental biology. Numerous classes of pharmacological agents have been considered as cancer therapeutics and evaluated as potential carcinogenic agents; however, these are spread throughout the primary literature. Here, we briefly review recent work on ion channel drugs as promising anti-cancer treatments and present a systematic review of the known cancer-relevant effects of 109 drugs targeting ion channels. The roles of ion channels in cancer are consistent with the importance of bioelectrical parameters in cell regulation and with the functions of bioelectric signaling in morphogenetic signals that act as cancer suppressors. We find that compounds that are well-known for having targets in the nervous system, such as voltage-gated ion channels, ligand-gated ion channels, proton pumps, and gap junctions are especially relevant to cancer. Our review suggests further opportunities for the repurposing of numerous promising candidates in the field of cancer electroceuticals.
Collapse
Affiliation(s)
- Karina Kofman
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Michael Levin
- Allen Discovery Center at Tufts University, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, USA.
| |
Collapse
|
11
|
Cheng S, Jiang D, Lan X, Liu K, Fan C. Voltage-gated potassium channel 1.3: A promising molecular target in multiple disease therapy. Biomed Pharmacother 2024; 175:116651. [PMID: 38692062 DOI: 10.1016/j.biopha.2024.116651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
Voltage-gated potassium channel 1.3 (Kv1.3) has emerged as a pivotal player in numerous biological processes and pathological conditions, sparking considerable interest as a potential therapeutic target across various diseases. In this review, we present a comprehensive examination of Kv1.3 channels, highlighting their fundamental characteristics and recent advancements in utilizing Kv1.3 inhibitors for treating autoimmune disorders, neuroinflammation, and cancers. Notably, Kv1.3 is prominently expressed in immune cells and implicated in immune responses and inflammation associated with autoimmune diseases and chronic inflammatory conditions. Moreover, its aberrant expression in certain tumors underscores its role in cancer progression. While preclinical studies have demonstrated the efficacy of Kv1.3 inhibitors, their clinical translation remains pending. Molecular imaging techniques offer promising avenues for tracking Kv1.3 inhibitors and assessing their therapeutic efficacy, thereby facilitating their development and clinical application. Challenges and future directions in Kv1.3 inhibitor research are also discussed, emphasizing the significant potential of targeting Kv1.3 as a promising therapeutic strategy across a spectrum of diseases.
Collapse
Affiliation(s)
- Sixuan Cheng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Kun Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Cheng Fan
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
12
|
Rao R, Mohammed C, Alschuler L, Pomeranz Krummel DA, Sengupta S. Phytochemical Modulation of Ion Channels in Oncologic Symptomatology and Treatment. Cancers (Basel) 2024; 16:1786. [PMID: 38730738 PMCID: PMC11083444 DOI: 10.3390/cancers16091786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/24/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024] Open
Abstract
Modern chemotherapies offer a broad approach to cancer treatment but eliminate both cancer and non-cancer cells indiscriminately and, thus, are associated with a host of side effects. Advances in precision oncology have brought about new targeted therapeutics, albeit mostly limited to a subset of patients with an actionable mutation. They too come with side effects and, ultimately, 'self-resistance' to the treatment. There is recent interest in the modulation of ion channels, transmembrane proteins that regulate the flow of electrically charged molecules in and out of cells, as an approach to aid treatment of cancer. Phytochemicals have been shown to act on ion channels with high specificity regardless of the tumor's genetic profile. This paper explores the use of phytochemicals in cancer symptom management and treatment.
Collapse
Affiliation(s)
- Rohan Rao
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Caroline Mohammed
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Lise Alschuler
- Andrew Weil Center for Integrative Medicine, University of Arizona College of Medicine, Tucson, AZ 85719, USA
| | - Daniel A. Pomeranz Krummel
- Department of Neurosurgery, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Soma Sengupta
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Department of Neurosurgery, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
Ghadiri N, Javidan M, Sheikhi S, Taştan Ö, Parodi A, Liao Z, Tayybi Azar M, Ganjalıkhani-Hakemi M. Bioactive peptides: an alternative therapeutic approach for cancer management. Front Immunol 2024; 15:1310443. [PMID: 38327525 PMCID: PMC10847386 DOI: 10.3389/fimmu.2024.1310443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Cancer is still considered a lethal disease worldwide and the patients' quality of life is affected by major side effects of the treatments including post-surgery complications, chemo-, and radiation therapy. Recently, new therapeutic approaches were considered globally for increasing conventional cancer therapy efficacy and decreasing the adverse effects. Bioactive peptides obtained from plant and animal sources have drawn increased attention because of their potential as complementary therapy. This review presents a contemporary examination of bioactive peptides derived from natural origins with demonstrated anticancer, ant invasion, and immunomodulation properties. For example, peptides derived from common beans, chickpeas, wheat germ, and mung beans exhibited antiproliferative and toxic effects on cancer cells, favoring cell cycle arrest and apoptosis. On the other hand, peptides from marine sources showed the potential for inhibiting tumor growth and metastasis. In this review we will discuss these data highlighting the potential befits of these approaches and the need of further investigations to fully characterize their potential in clinics.
Collapse
Affiliation(s)
- Nooshin Ghadiri
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Moslem Javidan
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Shima Sheikhi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Özge Taştan
- Department of Food Engineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Alessandro Parodi
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, Sochi, Russia
| | - Ziwei Liao
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mehdi Tayybi Azar
- Department of Biophysics, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Mazdak Ganjalıkhani-Hakemi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| |
Collapse
|
14
|
Moreddu R. Nanotechnology and Cancer Bioelectricity: Bridging the Gap Between Biology and Translational Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304110. [PMID: 37984883 PMCID: PMC10767462 DOI: 10.1002/advs.202304110] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/25/2023] [Indexed: 11/22/2023]
Abstract
Bioelectricity is the electrical activity that occurs within living cells and tissues. This activity is critical for regulating homeostatic cellular function and communication, and disruptions of the same can lead to a variety of conditions, including cancer. Cancer cells are known to exhibit abnormal electrical properties compared to their healthy counterparts, and this has driven researchers to investigate the potential of harnessing bioelectricity as a tool in cancer diagnosis, prognosis, and treatment. In parallel, bioelectricity represents one of the means to gain fundamental insights on how electrical signals and charges play a role in cancer insurgence, growth, and progression. This review provides a comprehensive analysis of the literature in this field, addressing the fundamentals of bioelectricity in single cancer cells, cancer cell cohorts, and cancerous tissues. The emerging role of bioelectricity in cancer proliferation and metastasis is introduced. Based on the acknowledgement that this biological information is still hard to access due to the existing gap between biological findings and translational medicine, the latest advancements in the field of nanotechnologies for cellular electrophysiology are examined, as well as the most recent developments in micro- and nano-devices for cancer diagnostics and therapy targeting bioelectricity.
Collapse
|
15
|
Xia Z, He D, Wu Y, Kwok HF, Cao Z. Scorpion venom peptides: Molecular diversity, structural characteristics, and therapeutic use from channelopathies to viral infections and cancers. Pharmacol Res 2023; 197:106978. [PMID: 37923027 DOI: 10.1016/j.phrs.2023.106978] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Animal venom is an important evolutionary innovation in nature. As one of the most representative animal venoms, scorpion venom contains an extremely diverse set of bioactive peptides. Scorpion venom peptides not only are 'poisons' that immobilize, paralyze, kill, or dissolve preys but also become important candidates for drug development and design. Here, the review focuses on the molecular diversity of scorpion venom peptides, their typical structural characteristics, and their multiple therapeutic or pharmaceutical applications in channelopathies, viral infections and cancers. Especially, the group of scorpion toxin TRPTx targeting transient receptor potential (TRP) channels is systematically summarized and worthy of attention because TRP channels play a crucial role in the regulation of homeostasis and the occurrence of diseases in human. We also further establish the potential relationship between the molecular characteristics and functional applications of scorpion venom peptides to provide a research basis for modern drug development and clinical utilization of scorpion venom resources.
Collapse
Affiliation(s)
- Zhiqiang Xia
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, China
| | - Dangui He
- State Key Laboratory of Virology, College of Life Sciences, Shenzhen Research Institute, Wuhan University, Wuhan, China; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao; Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Shenzhen Research Institute, Wuhan University, Wuhan, China
| | - Hang Fai Kwok
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao; Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao; MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macao.
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Shenzhen Research Institute, Wuhan University, Wuhan, China; Bio-drug Research Center, Wuhan University, Wuhan, China.
| |
Collapse
|
16
|
Capitani C, Chioccioli Altadonna G, Santillo M, Lastraioli E. Ion channels in lung cancer: biological and clinical relevance. Front Pharmacol 2023; 14:1283623. [PMID: 37942486 PMCID: PMC10627838 DOI: 10.3389/fphar.2023.1283623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023] Open
Abstract
Despite improvements in treatment, lung cancer is still a major health problem worldwide. Among lung cancer subtypes, the most frequent is represented by adenocarcinoma (belonging to the Non-Small Cell Lung Cancer class) although the most challenging and harder to treat is represented by Small Cell Lung Cancer, that occurs at lower frequency but has the worst prognosis. For these reasons, the standard of care for these patients is represented by a combination of surgery, radiation therapy and chemotherapy. In this view, searching for novel biomarkers that might help both in diagnosis and therapy is mandatory. In the last 30 years it was demonstrated that different families of ion channels are overexpressed in both lung cancer cell lines and primary tumours. The altered ion channel profile may be advantageous for diagnostic and therapeutic purposes since most of them are localised on the plasma membrane thus their detection is quite easy, as well as their block with specific drugs and antibodies. This review focuses on ion channels (Potassium, Sodium, Calcium, Chloride, Anion and Nicotinic Acetylcholine receptors) in lung cancer (both Non-Small Cell Lung Cancer and Small Cell Lung Cancer) and recapitulate the up-to-date knowledge about their role and clinical relevance for a potential use in the clinical setting, for lung cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Chiara Capitani
- General Pathology Laboratory, Department of Experimental and Clinical Medicine, Internal Medicine Section, University of Florence, Florence, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Ginevra Chioccioli Altadonna
- General Pathology Laboratory, Department of Experimental and Clinical Medicine, Internal Medicine Section, University of Florence, Florence, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Michele Santillo
- General Pathology Laboratory, Department of Experimental and Clinical Medicine, Internal Medicine Section, University of Florence, Florence, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elena Lastraioli
- General Pathology Laboratory, Department of Experimental and Clinical Medicine, Internal Medicine Section, University of Florence, Florence, Italy
| |
Collapse
|
17
|
Rashno Z, Rismani E, Ghasemi JB, Mansouri M, Shabani M, Afgar A, Dabiri S, Rezaei Makhouri F, Hatami A, Harandi MF. Design of ion channel blocking, toxin-like Kunitz inhibitor peptides from the tapeworm, Echinococcus granulosus, with potential anti-cancer activity. Sci Rep 2023; 13:11465. [PMID: 37454225 PMCID: PMC10349847 DOI: 10.1038/s41598-023-38159-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Over-expression of K+ channels has been reported in human cancers and is associated with the poor prognosis of several malignancies. EAG1, a particular potassium ion channel, is widely expressed in the brain but poorly expressed in other normal tissues. Kunitz proteins are dominant in metazoan including the dog tapeworm, Echinococcus granulosus. Using computational analyses on one A-type potassium channel, EAG1, and in vitro cellular methods, including major cancer cell biomarkers expression, immunocytochemistry and whole-cell patch clamp, we demonstrated the anti-tumor activity of three synthetic small peptides derived from E. granulosus Kunitz4 protease inhibitors. Experiments showed induced significant apoptosis and inhibition of proliferation in both cancer cell lines via disruption in cell-cycle transition from the G0/G1 to S phase. Western blotting showed that the levels of cell cycle-related proteins including P27 and P53 were altered upon kunitz4-a and kunitz4-c treatment. Patch clamp analysis demonstrated a significant increase in spontaneous firing frequency in Purkinje neurons, and exposure to kunitz4-c was associated with an increase in the number of rebound action potentials after hyperpolarized current. This noteworthy component in nature could act as an ion channel blocker and is a potential candidate for cancer chemotherapy based on potassium channel blockage.
Collapse
Affiliation(s)
- Zahra Rashno
- Research Center for Hydatid Disease in Iran, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, 7616914115, Iran
| | - Elham Rismani
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Jahan B Ghasemi
- Faculty of Chemistry, School of Sciences, University of Tehran, Tehran, Iran
| | - Mehdi Mansouri
- Department of Agricultural Biotechnology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, 7616914115, Iran
| | - Shahriar Dabiri
- Pathology and Stem Cell Research Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Abbas Hatami
- Pathology and Stem Cell Research Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Fasihi Harandi
- Research Center for Hydatid Disease in Iran, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, 7616914115, Iran.
| |
Collapse
|
18
|
Deng Z, Gao Y, Nguyen T, Chai J, Wu J, Li J, Abdel-Rahman MA, Xu X, Chen X. The Potent Antitumor Activity of Smp43 against Non-Small-Cell Lung Cancer A549 Cells via Inducing Membranolysis and Mitochondrial Dysfunction. Toxins (Basel) 2023; 15:toxins15050347. [PMID: 37235381 DOI: 10.3390/toxins15050347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/06/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Research has been conducted to investigate the potential application of scorpion venom-derived peptides in cancer therapy. Smp43, a cationic antimicrobial peptide from Scorpio maurus palmatus venom, has been found to exhibit suppressive activity against the proliferation of multiple cancer cell lines. However, its impact on non-small-cell lung cancer (NSCLC) cell lines has not been previously investigated. This study aimed to determine the cytotoxicity of Smp43 towards various NSCLC cell lines, particularly A549 cells with an IC50 value of 2.58 μM. The results indicated that Smp43 was internalized into A549 cells through membranolysis and endocytosis, which caused cytoskeleton disorganization, a loss of mitochondrial membrane potential, an accumulation of reactive oxygen species (ROS), and abnormal apoptosis, cell cycle distribution, and autophagy due to mitochondrial dysfunction. Additionally, the study explored the in vivo protective effect of Smp43 in xenograft mice. The findings suggest that Smp43 has potential anticarcinoma properties exerted via the inducement of cellular processes related to cell membrane disruption and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ze Deng
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yahua Gao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tienthanh Nguyen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiena Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiali Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | | | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
19
|
Pashmforoosh N, Baradaran M. Peptides with Diverse Functions from Scorpion Venom: A Great Opportunity for the Treatment of a Wide Variety of Diseases. IRANIAN BIOMEDICAL JOURNAL 2023; 27:84-99. [PMID: 37070616 PMCID: PMC10314758 DOI: 10.61186/ibj.3863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/21/2022] [Indexed: 12/17/2023]
Abstract
Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran The venom glands are a rich source of biologically important peptides with pharmaceutical properties. Scorpion venoms have been identified as a reservoir for components that might be considered as great candidates for drug development. Pharmacological properties of the venom compounds have been confirmed in the treatment of different disorders. Ion channel blockers and AMPs are the main groups of scorpion venom components. Despite the existence of several studies about scorpion peptides, there are still valuable components to be discovered. Additionally, owing to the improvement of proteomics and transcriptomics, the number of peptide drugs is steadily increasing, which reflects the importance of these medications. This review evaluates available literatures on some important scorpion venom peptides with pharmaceutical activities. Given that the last three years have been dominated by the COVID-19 from the medical/pharmaceutical perspective, scorpion compounds with the potential against the coronavirus 2 (SARS-CoV-2) are discussed in this review.
Collapse
Affiliation(s)
| | - Masoumeh Baradaran
- Corresponding Author: Masoumeh Baradaran Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; E-mail:
| |
Collapse
|
20
|
Angi B, Muccioli S, Szabò I, Leanza L. A Meta-Analysis Study to Infer Voltage-Gated K+ Channels Prognostic Value in Different Cancer Types. Antioxidants (Basel) 2023; 12:antiox12030573. [PMID: 36978819 PMCID: PMC10045123 DOI: 10.3390/antiox12030573] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Potassium channels are often highly expressed in cancer cells with respect to healthy ones, as they provide proliferative advantages through modulating membrane potential, calcium homeostasis, and various signaling pathways. Among potassium channels, Shaker type voltage-gated Kv channels are emerging as promising pharmacological targets in oncology. Here, we queried publicly available cancer patient databases to highlight if a correlation exists between Kv channel expression and survival rate in five different cancer types. By multiple gene comparison analysis, we found a predominant expression of KCNA2, KCNA3, and KCNA5 with respect to the other KCNA genes in skin cutaneous melanoma (SKCM), uterine corpus endometrial carcinoma (UCEC), stomach adenocarcinoma (STAD), lung adenocarcinoma (LUAD), and lung squamous cell carcinoma (LUSC). This analysis highlighted a prognostic role of KCNA3 and KCNA5 in SKCM, LUAD, LUSC, and STAD, respectively. Interestingly, KCNA3 was associated with a positive prognosis in SKCM and LUAD but not in LUSC. Results obtained by the analysis of KCNA3-related differentially expressed genes (DEGs); tumor immune cell infiltration highlighted differences that may account for such differential prognosis. A meta-analysis study was conducted to investigate the role of KCNA channels in cancer using cancer patients’ datasets. Our study underlines a promising correlation between Kv channel expression in tumor cells, in infiltrating immune cells, and survival rate.
Collapse
|
21
|
Bioactive peptides from scorpion venoms: therapeutic scaffolds and pharmacological tools. Chin J Nat Med 2023; 21:19-35. [PMID: 36641229 DOI: 10.1016/s1875-5364(23)60382-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Indexed: 01/14/2023]
Abstract
Evolution and natural selection have endowed animal venoms, including scorpion venoms, with a wide range of pharmacological properties. Consequently, scorpions, their venoms, and/or their body parts have been used since time immemorial in traditional medicines, especially in Africa and Asia. With respect to their pharmacological potential, bioactive peptides from scorpion venoms have become an important source of scientific research. With the rapid increase in the characterization of various components from scorpion venoms, a large number of peptides are identified with an aim of combating a myriad of emerging global health problems. Moreover, some scorpion venom-derived peptides have been established as potential scaffolds helpful for drug development. In this review, we summarize the promising scorpion venoms-derived peptides as drug candidates. Accordingly, we highlight the data and knowledge needed for continuous characterization and development of additional natural peptides from scorpion venoms, as potential drugs that can treat related diseases.
Collapse
|
22
|
Varanita T, Angi B, Scattolini V, Szabo I. Kv1.3 K + Channel Physiology Assessed by Genetic and Pharmacological Modulation. Physiology (Bethesda) 2023; 38:0. [PMID: 35998249 DOI: 10.1152/physiol.00010.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Potassium channels are widespread over all kingdoms and play an important role in the maintenance of cellular ionic homeostasis. Kv1.3 is a voltage-gated potassium channel of the Shaker family with a wide tissue expression and a well-defined pharmacology. In recent decades, experiments mainly based on pharmacological modulation of Kv1.3 have highlighted its crucial contribution to different fundamental processes such as regulation of proliferation, apoptosis, and metabolism. These findings link channel function to various pathologies ranging from autoimmune diseases to obesity and cancer. In the present review, we briefly summarize studies employing Kv1.3 knockout animal models to confirm such roles and discuss the findings in comparison to the results obtained by pharmacological modulation of Kv1.3 in various pathophysiological settings. We also underline how these studies contributed to our understanding of channel function in vivo and propose possible future directions.
Collapse
Affiliation(s)
| | - Beatrice Angi
- Department of Biology, University of Padova, Padova, Italy
| | | | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
23
|
Bioelectronic medicines: Therapeutic potential and advancements in next-generation cancer therapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188808. [DOI: 10.1016/j.bbcan.2022.188808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
|
24
|
Zhao J, Li M, Xu J, Cheng W. The modulation of ion channels in cancer chemo-resistance. Front Oncol 2022; 12:945896. [PMID: 36033489 PMCID: PMC9399684 DOI: 10.3389/fonc.2022.945896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
Ion channels modulate the flow of ions into and out of a cell or intracellular organelle, leading to generation of electrical or chemical signals and regulating ion homeostasis. The abundance of ion channels in the plasma and intracellular membranes are subject to physiological and pathological regulations. Abnormal and dysregulated expressions of many ion channels are found to be linked to cancer and cancer chemo-resistance. Here, we will summarize ion channels distribution in multiple tumors. And the involvement of ion channels in cancer chemo-resistance will be highlighted.
Collapse
|
25
|
Upregulation of Bax, TNF-α and down-regulation of Bcl-2 in liver cancer cells treated with HL-7 and HL-10 peptides. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00800-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Langthaler S, Rienmüller T, Scheruebel S, Pelzmann B, Shrestha N, Zorn-Pauly K, Schreibmayer W, Koff A, Baumgartner C. A549 in-silico 1.0: A first computational model to simulate cell cycle dependent ion current modulation in the human lung adenocarcinoma. PLoS Comput Biol 2021; 17:e1009091. [PMID: 34157016 PMCID: PMC8219159 DOI: 10.1371/journal.pcbi.1009091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/18/2021] [Indexed: 11/18/2022] Open
Abstract
Lung cancer is still a leading cause of death worldwide. In recent years, knowledge has been obtained of the mechanisms modulating ion channel kinetics and thus of cell bioelectric properties, which is promising for oncological biomarkers and targets. The complex interplay of channel expression and its consequences on malignant processes, however, is still insufficiently understood. We here introduce the first approach of an in-silico whole-cell ion current model of a cancer cell, in particular of the A549 human lung adenocarcinoma, including the main functionally expressed ion channels in the plasma membrane as so far known. This hidden Markov-based model represents the electrophysiology behind proliferation of the A549 cell, describing its rhythmic oscillation of the membrane potential able to trigger the transition between cell cycle phases, and it predicts membrane potential changes over the cell cycle provoked by targeted ion channel modulation. This first A549 in-silico cell model opens up a deeper insight and understanding of possible ion channel interactions in tumor development and progression, and is a valuable tool for simulating altered ion channel function in lung cancer electrophysiology.
Collapse
Affiliation(s)
- Sonja Langthaler
- Institute of Health Care Engineering with European Testing Center for Medical Devices, Graz University of Technology, Graz, Austria
| | - Theresa Rienmüller
- Institute of Health Care Engineering with European Testing Center for Medical Devices, Graz University of Technology, Graz, Austria
| | - Susanne Scheruebel
- Research Unit on Ion Channels and Cancer Biology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Brigitte Pelzmann
- Research Unit on Ion Channels and Cancer Biology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Niroj Shrestha
- Research Unit on Ion Channels and Cancer Biology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Klaus Zorn-Pauly
- Research Unit on Ion Channels and Cancer Biology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Wolfgang Schreibmayer
- Research Unit on Ion Channels and Cancer Biology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Andrew Koff
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York City, New York, United States of America
| | - Christian Baumgartner
- Institute of Health Care Engineering with European Testing Center for Medical Devices, Graz University of Technology, Graz, Austria
| |
Collapse
|
27
|
Liu J, Lv XW, Zhang L, Wang H, Li J, Wu B. Review on Biological Characteristics of Kv1.3 and Its Role in Liver Diseases. Front Pharmacol 2021; 12:652508. [PMID: 34093186 PMCID: PMC8176307 DOI: 10.3389/fphar.2021.652508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/23/2021] [Indexed: 01/30/2023] Open
Abstract
The liver accounts for the largest proportion of macrophages in all solid organs of the human body. Liver macrophages are mainly composed of cytolytic cells inherent in the liver and mononuclear macrophages recruited from the blood. Monocytes recruitment occurs mainly in the context of liver injury and inflammation and can be recruited into the liver and achieve a KC-like phenotype. During the immune response of the liver, macrophages/KC cells release inflammatory cytokines and infiltrate into the liver, which are considered to be the common mechanism of various liver diseases in the early stage. Meanwhile, macrophages/KC cells form an interaction network with other liver cells, which can affect the occurrence and progression of liver diseases. From the perspective of liver disease treatment, knowing the full spectrum of macrophage activation, the underlying molecular mechanisms, and their implication in either promoting liver disease progression or repairing injured liver tissue is highly relevant from a therapeutic point of view. Kv1.3 is a subtype of the voltage-dependent potassium channel, whose function is closely related to the regulation of immune cell function. At present, there are few studies on the relationship between Kv1.3 and liver diseases, and the application of its blockers as a potential treatment for liver diseases has not been reported. This manuscript reviewed the physiological characteristics of Kv1.3, the relationship between Kv1.3 and cell proliferation and apoptosis, and the role of Kv1.3 in a variety of liver diseases, so as to provide new ideas and strategies for the prevention and treatment of liver diseases. In short, by understanding the role of Kv1.3 in regulating the functions of immune cells such as macrophages, selective blockers of Kv1.3 or compounds with similar functions can be applied to alleviate the progression of liver diseases and provide new ideas for the prevention and treatment of liver diseases.
Collapse
Affiliation(s)
- Junda Liu
- First Affiliated Hospital of Anhui Medical University, Hefei, China
- School of Pharmacy, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Xiong-Wen Lv
- School of Pharmacy, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Lei Zhang
- School of Pharmacy, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Hua Wang
- School of Pharmacy, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Baoming Wu
- School of Pharmacy, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| |
Collapse
|
28
|
Park HW, Song MS, Sim HJ, Ryu PD, Lee SY. The role of the voltage-gated potassium channel, Kv2.1 in prostate cancer cell migration. BMB Rep 2021. [PMID: 33407994 PMCID: PMC7907745 DOI: 10.5483/bmbrep.2021.54.2.210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Voltage-gated potassium (Kv) channels are involved in many important cellular functions and play pivotal roles in cancer progression. The expression level of Kv2.1 was observed to be higher in the highly metastatic prostate cancer cells (PC-3), specifically in their membrane, than in immortalized prostate cells (WPMY-1 cells) and comparatively less metastatic prostate cancer cells (LNCaP and DU145 cells). However, Kv2.1 expression was significantly decreased when the cells were treated with anti-oxidants, such as N-acetylcysteine or ascorbic acid, implying that the highly expressed Kv2.1 could detect reactive oxygen species (ROS) in malignant prostate cancer cells. In addition, the blockade of Kv2.1 with stromatoxin-1 or siRNA targeting Kv2.1 significantly inhibited the migration of malignant prostate cancer cells. Our results suggested that Kv2.1 plays an important role as a ROS sensor and that it is a promising therapeutic molecular target in metastasis of prostate cancer.
Collapse
Affiliation(s)
- Hyun Woo Park
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Min Seok Song
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Hun Ju Sim
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Pan Dong Ryu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - So Yeong Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
29
|
Robinson AJ, Jain A, Sherman HG, Hague RJM, Rahman R, Sanjuan‐Alberte P, Rawson FJ. Toward Hijacking Bioelectricity in Cancer to Develop New Bioelectronic Medicine. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Andie J. Robinson
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Akhil Jain
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Harry G. Sherman
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Richard J. M. Hague
- Centre for Additive Manufacturing, Faculty of Engineering University of Nottingham Nottingham NG8 1BB UK
| | - Ruman Rahman
- Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine University of Nottingham Nottingham NG7 2RD UK
| | - Paola Sanjuan‐Alberte
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
- Department of Bioengineering and iBB‐Institute for Bioengineering and Biosciences, Instituto Superior Técnico Universidade de Lisboa Lisbon 1049‐001 Portugal
| | - Frankie J. Rawson
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| |
Collapse
|
30
|
Bachmann M, Li W, Edwards MJ, Ahmad SA, Patel S, Szabo I, Gulbins E. Voltage-Gated Potassium Channels as Regulators of Cell Death. Front Cell Dev Biol 2020; 8:611853. [PMID: 33381507 PMCID: PMC7767978 DOI: 10.3389/fcell.2020.611853] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Ion channels allow the flux of specific ions across biological membranes, thereby determining ion homeostasis within the cells. Voltage-gated potassium-selective ion channels crucially contribute to the setting of the plasma membrane potential, to volume regulation and to the physiologically relevant modulation of intracellular potassium concentration. In turn, these factors affect cell cycle progression, proliferation and apoptosis. The present review summarizes our current knowledge about the involvement of various voltage-gated channels of the Kv family in the above processes and discusses the possibility of their pharmacological targeting in the context of cancer with special emphasis on Kv1.1, Kv1.3, Kv1.5, Kv2.1, Kv10.1, and Kv11.1.
Collapse
Affiliation(s)
- Magdalena Bachmann
- Department of Biology, University of Padova, Padua, Italy.,Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Weiwei Li
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Michael J Edwards
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Syed A Ahmad
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Sameer Patel
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padua, Italy.,Consiglio Nazionale delle Ricerche Institute of Neuroscience, Padua, Italy
| | - Erich Gulbins
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States.,Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
31
|
Guerriero I, Monaco G, Coppola V, Orlacchio A. Serum and Glucocorticoid-Inducible Kinase 1 (SGK1) in NSCLC Therapy. Pharmaceuticals (Basel) 2020; 13:ph13110413. [PMID: 33266470 PMCID: PMC7700219 DOI: 10.3390/ph13110413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) remains the most prevalent and one of the deadliest cancers worldwide. Despite recent success, there is still an urgent need for new therapeutic strategies. It is also becoming increasingly evident that combinatorial approaches are more effective than single modality treatments. This review proposes that the serum and glucocorticoid-inducible kinase 1 (SGK1) may represent an attractive target for therapy of NSCLC. Although ubiquitously expressed, SGK1 deletion in mice causes only mild defects of ion physiology. The frequent overexpression of SGK1 in tumors is likely stress-induced and provides a therapeutic window to spare normal tissues. SGK1 appears to promote oncogenic signaling aimed at preserving the survival and fitness of cancer cells. Most importantly, recent investigations have revealed the ability of SGK1 to skew immune-cell differentiation toward pro-tumorigenic phenotypes. Future studies are needed to fully evaluate the potential of SGK1 as a therapeutic target in combinatorial treatments of NSCLC. However, based on what is currently known, SGK1 inactivation can result in anti-oncogenic effects both on tumor cells and on the immune microenvironment. A first generation of small molecules to inactivate SGK1 has already been already produced.
Collapse
Affiliation(s)
- Ilaria Guerriero
- Biogem Institute for Genetic Research Gaetano Salvatore, Ariano Irpino, 83031 Avellino, Italy; (I.G.); (G.M.)
| | - Gianni Monaco
- Biogem Institute for Genetic Research Gaetano Salvatore, Ariano Irpino, 83031 Avellino, Italy; (I.G.); (G.M.)
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: (V.C.); (A.O.); Tel.: +1-614-688-8038 (V.C.); +1-646-552-0641 (A.O.)
| | - Arturo Orlacchio
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: (V.C.); (A.O.); Tel.: +1-614-688-8038 (V.C.); +1-646-552-0641 (A.O.)
| |
Collapse
|
32
|
Wang Z, Wang Y, He Y, Zhang N, Chang W, Niu Y. Aquaporin-1 facilitates proliferation and invasion of gastric cancer cells via GRB7-mediated ERK and Ras activation. Anim Cells Syst (Seoul) 2020; 24:253-259. [PMID: 33209198 PMCID: PMC7646557 DOI: 10.1080/19768354.2020.1833985] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Gastric cancer, one of the most common malignant tumors of the digestive tract, is devoid of effective treatment owing to its highly invasive ability. Aquaporins (AQPs), transmembrane water channel proteins, has been shown to be involved in the malignancy of gastric cancer. This study aims to investigate the pathophysiological roles of AQP-1 in gastric cancer. We first demonstrated quantitative real-time polymerase chain reaction analysis and found up-regulation of AQP-1 in gastric cancer cell lines. Additionally, silence of AQP-1 inhibited cell proliferation via decrease of proliferating cell nuclear antigen (PCNA) and minichromosome maintenance complex component 2 (MCM2). Moreover, migration and invasion of gastric cancer cells were also suppressed by the interference of AQP-1. However, the tumorigenic mechanism of AQP-1 on gastric cancer is yet to be found. We demonstrated western blot analysis and found that knockdown of AQP-1 decreased protein expression of phospho (p)-GRB7 (growth factor receptor-bound protein 7) and led to a remarkable reduction of p-extracellular signal-regulated kinase (ERK) via inactivation of RAS. In general, our findings indicated that AQP-1 facilitates proliferation and invasion of gastric cancer cells via GRB7-mediated ERK and Ras activation, illuminating a novel AQP-1-RAS/ERK molecular axis as regulator in gastric cancer progression and suggesting potential implications in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Zhenjie Wang
- Department of Digesting Internal Medicine, Changzhi City, People's Republic of China
| | - Yujuan Wang
- Department of Ultrasound Diagnosis, Affiliated Heping Hospital, Changzhi Medical College, Changzhi City, People's Republic of China
| | - Yuan He
- Department of Gastrointestinal Surgery, Affiliated Heping Hospital, Changzhi Medical College, Changzhi City, People's Republic of China
| | - Ning Zhang
- Department of Digesting Internal Medicine, Changzhi City, People's Republic of China
| | - Wei Chang
- Department of Ear-Nose-Throat, Affiliated Heping Hospital, Changzhi Medical College, Changzhi City, People's Republic of China
| | - Yahui Niu
- Department of Digesting Internal Medicine, Changzhi City, People's Republic of China
| |
Collapse
|
33
|
Ion Channels in Cancer: Orchestrators of Electrical Signaling and Cellular Crosstalk. Rev Physiol Biochem Pharmacol 2020; 183:103-133. [PMID: 32894333 DOI: 10.1007/112_2020_48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ion channels are pore-forming transmembrane proteins that govern ion flux to regulate a myriad of biological processes in development, physiology, and disease. Across various types of cancer, ion channel expression and activity are often dysregulated. We review the contribution of ion channels to multiple stages of tumorigenesis based on data from in vivo model systems. As intertumoral and intratumoral heterogeneities are major obstacles in developing effective therapies, we provide perspectives on how ion channels in tumor cells and their microenvironment represent targetable vulnerabilities in the areas of tumor-stromal cell interactions, cancer neuroscience, and cancer mechanobiology.
Collapse
|
34
|
Peruzzo R, Mattarei A, Azzolini M, Becker-Flegler KA, Romio M, Rigoni G, Carrer A, Biasutto L, Parrasia S, Kadow S, Managò A, Urbani A, Rossa A, Semenzato G, Soriano ME, Trentin L, Ahmad S, Edwards M, Gulbins E, Paradisi C, Zoratti M, Leanza L, Szabò I. Insight into the mechanism of cytotoxicity of membrane-permeant psoralenic Kv1.3 channel inhibitors by chemical dissection of a novel member of the family. Redox Biol 2020; 37:101705. [PMID: 33007503 PMCID: PMC7527709 DOI: 10.1016/j.redox.2020.101705] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
The potassium channel Kv1.3, involved in several important pathologies, is the target of a family of psoralen-based drugs whose mechanism of action is not fully understood. Here we provide evidence for a physical interaction of the mitochondria-located Kv1.3 (mtKv1.3) and Complex I of the respiratory chain and show that this proximity underlies the death-inducing ability of psoralenic Kv1.3 inhibitors. The effects of PAP-1-MHEG (PAP-1, a Kv1.3 inhibitor, with six monomeric ethylene glycol units attached to the phenyl ring of PAP-1), a more soluble novel derivative of PAP-1 and of its various portions on mitochondrial physiology indicate that the psoralenic moiety of PAP-1 bound to mtKv1.3 facilitates the diversion of electrons from Complex I to molecular oxygen. The resulting massive production of toxic Reactive Oxygen Species leads to death of cancer cells expressing Kv1.3. In vivo, PAP-1-MHEG significantly decreased melanoma volume. In summary, PAP-1-MHEG offers insights into the mechanisms of cytotoxicity of this family of compounds and may represent a valuable clinical tool. The mitochondrial channel mitoKv1.3 is a promising pharmacological target. MitoKv1.3 interacts with Complex I of the respiratory chain. Psoralenic inhibitors of Kv1.3 facilitate the diversion of e− from complex I to O2. A novel psoralenic Kv1.3 inhibitor with increased solubility reduces melanoma volume.
Collapse
Affiliation(s)
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | | | | | - Matteo Romio
- Department of Chemical Sciences, University of Padua, Italy
| | | | - Andrea Carrer
- Department of Biology, University of Padua, Italy; Department of Biomedical Sciences, University of Padua, Italy
| | - Lucia Biasutto
- Department of Biomedical Sciences, University of Padua, Italy; CNR Institute of Neuroscience, Padua, Italy
| | - Sofia Parrasia
- Department of Biomedical Sciences, University of Padua, Italy
| | - Stephanie Kadow
- Department of Molecular Biology, University of Duisburg-Essen, Germany
| | | | - Andrea Urbani
- Department of Biology, University of Padua, Italy; Department of Biomedical Sciences, University of Padua, Italy
| | - Andrea Rossa
- Department of Chemical Sciences, University of Padua, Italy
| | | | | | | | - Syed Ahmad
- Department of Surgery, Medical School, University of Cincinnati, USA
| | - Michael Edwards
- Department of Surgery, Medical School, University of Cincinnati, USA
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Germany
| | | | - Mario Zoratti
- Department of Biomedical Sciences, University of Padua, Italy; CNR Institute of Neuroscience, Padua, Italy
| | - Luigi Leanza
- Department of Biology, University of Padua, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padua, Italy; CNR Institute of Neuroscience, Padua, Italy.
| |
Collapse
|
35
|
Novel Therapeutic Approaches of Ion Channels and Transporters in Cancer. Rev Physiol Biochem Pharmacol 2020; 183:45-101. [PMID: 32715321 DOI: 10.1007/112_2020_28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The expression and function of many ion channels and transporters in cancer cells display major differences in comparison to those from healthy cells. These differences provide the cancer cells with advantages for tumor development. Accordingly, targeting ion channels and transporters have beneficial anticancer effects including inhibition of cancer cell proliferation, migration, invasion, metastasis, tumor vascularization, and chemotherapy resistance, as well as promoting apoptosis. Some of the molecular mechanisms associating ion channels and transporters with cancer include the participation of oxidative stress, immune response, metabolic pathways, drug synergism, as well as noncanonical functions of ion channels. This diversity of mechanisms offers an exciting possibility to suggest novel and more effective therapeutic approaches to fight cancer. Here, we review and discuss most of the current knowledge suggesting novel therapeutic approaches for cancer therapy targeting ion channels and transporters. The role and regulation of ion channels and transporters in cancer provide a plethora of exceptional opportunities in drug design, as well as novel and promising therapeutic approaches that may be used for the benefit of cancer patients.
Collapse
|
36
|
Bordon KDCF, Cologna CT, Fornari-Baldo EC, Pinheiro-Júnior EL, Cerni FA, Amorim FG, Anjolette FAP, Cordeiro FA, Wiezel GA, Cardoso IA, Ferreira IG, de Oliveira IS, Boldrini-França J, Pucca MB, Baldo MA, Arantes EC. From Animal Poisons and Venoms to Medicines: Achievements, Challenges and Perspectives in Drug Discovery. Front Pharmacol 2020; 11:1132. [PMID: 32848750 PMCID: PMC7396678 DOI: 10.3389/fphar.2020.01132] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
Animal poisons and venoms are comprised of different classes of molecules displaying wide-ranging pharmacological activities. This review aims to provide an in-depth view of toxin-based compounds from terrestrial and marine organisms used as diagnostic tools, experimental molecules to validate postulated therapeutic targets, drug libraries, prototypes for the design of drugs, cosmeceuticals, and therapeutic agents. However, making these molecules applicable requires extensive preclinical trials, with some applications also demanding clinical trials, in order to validate their molecular target, mechanism of action, effective dose, potential adverse effects, as well as other fundamental parameters. Here we go through the pitfalls for a toxin-based potential therapeutic drug to become eligible for clinical trials and marketing. The manuscript also presents an overview of the current picture for several molecules from different animal venoms and poisons (such as those from amphibians, cone snails, hymenopterans, scorpions, sea anemones, snakes, spiders, tetraodontiformes, bats, and shrews) that have been used in clinical trials. Advances and perspectives on the therapeutic potential of molecules from other underexploited animals, such as caterpillars and ticks, are also reported. The challenges faced during the lengthy and costly preclinical and clinical studies and how to overcome these hindrances are also discussed for that drug candidates going to the bedside. It covers most of the drugs developed using toxins, the molecules that have failed and those that are currently in clinical trials. The article presents a detailed overview of toxins that have been used as therapeutic agents, including their discovery, formulation, dosage, indications, main adverse effects, and pregnancy and breastfeeding prescription warnings. Toxins in diagnosis, as well as cosmeceuticals and atypical therapies (bee venom and leech therapies) are also reported. The level of cumulative and detailed information provided in this review may help pharmacists, physicians, biotechnologists, pharmacologists, and scientists interested in toxinology, drug discovery, and development of toxin-based products.
Collapse
Affiliation(s)
- Karla de Castro Figueiredo Bordon
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Camila Takeno Cologna
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Ernesto Lopes Pinheiro-Júnior
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe Augusto Cerni
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernanda Gobbi Amorim
- Postgraduate Program in Pharmaceutical Sciences, Vila Velha University, Vila Velha, Brazil
| | | | - Francielle Almeida Cordeiro
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Gisele Adriano Wiezel
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Iara Aimê Cardoso
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isabela Gobbo Ferreira
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isadora Sousa de Oliveira
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | - Mateus Amaral Baldo
- Health and Science Institute, Paulista University, São José do Rio Pardo, Brazil
| | - Eliane Candiani Arantes
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
37
|
Mondejar-Parreño G, Perez-Vizcaino F, Cogolludo A. Kv7 Channels in Lung Diseases. Front Physiol 2020; 11:634. [PMID: 32676036 PMCID: PMC7333540 DOI: 10.3389/fphys.2020.00634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/18/2020] [Indexed: 12/23/2022] Open
Abstract
Lung diseases constitute a global health concern causing disability. According to WHO in 2016, respiratory diseases accounted for 24% of world population mortality, the second cause of death after cardiovascular diseases. The Kv7 channels family is a group of voltage-dependent K+ channels (Kv) encoded by KCNQ genes that are involved in various physiological functions in numerous cell types, especially, cardiac myocytes, smooth muscle cells, neurons, and epithelial cells. Kv7 channel α-subunits are regulated by KCNE1–5 ancillary β-subunits, which modulate several characteristics of Kv7 channels such as biophysical properties, cell-location, channel trafficking, and pharmacological sensitivity. Kv7 channels are mainly expressed in two large groups of lung tissues: pulmonary arteries (PAs) and bronchial tubes. In PA, Kv7 channels are expressed in pulmonary artery smooth muscle cells (PASMCs); while in the airway (trachea, bronchus, and bronchioles), Kv7 channels are expressed in airway smooth muscle cells (ASMCs), airway epithelial cells (AEPs), and vagal airway C-fibers (VACFs). The functional role of Kv7 channels may vary depending on the cell type. Several studies have demonstrated that the impairment of Kv7 channel has a strong impact on pulmonary physiology contributing to the pathophysiology of different respiratory diseases such as cystic fibrosis, asthma, chronic obstructive pulmonary disease, chronic coughing, lung cancer, and pulmonary hypertension. Kv7 channels are now recognized as playing relevant physiological roles in many tissues, which have encouraged the search for Kv7 channel modulators with potential therapeutic use in many diseases including those affecting the lung. Modulation of Kv7 channels has been proposed to provide beneficial effects in a number of lung conditions. Therefore, Kv7 channel openers/enhancers or drugs acting partly through these channels have been proposed as bronchodilators, expectorants, antitussives, chemotherapeutics and pulmonary vasodilators.
Collapse
Affiliation(s)
- Gema Mondejar-Parreño
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Francisco Perez-Vizcaino
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Angel Cogolludo
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| |
Collapse
|
38
|
Liu J, Qu C, Han C, Chen MM, An LJ, Zou W. Potassium channels and their role in glioma: A mini review. Mol Membr Biol 2020; 35:76-85. [PMID: 32067536 DOI: 10.1080/09687688.2020.1729428] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
K+ channels regulate a multitude of biological processes and play important roles in a variety of diseases by controlling potassium flow across cell membranes. They are widely expressed in the central and peripheral nervous system. As a malignant tumor derived from nerve epithelium, glioma has the characteristics of high incidence, high recurrence rate, high mortality rate, and low cure rate. Since glioma cells show invasive growth, current surgical methods cannot completely remove tumors. Adjuvant chemotherapy is still needed after surgery. Because the blood-brain barrier and other factors lead to a lower effective concentration of chemotherapeutic drugs in the tumor, the recurrence rate of residual lesions is extremely high. Therefore, new therapeutic methods are needed. Numerous studies have shown that different K+ channel subtypes are differentially expressed in glioma cells and are involved in the regulation of the cell cycle of glioma cells to arrest them at different stages of the cell cycle. Increasing evidence suggests that K+ channels express in glioma cells and regulate glioma cell behaviors such as cell cycle, proliferation and apoptosis. This review article aims to summarize the current knowledge on the function of K+ channels in glioma, suggests K+ channels participating in the development of glioma.
Collapse
Affiliation(s)
- Jia Liu
- School of Life Science and Biotechnology, Faculty of Chemical, Environmental and Biological Science, Technology, Dalian University of Technology, Dalian, China.,College of Life Science, Liaoning Normal University, Dalian, China
| | - Chao Qu
- College of Life Science, Liaoning Normal University, Dalian, China
| | - Chao Han
- Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Meng-Meng Chen
- Company of Qingdao Re-Store Life Sciences, Qingdao, China
| | - Li-Jia An
- School of Life Science and Biotechnology, Faculty of Chemical, Environmental and Biological Science, Technology, Dalian University of Technology, Dalian, China
| | - Wei Zou
- College of Life Science, Liaoning Normal University, Dalian, China.,Company of Qingdao Re-Store Life Sciences, Qingdao, China
| |
Collapse
|
39
|
Díaz-García A, Varela D. Voltage-Gated K +/Na + Channels and Scorpion Venom Toxins in Cancer. Front Pharmacol 2020; 11:913. [PMID: 32655396 PMCID: PMC7325878 DOI: 10.3389/fphar.2020.00913] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/04/2020] [Indexed: 12/25/2022] Open
Abstract
Ion channels have recently been recognized as novel therapeutic targets in cancer research since they are overexpressed in different histological tissues, and their activity is linked to proliferation, tumor progression, angiogenesis, metastasis, and apoptosis. Voltage gated-potassium channels (VGKC) are involved in cell proliferation, cancer progression, cell cycle transition, and apoptosis. Moreover, voltage-dependent sodium channels (VGSC) contribute to decreases in extracellular pH, which, in turn, promotes cancer cell migration and invasion. Furthermore, VGSC and VGKC modulate voltage-sensitive Ca2+ channel activity by controlling the membrane potential and regulating Ca2+ influx, which functions as a second messenger in processes related to proliferation, invasion, migration, and metastasis. The subgroup of these types of channels that have shown a high oncogenic potential have become known as "oncochannels", and the evidence has highlighted them as key potential therapeutic targets. Scorpion venoms contain a high proportion of peptide toxins that act by modulating voltage-gated Na+/K+ channel activity. Increasing scientific data have pointed out that scorpion venoms and their toxins can affect the activity of oncochannels, thus showing their potential for anticancer therapy. In this review, we provide an update of the most relevant voltage-gated Na+\K+ ion channels as cellular targets and discuss the possibility of using scorpion venom and toxins for anticancer therapy.
Collapse
Affiliation(s)
- Alexis Díaz-García
- LifEscozul Chile SpA, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
| | - Diego Varela
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
- Program of Physiology and Biophysics, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
40
|
Scorpion Toxins and Ion Channels: Potential Applications in Cancer Therapy. Toxins (Basel) 2020; 12:toxins12050326. [PMID: 32429050 PMCID: PMC7290751 DOI: 10.3390/toxins12050326] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/24/2022] Open
Abstract
Apoptosis, a genetically directed process of cell death, has been studied for many years, and the biochemical mechanisms that surround it are well known and described. There are at least three pathways by which apoptosis occurs, and each pathway depends on extra or intracellular processes for activation. Apoptosis is a vital process, but disturbances in proliferation and cell death rates can lead to the development of diseases like cancer. Several compounds, isolated from scorpion venoms, exhibit inhibitory effects on different cancer cells. Indeed, some of these compounds can differentiate between healthy and cancer cells within the same tissue. During the carcinogenic process, morphological, biochemical, and biological changes occur that enable these compounds to modulate cancer but not healthy cells. This review highlights cancer cell features that enable modulation by scorpion neurotoxins. The properties of the isolated scorpion neurotoxins in cancer cells and the potential uses of these compounds as alternative treatments for cancer are discussed.
Collapse
|
41
|
Mikaelian AG, Traboulay E, Zhang XM, Yeritsyan E, Pedersen PL, Ko YH, Matalka KZ. Pleiotropic Anticancer Properties of Scorpion Venom Peptides: Rhopalurus princeps Venom as an Anticancer Agent. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:881-893. [PMID: 32161447 PMCID: PMC7051175 DOI: 10.2147/dddt.s231008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 02/05/2020] [Indexed: 12/19/2022]
Abstract
To date, the success of conventional chemotherapy, radiotherapy, and targeted biological therapies in cancer treatment is not satisfactory. The main reasons for such outcomes rely on low target selectivity, primarily in chemo- and radiotherapy, ineffectiveness to metastatic disease, drug resistance, and severe side effects. Although immune checkpoint inhibitors may offer better clinical promise, success is still limited. Since cancer is a complex systemic disease, the need for new therapeutic modalities that can target or block several steps of cancer cell characteristics, modulate or repolarize immune cells, and are less toxic to healthy tissues is essential. Of these promising therapeutic modalities are pleiotropic natural products in which scorpion venom (SV) is an excellent example. SV consists of complex bioactive peptides that are disulfide-rich of different peptides’ length, potent, stable, and exerts various multi-pharmacological actions. SV peptides also contain ion channel inhibitors. These ion channels are dysregulated and overexpressed in cancer cells, and play essential roles in cancer development and invasion, as well as depolarizing immune cells. Furthermore, SV has been found to induce cancer cell apoptosis, and inhibit cancer cells proliferation, invasion, metastasis, and angiogenesis. In the current review, we are presenting data that show the pleiotropic effect of SV against different types of human cancer as well as revealing one potential anticancer agent, Rhopalurus princeps venom. Furthermore, we are addressing what is needed to be done to translate these potential cancer therapeutics to the clinic.
Collapse
Affiliation(s)
| | | | | | | | - Peter L Pedersen
- Johns Hopkins University, School of Medicine Laboratory, Baltimore, MD, USA
| | - Young Hee Ko
- Johns Hopkins University, School of Medicine Laboratory, Baltimore, MD, USA
| | | |
Collapse
|
42
|
Abstract
Ion channels are a major class of membrane proteins that play central roles in signaling within and among cells, as well as in the coupling of extracellular events with cellular responses. Dysregulated ion channel activity plays a causative role in many diseases including cancer. Here, we will review their role in lung cancer. Lung cancer is one of the most frequently diagnosed cancers, and it causes the highest number of deaths of all cancer types. The overall 5-year survival rate of lung cancer patients is only 19% and decreases to 5% when patients are diagnosed with stage IV. Thus, new therapeutical strategies are urgently needed. The important contribution of ion channels to the progression of various types of cancer has been firmly established so that ion channel-based therapeutic concepts are currently developed. Thus far, the knowledge on ion channel function in lung cancer is still relatively limited. However, the published studies clearly show the impact of ion channel inhibitors on a number of cellular mechanisms underlying lung cancer cell aggressiveness such as proliferation, migration, invasion, cell cycle progression, or adhesion. Additionally, in vivo experiments reveal that ion channel inhibitors diminish tumor growth in mice. Furthermore, some studies give evidence that ion channel inhibitors can have an influence on the resistance or sensitivity of lung cancer cells to common chemotherapeutics such as paclitaxel or cisplatin.
Collapse
Affiliation(s)
- Etmar Bulk
- Institute of Physiology II, University of Münster, Münster, Germany.
| | | | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Münster, Germany
| |
Collapse
|
43
|
Ling C, Zhang Y, Li J, Chen W, Ling C. Clinical Use of Toxic Proteins and Peptides from Tian Hua Fen and Scorpion Venom. Curr Protein Pept Sci 2019; 20:285-295. [PMID: 29932034 DOI: 10.2174/1389203719666180622100641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/10/2018] [Accepted: 05/22/2018] [Indexed: 12/16/2022]
Abstract
Traditional Chinese Medicine (TCM) has been practiced in China for thousands of years. As a complementary and alternative treatment, herbal medicines that are frequently used in the TCM are the most accepted in the Western world. However, animal materials, which are equally important in the TCM practice, are not well-known in other countries. On the other hand, the Chinese doctors had documented the toxic profiles of hundreds of animals and plants thousand years ago. Furthermore, they saw the potential benefits of these materials and used their toxic properties to treat a wide variety of diseases, such as heavy pain and cancer. Since the 50s of the last century, efforts of the Chinese government and societies to modernize TCM have achieved tremendous scientific results in both laboratory and clinic. A number of toxic proteins have been isolated and their functions identified. Although most of the literature was written in Chinese, this review provide a summary, in English, regarding our knowledge of the clinical use of the toxic proteins isolated from a plant, Tian Hua Fen, and an animal, scorpion, both of which are famous toxic prescriptions in TCM.
Collapse
Affiliation(s)
- Chen Ling
- Division of Cellular and Molecular Therapy, Department of Pediatrics, College of Medicine, University of Florida, Gainesville 32611, Florida, FL, United States
| | - Yuanhui Zhang
- Department of Oncology, Baoshan Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai 201999, China
| | - Jun Li
- Division of Cellular and Molecular Therapy, Department of Pediatrics, College of Medicine, University of Florida, Gainesville 32611, Florida, FL, United States.,Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Wenli Chen
- Department of Oncology, Baoshan Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai 201999, China
| | - Changquan Ling
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.,E-institute of Internal Medicine of Traditional Chinese Medicine, Shanghai Municipal Education Commission, Shanghai 201203, China
| |
Collapse
|
44
|
Galíndez-Cerón JD, Jorge RJB, Chavez-Acosta MH, Jorge ARC, Alves NTQ, Prata MMG, Rodrigues FADP, Havt A, Sampaio TL, Martins AMC, Guerrero-Vargas JA, Monteiro HSA, Beltrán-Vidal JT. Renal Alterations Induced by the Venom of Colombian Scorpion Centruroides Margaritatus. Curr Top Med Chem 2019; 19:2049-2057. [PMID: 31364515 DOI: 10.2174/1568026619666190731143523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/21/2019] [Accepted: 06/05/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Scorpion venom causes renal injury and affects vascular ion-channels function. Centruroides margaritatus scorpion is found in Colombia and is frequently the cause of envenomation accidents; however, its renal impact has never been investigated. OBJECTIVE To evaluate the effects of C. margaritatus venom (CmV) on renal parameters using isolated rat kidney and renal cell culture models. METHODS Wistar rats (n = 5, weighing 240-300 g) were first perfused with Krebs-Henseleit solution containing 6 g 100 mL-1 bovine serum albumin. After 30 minutes, the kidneys were perfused with CmV to a final concentration of 10 μgmL-1; evaluation was performed by measuring Perfusion Pressure (PP), Renal Vascular Resistance (RVR), Urinary Flow (UF), Glomerular Filtration Rate (GFR), and percentage of electrolyte tubular transport. Moreover, kidney histological analyses and cell cytotoxicity in renal tubule epithelial cells (MDCK) and proximal tubular cells (LLC-MK2) were assessed. RESULTS CmV increased PP and RVR 60 min after perfusion. On the other hand, UF, GFR, and the percentages of sodium, potassium and chloride tubular transport decreased after experimental envenomation. UF dropped after 120 min, while GFR and percentage of electrolyte tubular transport diminished after 60, 90 and 120 min. CmV was not toxic to MDCK cell line but reduced the viability of LLC-MK2 cells at concentrations ranging from 6.25 to 200 μgmL-1. Histological analyses disclosed hydropic degeneration, edema, and protein deposits. Flow cytometry disclosed that cell death occurred predominantly by necrosis. CONCLUSION Our results suggest that C. margaritatus venom can trigger renal impairment, mainly in the proximal kidney tubule.
Collapse
Affiliation(s)
- J D Galíndez-Cerón
- Departamento de Biología, Facultad de Ciencias Naturales, Exactas y de la Educación, Grupo de Investigaciones Herpetológicas y Toxinológicas, Universidad del Cauca, Popayán, Colombia
| | - R J B Jorge
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - M H Chavez-Acosta
- Departamento de Biología, Facultad de Ciencias Naturales, Exactas y de la Educación, Grupo de Investigaciones Herpetológicas y Toxinológicas, Universidad del Cauca, Popayán, Colombia
| | - A R C Jorge
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - N T Q Alves
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - M M G Prata
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - F A de Paulo Rodrigues
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - A Havt
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - T L Sampaio
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - A M C Martins
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - J A Guerrero-Vargas
- Departamento de Biología, Facultad de Ciencias Naturales, Exactas y de la Educación, Grupo de Investigaciones Herpetológicas y Toxinológicas, Universidad del Cauca, Popayán, Colombia
| | - H S A Monteiro
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - J T Beltrán-Vidal
- Departamento de Biología, Facultad de Ciencias Naturales, Exactas y de la Educación, Grupo de Investigaciones Herpetológicas y Toxinológicas, Universidad del Cauca, Popayán, Colombia
| |
Collapse
|
45
|
Acharya R. The recent progresses in shRNA-nanoparticle conjugate as a therapeutic approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109928. [PMID: 31500065 DOI: 10.1016/j.msec.2019.109928] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/16/2019] [Accepted: 06/26/2019] [Indexed: 01/06/2023]
Abstract
The recent trend of gene therapy is using short hairpin RNA conjugated with different types of nanoparticles. shRNAs have a significant role in gene silencing and have a promising role in treating several genetic and infectious diseases. There are several drawbacks of delivering bare shRNA in the blood as they are fragile in nature and readily degradable. To overcome this problem shRNAs can be conjugated with nanoparticles for a safe deliver. In this article several nanoparticles are mentioned which play significant role in delivery of this payload. On one hand they protect the shRNA from degradation on the other they help to penetrate this large molecule in to the cell. Some of these nanoconjugates are in clinical trials and have a promising role in treatment of diseases.
Collapse
Affiliation(s)
- Rituparna Acharya
- School of Bio-science and Engineering, Jadavpur University, 188, Raja S.C.Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
46
|
Anti-tumoral effect of scorpion peptides: Emerging new cellular targets and signaling pathways. Cell Calcium 2019; 80:160-174. [DOI: 10.1016/j.ceca.2019.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 12/31/2022]
|
47
|
Gómez Rave LJ, Muñoz Bravo AX, Sierra Castrillo J, Román Marín LM, Corredor Pereira C. Scorpion Venom: New Promise in the Treatment of Cancer. ACTA BIOLÓGICA COLOMBIANA 2019. [DOI: 10.15446/abc.v24n2.71512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cancer is a public health problem due to its high worldwide morbimortality. Current treatment protocols do not guarantee complete remission, which has prompted to search for new and more effective antitumoral compounds. Several substances exhibiting cytostatic and cytotoxic effects over cancer cells might contribute to the treatment of this pathology. Some studies indicate the presence of such substances in scorpion venom. In this review, we report characteristics of the principal scorpion venom components found in recent literature and their potential activity against tumor cells. There are different toxin groups present in the venom, and it seems that their mode of actions involves ionic channel blocking, disruption of the cell membrane integrity and damage to internal cell organelles. These properties make good prospects for studies on drugs and adjuvants in cancer treatment.
Collapse
|
48
|
Oliveira IS, Ferreira IG, Alexandre-Silva GM, Cerni FA, Cremonez CM, Arantes EC, Zottich U, Pucca MB. Scorpion toxins targeting Kv1.3 channels: insights into immunosuppression. J Venom Anim Toxins Incl Trop Dis 2019; 25:e148118. [PMID: 31131004 PMCID: PMC6483409 DOI: 10.1590/1678-9199-jvatitd-1481-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/17/2018] [Indexed: 01/26/2023] Open
Abstract
Scorpion venoms are natural sources of molecules that have, in addition to their
toxic function, potential therapeutic applications. In this source the
neurotoxins can be found especially those that act on potassium channels.
Potassium channels are responsible for maintaining the membrane potential in the
excitable cells, especially the voltage-dependent potassium channels (Kv),
including Kv1.3 channels. These channels (Kv1.3) are expressed by various types
of tissues and cells, being part of several physiological processes. However,
the major studies of Kv1.3 are performed on T cells due its importance on
autoimmune diseases. Scorpion toxins capable of acting on potassium channels
(KTx), mainly on Kv1.3 channels, have gained a prominent role for their possible
ability to control inflammatory autoimmune diseases. Some of these toxins have
already left bench trials and are being evaluated in clinical trials, presenting
great therapeutic potential. Thus, scorpion toxins are important natural
molecules that should not be overlooked in the treatment of autoimmune and other
diseases.
Collapse
Affiliation(s)
- Isadora S Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Isabela G Ferreira
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Felipe A Cerni
- Ribeirão Preto Medical School, Department of Biochemistry and Immunology, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Caroline M Cremonez
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Eliane C Arantes
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Umberto Zottich
- Medical School, Federal University of Roraima, Boa Vista, RR, Brazil
| | - Manuela B Pucca
- Medical School, Federal University of Roraima, Boa Vista, RR, Brazil
| |
Collapse
|
49
|
Venom from the scorpion Heterometrus liangi inhibits HeLa cell proliferation by inducing p21 expression. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0119-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Aissaoui D, Mlayah-Bellalouna S, Jebali J, Abdelkafi-Koubaa Z, Souid S, Moslah W, Othman H, Luis J, ElAyeb M, Marrakchi N, Essafi-Benkhadir K, Srairi-Abid N. Functional role of Kv1.1 and Kv1.3 channels in the neoplastic progression steps of three cancer cell lines, elucidated by scorpion peptides. Int J Biol Macromol 2018; 111:1146-1155. [DOI: 10.1016/j.ijbiomac.2018.01.144] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/19/2018] [Accepted: 01/20/2018] [Indexed: 12/11/2022]
|