1
|
Kaplan ABU, Cetin M, Bayram C, Yildirim S, Taghizadehghalehjoughi A, Hacimuftuoglu A. In Vivo Evaluation of Nanoemulsion Formulations for Metformin and Repaglinide Alone and Combination. J Pharm Sci 2023; 112:1411-1426. [PMID: 36649792 DOI: 10.1016/j.xphs.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Repaglinide and Metformin are used to treat Type 2 diabetes. Repaglinide with poor water solubility has relatively low oral bioavailability (56%) and undergoes hepatic first-pass metabolism. The oral bioavailability of metformin HCl is also low (about 50-60%). The purpose of this study was to prepare nanoemulsion formulations containing metformin HCl or repaglinide alone or in combination and characterize them in vitro and in vivo. Nanoemulsion formulations containing metformin HCl and/or repaglinide were successfully prepared and in vitro characterized. In addition, in vivo efficacy of nanoemulsion formulations was evaluated in a streptozotocin-nicotinamide-induced diabetic rat model. Biochemical, histopathological, and immunohistochemical evaluations were also performed. The mean droplet size and zeta potential values of nanoemulsion formulations were in the range of 110.15±2.64-120.23±2.16 nm and -21.95 - -24.33 mV, respectively. The percent entrapment efficiency values of nanoemulsion formulations were in the range of 93.600%-96.152%. All nanoemulsion formulations had a PDI of ≤0.223. A statistically significant decrease was observed in the blood glucose values of the diabetic rats treated with nanoemulsion formulations containing active substance/substances, compared to diabetic rats (control) (p<0.05). Nanoemulsion formulations (especially nanoemulsion containing metformin HCl and repaglinide combination) have a better antidiabetic activity and are more effective in reducing oxidative stress caused by diabetes.
Collapse
Affiliation(s)
| | - Meltem Cetin
- Atatürk University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Turkey.
| | - Cemil Bayram
- Atatürk University, Faculty of Medicine, Department of Medical Pharmacology, Turkey
| | - Serkan Yildirim
- Atatürk University, Faculty of Veterinary Medicine, Department of Pathology, Turkey
| | | | - Ahmet Hacimuftuoglu
- Atatürk University, Faculty of Medicine, Department of Medical Pharmacology, Turkey
| |
Collapse
|
2
|
Wang X, Liu Y, Han D, Zhong J, Yang C, Chen X. Dose-dependent immunomodulatory effects of metformin on human neonatal monocyte-derived macrophages. Cell Immunol 2022; 377:104557. [PMID: 35679651 DOI: 10.1016/j.cellimm.2022.104557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022]
Abstract
While the association of inflammation with bronchopulmonary dysplasia (BPD) has long been appreciated, M1 proinflammatory macrophage population is emerging as the key element in driving the BPD inflammatory environment. Previous study suggests that low-dose metformin elicits an anti-inflammatory response, possibly through modulating macrophages, to improve disease outcome in a rat BPD model. To investigate this concept further, we examined the dose-dependent immunomodulatory function of metformin directly on human macrophages derived from cord blood (CB) monocytes. We demonstrate that low-dose metformin promotes expansion of M2 anti-inflammatory macrophages, contrasted with high-dose treatment, which exacerbates inflammation by favoring M1 polarization and restricting M2 phenotype. These findings highlight that metformin hold immunomodulatory ability by regulating macrophage polarization in a dose-dependent manner, and only when applied at low dose, exhibiting potential for beneficial anti-inflammatory adjuvant in BPD setting.
Collapse
Affiliation(s)
- Xuan Wang
- Laboratory of Neonatology, Department of Neonatology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Yijun Liu
- Laboratory of Neonatology, Department of Neonatology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Dongshan Han
- Laboratory of Neonatology, Department of Neonatology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Junyan Zhong
- Laboratory of Neonatology, Department of Neonatology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Chuanzhong Yang
- Laboratory of Neonatology, Department of Neonatology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Xueyu Chen
- Laboratory of Neonatology, Department of Neonatology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China.
| |
Collapse
|
3
|
Cheng FF, Liu YL, Du J, Lin JT. Metformin's Mechanisms in Attenuating Hallmarks of Aging and Age-Related Disease. Aging Dis 2022; 13:970-986. [PMID: 35855344 PMCID: PMC9286921 DOI: 10.14336/ad.2021.1213] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/13/2021] [Indexed: 11/01/2022] Open
Affiliation(s)
- Fang-Fang Cheng
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang 453003, China.
| | - Yan-Li Liu
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang 453003, China.
| | - Jang Du
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang 453003, China.
| | - Jun-Tang Lin
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang 453003, China.
- Correspondence should be addressed to: Dr. Jun-Tang Lin, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
4
|
Zhang Q, Yang M, Xiao Y, Han Y, Yang S, Sun L. Towards Better Drug Repositioning: Targeted Immunoinflammatory Therapy for Diabetic Nephropathy. Curr Med Chem 2021; 28:1003-1024. [PMID: 31701843 DOI: 10.2174/0929867326666191108160643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 11/22/2022]
Abstract
Diabetic nephropathy (DN) is one of the most common and important microvascular complications of diabetes mellitus (DM). The main clinical features of DN are proteinuria and a progressive decline in renal function, which are associated with structural and functional changes in the kidney. The pathogenesis of DN is multifactorial, including genetic, metabolic, and haemodynamic factors, which can trigger a sequence of events. Controlling metabolic risks such as hyperglycaemia, hypertension, and dyslipidaemia is not enough to slow the progression of DN. Recent studies emphasized immunoinflammation as a critical pathogenic factor in the progression of DN. Therefore, targeting inflammation is considered a potential and novel treatment strategy for DN. In this review, we will briefly introduce the inflammatory process of DN and discuss the anti-inflammatory effects of antidiabetic drugs when treating DN.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shikun Yang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Bai B, Chen H. Metformin: A Novel Weapon Against Inflammation. Front Pharmacol 2021; 12:622262. [PMID: 33584319 PMCID: PMC7880161 DOI: 10.3389/fphar.2021.622262] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
It has become widely accepted that inflammation is a driving force behind a variety of chronic diseases, such as cardiovascular disease, diabetes, kidney disease, cancer, neurodegenerative disorders, etc. However, the existing nonsteroidal anti-inflammatory drugs show a limited utility in clinical patients. Therefore, the novel agents with different inflammation-inhibitory mechanisms are worth pursuing. Metformin, a synthetic derivative of guanidine, has a history of more than 50 years of clinical experience in treating patients with type 2 diabetes. Intense research efforts have been dedicated to proving metformin’s inflammation-inhibitory effects in cells, animal models, patient records, and randomized clinical trials. The emerging evidence also indicates its therapeutic potential in clinical domains other than type 2 diabetes. Herein, this article appraises current pre-clinical and clinical findings, emphasizing metformin’s anti-inflammatory properties under individual pathophysiological scenarios. In summary, the anti-inflammatory effects of metformin are evident in pre-clinical models. By comparison, there are still clinical perplexities to be addressed in repurposing metformin to inflammation-driven chronic diseases. Future randomized controlled trials, incorporating better stratification/targeting, would establish metformin’s utility in this clinical setting.
Collapse
Affiliation(s)
- Bo Bai
- Department of Cardiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Haibo Chen
- Department of Cardiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
6
|
Zhang P, Wang Q, Nie L, Zhu R, Zhou X, Zhao P, Ji N, Liang X, Ding Y, Yuan Q, Wang Q. Hyperglycemia-induced inflamm-aging accelerates gingival senescence via NLRC4 phosphorylation. J Biol Chem 2019; 294:18807-18819. [PMID: 31676687 DOI: 10.1074/jbc.ra119.010648] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/17/2019] [Indexed: 02/05/2023] Open
Abstract
Inflamm-aging was recently affiliated with the progression of diabetic complications. Local cellular senescence together with senescence-associated secretory phenotype (SASP) are the main contributors to inflamm-aging. However, little is known about their involvement in diabetic periodontitis. Gingiva is the first line of host defense in the periodontium, and macrophages are key SASP-carrying cells. Here, we explored the molecular mechanism by which hyperglycemia drives the inflamm-aging in the gingival tissue of diabetic mice and macrophages. We demonstrated that hyperglycemia increased the infiltrated macrophage senescence in gingival tissue of diabetic mice. Simultaneously, hyperglycemia elevated the local burden of senescent cells in gingival tissue and induced the serum secretion of SASP factors in vivo Moreover, in vitro, high glucose induced macrophage senescence and SASP factors secretion through phosphorylation of NLRC4, which further stimulated the NF-κB/Caspase-1 cascade via an IRF8-dependent pathway. Deletion of NLRC4 or IRF8 abolished hyperglycemia-induced cellular senescence and SASP in macrophages. In addition, we found that treatment with metformin inhibited NLRC4 phosphorylation and remarkably decreased cellular senescence and SASP in the context of hyperglycemia. Our data demonstrated that hyperglycemia induces the development of inflamm-aging in gingival tissue and suggested that NLRC4 is a potential target for treatment of diabetes-associated complications.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lulingxiao Nie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Rui Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xinyi Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Pengfei Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xing Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Lee MC, Lee CH, Chang LY, Chang CH, Zhang JF, Lee MR, Wang JY, Chen SM. Association of Metformin Use With End-Stage Renal Disease in Patients With Type 2 Diabetes Mellitus: A Nationwide Cohort Study Under the Pay-for-Performance Program. J Clin Pharmacol 2019; 59:1443-1452. [PMID: 31163098 DOI: 10.1002/jcph.1452] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/16/2019] [Indexed: 12/25/2022]
Abstract
Animal studies have demonstrated that metformin exerts a renoprotective effect. Human studies of patients with diabetes mellitus (DM) regarding the association of metformin use with end-stage renal disease (ESRD) are lacking. Patients with type 2 DM and without a history of kidney disease who were enrolled under the pay-for-performance program of the National Health Insurance in Taiwan were identified. Those who received ≥90 cumulative defined daily doses of metformin within 1 year were selected (metformin users) and compared with a 1:1 propensity score-matched metformin nonuser cohort. Primary and secondary outcomes were development of ESRD and chronic kidney disease (CKD), respectively. Independent predictors were investigated using Cox regression analysis. A total of 24 158 pairs of metformin users and nonusers were enrolled, with an incidence of ESRD of 1908 and 1723 and CKD of 1095 and 1056 cases per 100 000 person-years, respectively. Metformin use was independently associated with increased risks of ESRD (adjusted hazard ratio, 1.22; 95% confidence interval, 1.12-1.32) and CKD (adjusted hazard ratio, 1.25; 95% confidence interval, 1.12-1.40) in a dose-response relationship. Patients with hypertension plus nonuse of angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers potentiated kidney damage by metformin. In patients with DM, use of metformin may increase the risk of ESRD and CKD. Health care professionals should be alert and closely monitor renal function when prescribing metformin.
Collapse
Affiliation(s)
- Ming-Chia Lee
- Department of Pharmacy, New Taipei City Hospital, New Taipei City, Taiwan.,School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hsin Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Lih-Yu Chang
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Chia-Hao Chang
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Jun-Fu Zhang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Meng-Rui Lee
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jann-Yuan Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Ming Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
8
|
Li Y, Zhao X, Hu Y, Sun H, He Z, Yuan J, Cai H, Sun Y, Huang X, Kong W, Kong W. Age-associated decline in Nrf2 signaling and associated mtDNA damage may be involved in the degeneration of the auditory cortex: Implications for central presbycusis. Int J Mol Med 2018; 42:3371-3385. [PMID: 30272261 PMCID: PMC6202109 DOI: 10.3892/ijmm.2018.3907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/19/2018] [Indexed: 11/15/2022] Open
Abstract
Central presbycusis is the most common sensory disorder in the elderly population, however, the underlying molecular mechanism remains unclear. NF‑E2‑related factor 2 (Nrf2) is a key transcription factor in the cellular response to oxidative stress, however, the role of Nrf2 in central presbycusis remains to be elucidated. The aim of the present study was to investigate the pathogenesis of central presbycusis using a mimetic aging model induced by D‑galactose (D‑gal) in vivo and in vitro. The degeneration of the cell was determined with transmission electron microscopy, terminal deoxynucleotidyl transferase‑mediated deoxyuridine 5'‑triphosphate nick‑end labeling staining, and senescence‑associated β‑galactosidase staining. The expression of protein was detected by western blotting and immunofluorescence. The quantification of the mitochondrial DNA (mtDNA) 4,834‑base pair (bp) deletion and mRNA was detected by TaqMan quantitative polymerase chain reaction (qPCR) and reverse transcription‑qPCR respectively. Cell apoptosis and intracellular ROS in vitro were determined with flow cytometry. The levels of nuclear Nrf2, and the mRNA levels of Nrf2‑regulated antioxidant genes, were downregulated in the auditory cortex of aging rats, which was accompanied by an increase in 8‑hydroxy‑2'‑deoxyguanosine formation, an accumulation of mtDNA 4,834‑bp deletion, and neuron degeneration. In addition, oltipraz, a typical Nrf2 activator, was found to protect cells against D‑gal‑induced mtDNA damage and mitochondrial dysfunction by activating Nrf2 target genes in vitro. It was also observed that activating Nrf2 with oltipraz inhibited cell apoptosis and delayed senescence. Taken together, the data of the present study suggested that the age‑associated decline in Nrf2 signaling activity and the associated mtDNA damage in the auditory cortex may be implicated in the degeneration of the auditory cortex. Therefore, the restoration of Nrf2 signaling activity may represent a potential therapeutic strategy for central presbycusis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hua Cai
- Department of Otolaryngology
| | - Yu Sun
- Department of Otolaryngology
| | | | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | | |
Collapse
|
9
|
Protective Effect of Ginkgo biloba and Magnetized Water on Nephropathy in Induced Type 2 Diabetes in Rat. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1785614. [PMID: 29991974 PMCID: PMC6016160 DOI: 10.1155/2018/1785614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/22/2018] [Accepted: 05/02/2018] [Indexed: 12/16/2022]
Abstract
We aimed in our current study to explore the protective effect of Ginkgo biloba (GB) and magnetized water (MW) against nephrotoxicity associating induced type 2 diabetes mellitus in rat. Here, we induced diabetes by feeding our lab rats on a high fat-containing diet (4 weeks) and after that injecting them with streptozotocin (STZ). We randomly divided forty rats into four different groups: nontreated control (Ctrl), nontreated diabetic (Diabetic), Diabetic+GB (4-week treatment), and Diabetic+MW (4-week treatment). After the experiment was finished, serum and kidney tissue samples were gathered. Blood levels of glucose, triglycerides, cholesterol, creatinine, and urea were markedly elevated in the diabetic group than in the control group. In all animals treated with GB and MW, the levels of urea, creatinine, and glucose were significantly reduced (all P < 0.01). GB and MW attenuated glomerular and tubular injury as well as the histological score. Furthermore, they normalized the contents of glutathione reductase and SOD2. In summary, our data showed that GB and MW treatment protected type 2 diabetic rat kidneys from nephrotoxic damages by reducing the hyperlipidemia, uremia, oxidative stress, and renal dysfunction.
Collapse
|
10
|
De Broe M, Kajbaf F, Lalau JD. Renoprotective Effects of Metformin. Nephron Clin Pract 2017; 138:261-274. [DOI: 10.1159/000481951] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/03/2017] [Indexed: 12/18/2022] Open
|
11
|
Maniar K, Moideen A, Mittal A, Patil A, Chakrabarti A, Banerjee D. A story of metformin-butyrate synergism to control various pathological conditions as a consequence of gut microbiome modification: Genesis of a wonder drug? Pharmacol Res 2016; 117:103-128. [PMID: 27939359 DOI: 10.1016/j.phrs.2016.12.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/25/2016] [Accepted: 12/05/2016] [Indexed: 12/19/2022]
Abstract
The most widely prescribed oral anti-diabetic agent today in the world today is a member of the biguanide class of drugs called metformin. Apart from its use in diabetes, it is currently being investigated for its potential use in many diseases such as cancer, cardiovascular diseases, Alzheimer's disease, obesity, comorbidities of diabetes such as retinopathy, nephropathy to name a few. Numerous in-vitro and in-vivo studies as well as clinical trials have been and are being conducted with a vast amount of literature being published every day. Numerous mechanisms for this drug have been proposed, but they have been unable to explain all the actions observed clinically. It is of interest that insulin has a stimulatory effect on cellular growth. Metformin sensitizes the insulin action but believed to be beneficial in cancer. Like -wise metformin is shown to have beneficial effects in opposite sets of pathological scenario looking from insulin sensitization point of view. This requires a comprehensive review of the disease conditions which are claimed to be affected by metformin therapy. Such a comprehensive review is presently lacking. In this review, we begin by examining the history of metformin before it became the most popular anti-diabetic medication today followed by a review of its relevant molecular mechanisms and important clinical trials in all areas where metformin has been studied and investigated till today. We also review novel mechanistic insight in metformin action in relation to microbiome and elaborate implications of such aspect in various disease states. Finally, we highlight the quandaries and suggest potential solutions which will help the researchers and physicians to channel their research and put this drug to better use.
Collapse
Affiliation(s)
- Kunal Maniar
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Amal Moideen
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Ankur Mittal
- Department of Experimental Medicine & Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Amol Patil
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Amitava Chakrabarti
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Dibyajyoti Banerjee
- Department of Experimental Medicine & Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India.
| |
Collapse
|
12
|
Heidari H, Kamalinejad M, Noubarani M, Rahmati M, Jafarian I, Adiban H, Eskandari MR. Protective mechanisms of Cucumis sativus in diabetes-related modelsof oxidative stress and carbonyl stress. BIOIMPACTS : BI 2016; 6:33-9. [PMID: 27340622 PMCID: PMC4916550 DOI: 10.15171/bi.2016.05] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 01/12/2016] [Accepted: 03/12/2016] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Oxidative stress and carbonyl stress have essential mediatory roles in the development of diabetes and its related complications through increasing free radicals production and impairing antioxidant defense systems. Different chemical and natural compounds have been suggested for decreasing such disorders associated with diabetes. The objectives of the present study were to investigate the protective effects of Cucumis sativus (C. sativus) fruit (cucumber) in oxidative and carbonyl stress models. These diabetes-related models with overproduction of reactive oxygen species (ROS) and reactive carbonyl species (RCS) simulate conditions observed in chronic hyperglycemia. METHODS Cytotoxicity induced by cumene hydroperoxide (oxidative stress model) or glyoxal (carbonyl stress model) were measured and the protective effects of C. sativus were evaluated using freshly isolated rat hepatocytes. RESULTS Aqueous extract of C. sativus fruit (40 μg/mL) prevented all cytotoxicity markers in both the oxidative and carbonyl stress models including cell lysis, ROS formation, membrane lipid peroxidation, depletion of glutathione, mitochondrial membrane potential decline, lysosomal labialization, and proteolysis. The extract also protected hepatocytes from protein carbonylation induced by glyoxal. Our results indicated that C. sativus is able to prevent oxidative stress and carbonyl stress in the isolated hepatocytes. CONCLUSION It can be concluded that C. sativus has protective effects in diabetes complications and can be considered a safe and suitable candidate for decreasing the oxidative stress and carbonyl stress that is typically observed in diabetes mellitus.
Collapse
Affiliation(s)
- Himan Heidari
- Zanjan Metabolic Diseases Research Center, Zajan University of Medical Sciences, Zanjan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Kamalinejad
- Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Noubarani
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mokhtar Rahmati
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Iman Jafarian
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hasan Adiban
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Reza Eskandari
- Zanjan Metabolic Diseases Research Center, Zajan University of Medical Sciences, Zanjan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
- Corresponding author: Mohammad Reza Eskandari,
| |
Collapse
|
13
|
Esculin improves dyslipidemia, inflammation and renal damage in streptozotocin-induced diabetic rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:402. [PMID: 26552745 PMCID: PMC4640113 DOI: 10.1186/s12906-015-0817-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/10/2015] [Indexed: 11/24/2022]
Abstract
Background Increasing studies have shown that dyslipidemia and inflammatory responses play important roles in the progression of microvascular diabetic complications. Esculin (ES), a coumarin derivative, was extracted from Fraxinus rhynchophylla. The present study was to evaluate the potential effects of ES on lipid metabolism, inflammation responses and renal damage in streptozotocin (STZ)-induced experimental diabetic rats and explore the possible mechanism. Methods Diabetic rat model was established by administration high-glucose-fat diet and intraperitoneal injection of STZ 45 mg/kg. ES was administrated to diabetic rats intragastrically at 10, 30 and 90 mg/kg for 10 weeks respectively. The levels of triglycerides (TG), total cholesterol (T-CHO), low density lipoproteins (LDL), and high-density-cholesterol (HDL-C) in serum were measured. IL-1, IL-6, ICAM-1, NO, NAGL, and AGEs level in serum were detected by ELISA assay. The accumulation of AGEs in kidney tissue was examined by immunohistochemistry assay. Results The results showed that ES could decrease TG, T-CHO, LDL levels in serum of diabetic rats in a dose dependent manner. ES also decreased IL-1, IL-6, ICAM-1, NO and NGAL levels in serum of diabetic rats in a dose dependent manner. Furthermore, ES at 30 and 90 mg/kg significantly decreased AGEs level in serum and alleviated AGEs accumulation in renal in diabetic rats. Conclusions Our findings indicate that ES could improve dyslipidemia, inflammation responses, renal damage in STZ-induced diabetic rats and the possible mechanism might be associated with the inhibition of AGEs formation.
Collapse
|
14
|
Lalau JD, Arnouts P, Sharif A, De Broe ME. Metformin and other antidiabetic agents in renal failure patients. Kidney Int 2014; 87:308-22. [PMID: 24599253 DOI: 10.1038/ki.2014.19] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/21/2013] [Accepted: 12/12/2013] [Indexed: 12/11/2022]
Abstract
This review mainly focuses on metformin, and considers oral antidiabetic therapy in kidney transplant patients and the potential benefits and risks of antidiabetic agents other than metformin in patients with chronic kidney disease (CKD). In view of the debate concerning lactic acidosis associated with metformin, this review tries to solve a paradox: metformin should be prescribed more widely because of its beneficial effects, but also less widely because of the increasing prevalence of contraindications to metformin, such as reduced renal function. Lactic acidosis appears either as part of a number of clinical syndromes (i.e., unrelated to metformin), induced by metformin (involving an analysis of the drug's pharmacokinetics and mechanisms of action), or associated with metformin (a more complex situation, as lactic acidosis in a metformin-treated patient is not necessarily accompanied by metformin accumulation, nor does metformin accumulation necessarily lead to lactic acidosis). A critical analysis of guidelines and literature data on metformin therapy in patients with CKD is presented. Following the present focus on metformin, new paradoxical issues can be drawn up, in particular: (i) metformin is rarely the sole cause of lactic acidosis; (ii) lactic acidosis in patients receiving metformin therapy is erroneously still considered a single medical entity, as several different scenarios can be defined, with contrasting prognoses. The prognosis for severe lactic acidosis seems even better in metformin-treated patients than in non-metformin users.
Collapse
Affiliation(s)
- Jean-Daniel Lalau
- 1] Service d'Endocrinologie et de Nutrition, Centre Hospitalier Universitaire, Amiens, France [2] Unité INSERM U-1088, Université de Picardie Jules Verne, Amiens, France
| | - Paul Arnouts
- Department of Nephrology-Diabetology-Endocrinology, AZ Turnhout, Turnhout, Belgium
| | - Adnan Sharif
- Department of Nephrology and Transplantation, Renal Institute of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Marc E De Broe
- Laboratory of Pathophysiology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
15
|
Renal Protective Role of Xiexin Decoction with Multiple Active Ingredients Involves Inhibition of Inflammation through Downregulation of the Nuclear Factor-κB Pathway in Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:715671. [PMID: 23935673 PMCID: PMC3713598 DOI: 10.1155/2013/715671] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 05/28/2013] [Indexed: 12/01/2022]
Abstract
In Chinese medicine, Xiexin decoction (XXD) has been used for the clinical treatment of diabetes for at least 1700 years. The present study was conducted to investigate the effective ingredients of XXD and their molecular mechanisms of antidiabetic nephropathy in rats. Rats with diabetes induced by high-fat diet and streptozotocin were treated with XXD extract for 12 weeks. XXD significantly improved the glucolipid metabolism disorder, attenuated albuminuria and renal pathological changes, reduced renal advanced glycation end-products, inhibited receptor for advanced glycation end-product and inflammation factors expression, suppressed renal nuclear factor-κB pathway activity, and downregulated renal transforming growth factor-β1. The concentrations of multiple components in plasma from XXD were determined by liquid chromatography and tandem mass spectrometry. Pharmacokinetic/pharmacodynamic analysis using partial least square regression revealed that 8 ingredients of XXD were responsible for renal protective effects via actions on multiple molecular targets. Our study suggests that the renal protective role of XXD with multiple effective ingredients involves inhibition of inflammation through downregulation of the nuclear factor-κB pathway, reducing renal advanced glycation end-products and receptor for advanced glycation end-product in diabetic rats.
Collapse
|
16
|
Senthilkumar T, Ashokkumar N. Impact of Chlorella pyrenoidosa on the attenuation of hyperglycemia-mediated oxidative stress and protection of kidney tissue in streptozotocin-cadmium induced diabetic nephropathic rats. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.bionut.2012.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Abstract
Considerable efforts have been made since the 1950s to better understand the cellular and molecular mechanisms of action of metformin, a potent antihyperglycaemic agent now recommended as the first-line oral therapy for T2D (Type 2 diabetes). The main effect of this drug from the biguanide family is to acutely decrease hepatic glucose production, mostly through a mild and transient inhibition of the mitochondrial respiratory chain complex I. In addition, the resulting decrease in hepatic energy status activates AMPK (AMP-activated protein kinase), a cellular metabolic sensor, providing a generally accepted mechanism for the action of metformin on hepatic gluconeogenesis. The demonstration that respiratory chain complex I, but not AMPK, is the primary target of metformin was recently strengthened by showing that the metabolic effect of the drug is preserved in liver-specific AMPK-deficient mice. Beyond its effect on glucose metabolism, metformin has been reported to restore ovarian function in PCOS (polycystic ovary syndrome), reduce fatty liver, and to lower microvascular and macrovascular complications associated with T2D. Its use has also recently been suggested as an adjuvant treatment for cancer or gestational diabetes and for the prevention in pre-diabetic populations. These emerging new therapeutic areas for metformin will be reviewed together with recent findings from pharmacogenetic studies linking genetic variations to drug response, a promising new step towards personalized medicine in the treatment of T2D.
Collapse
|
18
|
Portha B, Giroix MH, Tourrel-Cuzin C, Le-Stunff H, Movassat J. The GK rat: a prototype for the study of non-overweight type 2 diabetes. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 933:125-59. [PMID: 22893405 DOI: 10.1007/978-1-62703-068-7_9] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes mellitus (T2D) arises when the endocrine pancreas fails to secrete sufficient insulin to cope with the metabolic demand because of β-cell secretory dysfunction and/or decreased β-cell mass. Defining the nature of the pancreatic islet defects present in T2D has been difficult, in part because human islets are inaccessible for direct study. This review is aimed to illustrate to what extent the Goto Kakizaki rat, one of the best characterized animal models of spontaneous T2D, has proved to be a valuable tool offering sufficient commonalities to study this aspect. A comprehensive compendium of the multiple functional GK abnormalities so far identified is proposed in this perspective, together with their time-course and interactions. A special focus is given toward the pathogenesis of defective β-cell number and function in the GK model. It is proposed that the development of T2D in the GK model results from the complex interaction of multiple events: (1) several susceptibility loci containing genes responsible for some diabetic traits; (2) gestational metabolic impairment inducing an epigenetic programming of the offspring pancreas and the major insulin target tissues; and (3) environmentally induced loss of β-cell differentiation due to chronic exposure to hyperglycemia/hyperlipidemia, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Bernard Portha
- Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptive), Université Paris-Diderot, CNRS EAC 4413, Paris, France.
| | | | | | | | | |
Collapse
|