1
|
Acute cannabidiol treatment attenuates ethanol-induced place preference and reduces aggressivity in group-housed male rats. Pharmacol Biochem Behav 2021; 211:173290. [PMID: 34662589 DOI: 10.1016/j.pbb.2021.173290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/22/2022]
Abstract
Alcohol abuse is a widespread cause of aggressive and impulsive behaviors that impact the users as well as their entourage. However, only a few medications are effective. Recently, cannabidiol has been reported to improve mood disorders and recovery from substance abuse, yet the psychopharmacologic effects of cannabidiol in ethanol-induced drug reward and aggressivity remain unexplored. In the present study, we investigated the effects of cannabidiol on ethanol-induced place preference and aggressivity in individually and group-housed male rats using the conditioned place preference test, and intruder evoc aggression test, respectively. The obtained results showed that ethanol significantly increased locomotor activity, induced conditioned place preference in all animals, and, specifically, increased aggressivity in individually housed rats. These behavioural impairments induced by ethanol were associated with decreased glucocorticoid and mineralocorticoid receptors transcription in the prefrontal cortex. Notwithstanding, cannabidiol at a dose of 10 mg/kg significantly inhibited Et-OH-induced place preference in group-housed, but not in individually housed rats, and markedly inhibited the aggressive behaviour. These findings suggest that ethanol-induced behavioural impairments are dependent on the housing condition that may affect corticosterone receptors expression and subsequently the animal responsivity to cannabidiol treatment.
Collapse
|
2
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
3
|
Abstract
Chronic alcohol consumption results in alcohol use disorder (AUD). Interestingly, however, sudden alcohol withdrawal (AW) after chronic alcohol exposure also leads to a devastating series of symptoms, referred to as alcohol withdrawal syndromes. One key feature of AW syndromes is to produce phenotypes that are opposite to AUD. For example, while the brain is characterized by a hypoactive state in the presence of alcohol, AW induces a hyperactive state, which is manifested as seizure expression. In this review, we discuss the idea that hippocampal neurogenesis and neural circuits play a key role in neuroadaptation and establishment of allostatic states in response to alcohol exposure and AW. The intrinsic properties of dentate granule cells (DGCs), and their contribution to the formation of a potent feedback inhibitory loop, endow the dentate gyrus with a "gate" function, which can limit the entry of excessive excitatory signals from the cortex into the hippocampus. We discuss the possibility that alcohol exposure and withdrawal disrupts structural development and circuitry integration of hippocampal newborn neurons, and that this altered neurogenesis impairs the gate function of the hippocampus. Failure of this gate function is expected to alter the ratio of excitatory to inhibitory (E/I) signals in the hippocampus and to induce seizure expression during AW. Recent functional studies have shown that specific activation and inhibition of hippocampal newborn DGCs are both necessary and sufficient for the expression of AW-associated seizures, further supporting the concept that neurogenesis-induced neuroadaptation is a critical target to understand and treat AUD and AW-associated seizures.
Collapse
Affiliation(s)
- Sreetama Basu
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, USA
| | - Hoonkyo Suh
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
4
|
Effects of the Positive Allosteric Modulator of Metabotropic Glutamate Receptor 5, VU-29, on Maintenance Association between Environmental Cues and Rewarding Properties of Ethanol in Rats. Biomolecules 2020; 10:biom10050793. [PMID: 32443872 PMCID: PMC7277181 DOI: 10.3390/biom10050793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/28/2022] Open
Abstract
: Metabotropic glutamate subtype 5 (mGlu5) receptors are implicated in various forms of synaptic plasticity, including drugs of abuse. In drug-addicted individuals, associative memories can drive relapse to drug use. The present study investigated the potential of the mGlu5 receptor positive allosteric modulator (PAM), VU-29 (30 mg/kg, i.p.), to inhibit the maintenance of a learned association between ethanol and environmental context by using conditioned place preference (CPP) in rats. The ethanol-CPP was established by the administration of ethanol (1.0 g/kg, i.p. × 10 days) using an unbiased procedure. Following ethanol conditioning, VU-29 was administered at various post-conditioning times (ethanol free state at the home cage) to ascertain if there was a temporal window during which VU-29 would be effective. Our experiments indicated that VU-29 did not affect the expression of ethanol-induced CPP when it was given over two post-conditioning days. However, the expression of ethanol-CPP was inhibited by 10-day home cage administration of VU-29, but not by first 2-day or last 2-day injection of VU-29 during the 10-day period. These findings reveal that VU-29 can inhibit the maintenance of ethanol-induced CPP, and that treatment duration contributes to this effect of VU-29. Furthermore, VU-29 effect was reversed by pretreatment with either MTEP (the mGlu5 receptor antagonist), or MK-801 (the N-methyl-D-aspartate-NMDA receptor antagonist). Thus, the inhibitory effect of VU-29 is dependent on the functional interaction between mGlu5 and NMDA receptors. Because a reduction in ethanol-associated cues can reduce relapse, mGlu5 receptor PAM would be useful for therapy of alcoholism. Future research is required to confirm the current findings.
Collapse
|
5
|
Johnson KA, Lovinger DM. Allosteric modulation of metabotropic glutamate receptors in alcohol use disorder: Insights from preclinical investigations. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 88:193-232. [PMID: 32416868 DOI: 10.1016/bs.apha.2020.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are family C G protein-coupled receptors (GPCRs) that modulate neuronal excitability and synaptic transmission throughout the nervous system. Owing to recent advances in development of subtype-selective allosteric modulators of mGlu receptors, individual members of the mGlu receptor family have been proposed as targets for treating a variety of neurological and psychiatric disorders, including substance use disorders. In this chapter, we highlight preclinical evidence that allosteric modulators of mGlu receptors could be useful for reducing alcohol consumption and preventing relapse in alcohol use disorder (AUD). We begin with an overview of the preclinical models that are used to study mGlu receptor involvement in alcohol-related behaviors. Alcohol exposure causes adaptations in both expression and function of various mGlu receptor subtypes, and pharmacotherapies aimed at reversing these adaptations have the potential to reduce alcohol consumption and seeking. Positive allosteric modulators (PAMs) of mGlu2 and negative allosteric modulators of mGlu5 show particular promise for reducing alcohol intake and/or preventing relapse. Finally, this chapter discusses important considerations for translating preclinical findings toward the development of clinically useful drugs, including the potential for PAMs to avoid tolerance issues that are frequently observed with repeated administration of GPCR agonists.
Collapse
Affiliation(s)
- Kari A Johnson
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
6
|
Sharma N, Zameer S, Akhtar M, Vohora D. Effect of lacosamide on ethanol induced conditioned place preference and withdrawal associated behavior in mice: Possible contribution of hippocampal CRMP-2. Pharmacol Rep 2019; 71:804-810. [PMID: 31377562 DOI: 10.1016/j.pharep.2019.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 12/25/2018] [Accepted: 04/13/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Excessive consumption of ethanol is known to activate the mTORC1 pathway and to enhance the Collapsin Response Mediator Protein-2 (CRMP-2) levels in the limbic region of brain. The latter helps in forming microtubule assembly that is linked to drug taking or addiction-like behavior in rodents. Therefore, in this study, we investigated the effect of lacosamide, an antiepileptic drug and a known CRMP-2 inhibitor, which binds to CRMP-2 and inhibits the formation of microtubule assembly, on ethanol-induced conditioned place preference (CPP) in mice. METHODS The behavior of mice following ethanol addiction and withdrawal was assessed by performing different behavioral paradigms. Mice underwent ethanol-induced CPP training with alternate dose of ethanol (2 g/kg, po) and saline (10 ml/kg, po). The effect of lacosamide on the expression of ethanol-induced CPP and on ethanol withdrawal associated anxiety and depression-like behavior was evaluated. The effect of drug on locomotor activity was also assessed and hippocampal CRMP-2 levels were measured. RESULTS Ethanol-induced CPP was associated with enhanced CRMP-2 levels in the hippocampus. Lacosamide significantly reduced the expression of ethanol-induced CPP and alleviated the levels of hippocampal CRMP-2 but aggravated withdrawal-associated anxiety and depression in mice. CONCLUSION The present study demonstrated the beneficial effect of lacosamide in attenuation of expression of ethanol induced conditioned place preference via reduction of hippocampal CRMP-2 level. These findings suggest that lacosamide may be investigated further for ethanol addiction but not for managing withdrawal.
Collapse
Affiliation(s)
- Nidhi Sharma
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Saima Zameer
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohd Akhtar
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Divya Vohora
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| |
Collapse
|
7
|
Kasten CR, Holmgren EB, Wills TA. Metabotropic Glutamate Receptor Subtype 5 in Alcohol-Induced Negative Affect. Brain Sci 2019; 9:E183. [PMID: 31366097 PMCID: PMC6721373 DOI: 10.3390/brainsci9080183] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 02/07/2023] Open
Abstract
Allosteric modulators of metabotropic glutamate 5 receptors (mGlu5 receptors) have been identified as a promising treatment to independently alleviate both negative affective states and ethanol-seeking and intake. However, these conditions are often comorbid and might precipitate one another. Acute and protracted ethanol withdrawal can lead to negative affective states. In turn, these states are primary drivers of alcohol relapse, particularly among women. The current review synthesizes preclinical studies that have observed the role of mGlu5 receptor modulation in negative affective states following ethanol exposure. The primary behavioral assays discussed are ethanol-seeking and intake, development and extinction of ethanol-associated cues and contexts, behavioral despair, and anxiety-like activity. The work done to-date supports mGlu5 receptor modulation as a promising target for mediating negative affective states to reduce ethanol intake or prevent relapse. Limitations in interpreting these data include the lack of models that use alcohol-dependent animals, limited use of adolescent and female subjects, and a lack of comprehensive evaluations of negative affective-like behavior.
Collapse
Affiliation(s)
- Chelsea R Kasten
- LSU Health Sciences Center-New Orleans, Department of Cell Biology and Anatomy, Medical Education Building, 1901 Perdido Street, Room 6103, New Orleans, LA 70112, USA
| | - Eleanor B Holmgren
- LSU Health Sciences Center-New Orleans, Department of Cell Biology and Anatomy, Medical Education Building, 1901 Perdido Street, Room 6103, New Orleans, LA 70112, USA
| | - Tiffany A Wills
- LSU Health Sciences Center-New Orleans, Department of Cell Biology and Anatomy, Medical Education Building, 1901 Perdido Street, Room 6103, New Orleans, LA 70112, USA.
| |
Collapse
|
8
|
Impact of the metabotropic glutamate receptor7 (mGlu 7) allosteric agonist, AMN082, on fear learning and memory and anxiety-like behavior. Eur J Pharmacol 2019; 858:172512. [PMID: 31260653 DOI: 10.1016/j.ejphar.2019.172512] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/19/2019] [Accepted: 06/27/2019] [Indexed: 12/30/2022]
Abstract
The present study was conducted to evaluate the influence of AMN082, the metabotropic glutamate receptor subtype 7 (mGlu7) allosteric agonist on different stages of memory processes connected with fear conditioning in the passive avoidance (PA) learning task in mice and negative emotional state (anxiety-like) induced by ethanol- and morphine-withdrawal in the elevated plus maze (EPM) test in rats. To perform the PA test, AMN082 (1.25, 2.5 and 5 mg/kg, i. p.) was injected to interfere with (or inhibit) acquisition, consolidation, and retrieval processes. The retention latency in each group was recorded using a step-through passive avoidance task 24 h after training. In turn, in ethanol- and morphine-withdrawal rats, the influence of AMN082 on anxiety-like behavior was estimated in the EPM test 24 h- (ethanol) and 72- h (morphine) after the last dose of repeated drug administrations. In all experimental groups, AMN082 at the dose of 5 mg/kg significantly decreased the step-through latency of long-term memory in the PA task. These AMN082 effects were reversed by MMPIP (10 mg/kg), the antagonist of mGlu7 receptor. AMN082 (2.5 and 5 mg/kg) also decreased ethanol- and morphine withdrawal-induced anxiety-like behavior in the EPM test, and this AMN082 (5 mg/kg) effect was counteracted by MMPIP pretreatment. Taken together, the results show that mGlu7 is involved in fear learning to the context and anxiety-like state connected with unpleasant experiences after ethanol- and morphine withdrawal in rodents. However, it appears that functional dissociation exists between these two AMN082 effects.
Collapse
|
9
|
Mao LM, Wang JQ. Amphetamine-induced Conditioned Place Preference and Changes in mGlu1/5 Receptor Expression and Signaling in the Rat Medial Prefrontal Cortex. Neuroscience 2018; 400:110-119. [PMID: 30599269 DOI: 10.1016/j.neuroscience.2018.12.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/27/2018] [Accepted: 12/21/2018] [Indexed: 12/27/2022]
Abstract
The medial prefrontal cortex (mPFC) is implicated in the rewarding effect of psychostimulants, although molecular mechanisms underlying the rewarding properties of stimulants in this region are poorly understood. Group I metabotropic glutamate (mGlu) receptors (mGlu1/5 subtypes) are believed to be critical in this event. We thus in this study investigated changes in mGlu1/5 receptor expression and function in the rat mPFC in response to conditioned place preference (CPP) induced by amphetamine. Repeated amphetamine administration (2.5 mg/kg, once daily on alternate days for 10 days) induced reliable CPP. In the mPFC, surface expression of mGlu5 receptors was elevated in rats after amphetamine conditioning. mGlu5 receptors were also increased at synaptic and extrasynaptic sites in amphetamine-conditioned rats. Expression of mGlu1 receptors was stable in surface and synaptic compartments, while it was elevated in the extrasynaptic location. In mPFC neurons, the mGlu1/5 agonist-stimulated phosphoinositide signaling pathway was upregulated in its efficacy following amphetamine conditioning. The mGlu1/5 agonist-stimulated Src kinase phosphorylation was also augmented in rats treated with amphetamine. These results demonstrate the sensitivity of mPFC mGlu1/5 receptors to amphetamine-induced CPP. Amphetamine conditioning results in the upregulation of mGlu1/5 receptor expression at subcellular and/or subsynaptic levels and mGlu1/5-mediated postreceptor signaling in mPFC neurons.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - John Q Wang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA; Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
10
|
Role of glutamatergic system and mesocorticolimbic circuits in alcohol dependence. Prog Neurobiol 2018; 171:32-49. [PMID: 30316901 DOI: 10.1016/j.pneurobio.2018.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/08/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023]
Abstract
Emerging evidence demonstrates that alcohol dependence is associated with dysregulation of several neurotransmitters. Alterations in dopamine, glutamate and gamma-aminobutyric acid release are linked to chronic alcohol exposure. The effects of alcohol on the glutamatergic system in the mesocorticolimbic areas have been investigated extensively. Several studies have demonstrated dysregulation in the glutamatergic systems in animal models exposed to alcohol. Alcohol exposure can lead to an increase in extracellular glutamate concentrations in mesocorticolimbic brain regions. In addition, alcohol exposure affects the expression and functions of several glutamate receptors and glutamate transporters in these brain regions. In this review, we discussed the effects of alcohol exposure on glutamate receptors, glutamate transporters and glutamate homeostasis in each area of the mesocorticolimbic system. In addition, we discussed the genetic aspect of alcohol associated with glutamate and reward circuitry. We also discussed the potential therapeutic role of glutamate receptors and glutamate transporters in each brain region for the treatment of alcohol dependence. Finally, we provided some limitations on targeting the glutamatergic system for potential therapeutic options for the treatment alcohol use disorders.
Collapse
|
11
|
Joffe ME, Centanni SW, Jaramillo AA, Winder DG, Conn PJ. Metabotropic Glutamate Receptors in Alcohol Use Disorder: Physiology, Plasticity, and Promising Pharmacotherapies. ACS Chem Neurosci 2018; 9:2188-2204. [PMID: 29792024 PMCID: PMC6192262 DOI: 10.1021/acschemneuro.8b00200] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Developing efficacious treatments for alcohol use disorder (AUD) has proven difficult. The insidious nature of the disease necessitates a deep understanding of its underlying biology as well as innovative approaches to ameliorate ethanol-related pathophysiology. Excessive ethanol seeking and relapse are generated by long-term changes to membrane properties, synaptic physiology, and plasticity throughout the limbic system and associated brain structures. Each of these factors can be modulated by metabotropic glutamate (mGlu) receptors, a diverse set of G protein-coupled receptors highly expressed throughout the central nervous system. Here, we discuss how different components of the mGlu receptor family modulate neurotransmission in the limbic system and other brain regions involved in AUD etiology. We then describe how these processes are dysregulated following ethanol exposure and speculate about how mGlu receptor modulation might restore such pathophysiological changes. To that end, we detail the current understanding of the behavioral pharmacology of mGlu receptor-directed drug-like molecules in animal models of AUD. Together, this review highlights the prominent position of the mGlu receptor system in the pathophysiology of AUD and provides encouragement that several classes of mGlu receptor modulators may be translated as viable treatment options.
Collapse
Affiliation(s)
- Max E. Joffe
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
| | - Samuel W. Centanni
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Anel A. Jaramillo
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Danny G. Winder
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - P. Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
| |
Collapse
|
12
|
Hilderbrand ER, Lasek AW. Studying Sex Differences in Animal Models of Addiction: An Emphasis on Alcohol-Related Behaviors. ACS Chem Neurosci 2018; 9:1907-1916. [PMID: 29227676 DOI: 10.1021/acschemneuro.7b00449] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Animal models are essential for understanding the biological factors that contribute to drug and alcohol addiction and discovering new pharmacotherapies to treat these disorders. Alcohol (ethanol) is the most commonly abused drug in the world, and as the prevalence of alcohol use disorder (AUD) increases, so does the need for effective pharmacotherapies. In particular, treatments with high efficacy in the growing number of female AUD sufferers are needed. Female animals remain underrepresented in biomedical research and sex differences in the brain's response to alcohol are poorly understood. To help bridge the gender gap in addiction research, this Review discusses strategies that researchers can use to examine sex differences in the context of several common animal models of AUD. Self-administration, two-bottle choice, drinking in the dark, and conditioned place preference are discussed, with a focus on the role of estrogen as a mediator of sex differences in alcohol-related behaviors.
Collapse
|
13
|
Touchette JC, Maertens JJ, Mason MM, O'Rourke KY, Lee AM. The nicotinic receptor drug sazetidine-A reduces alcohol consumption in mice without affecting concurrent nicotine consumption. Neuropharmacology 2018; 133:63-74. [PMID: 29355641 PMCID: PMC5858984 DOI: 10.1016/j.neuropharm.2018.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/09/2018] [Accepted: 01/13/2018] [Indexed: 01/01/2023]
Abstract
Alcohol and nicotine addiction are frequently co-morbid. The nicotinic acetylcholine receptors (nAChRs) are critical for both alcohol and nicotine addiction mechanisms, since nAChR drugs that reduce nicotine consumption have been shown to also reduce alcohol consumption. Sazetidine-A, a pre-clinical nAChR drug with agonist and desensitizing effects at α4β2 and α7 nAChRs, has been reported to reduce alcohol consumption and nicotine self-administration in rats when administered at high doses. However, this effect has not been replicated in mice. In this study, we examined the effect of sazetidine-A on alcohol and nicotine consumption in male and female mice utilizing voluntary oral consumption procedures previously developed in our lab. We found that sazetidine-A (1 mg/kg, i.p) reduced overnight alcohol consumption, but did not affect nicotine consumption when presented either alone or concurrently with alcohol. Sazetidine-A did not reduce water or saccharin consumption at any dose tested. In a chronic co-consumption experiment in which either alcohol or nicotine was re-introduced after one week of forced abstinence, sazetidine-A attenuated post-abstinence consumption of alcohol but not nicotine. Sazetidine-A also significantly reduced alcohol consumption in an acute, binge drinking-in-the-dark procedure. Finally, we tested the effect of sazetidine-A on alcohol withdrawal, and found that sazetidine-A significantly reduced handling-induced convulsions during alcohol withdrawal. Collectively, these data suggest a novel role for the nAChR targets of sazetidine-A in specifically mediating alcohol consumption, separate from the involvement of nAChRs in mediating nicotine consumption. Delineation of this pathway may provide insight into novel therapies for the treatment of alcohol use disorders.
Collapse
Affiliation(s)
| | - Jamie J Maertens
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Margaret M Mason
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Kyu Y O'Rourke
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Anna M Lee
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
14
|
Leurquin-Sterk G, Ceccarini J, Crunelle CL, de Laat B, Verbeek J, Deman S, Neels H, Bormans G, Peuskens H, Van Laere K. Lower Limbic Metabotropic Glutamate Receptor 5 Availability in Alcohol Dependence. J Nucl Med 2018; 59:682-690. [PMID: 29348321 DOI: 10.2967/jnumed.117.199422] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/30/2017] [Indexed: 01/18/2023] Open
Abstract
Animal studies suggest an important role for the metabotropic glutamate receptor subtype 5 (mGlu5) in the pathophysiology of alcohol dependence, but direct human evidence is lacking. The goal of this study was to investigate cerebral mGlu5 availability in alcohol-dependent subjects versus controls using 18F-3-fluoro-5-[(pyridin-3-yl)ethynyl]benzonitrile (18F-FPEB) PET. Methods: Dynamic 90-min 18F-FPEB scans combined with arterial blood sampling were acquired for 16 recently abstinent alcohol-dependent subjects and 32 age-matched controls. Regional mGlu5 availability was quantified by the 18F-FPEB total distribution volume using both a voxel-by-voxel and a volume-of-interest analysis with partial-volume effect correction. Alcohol consumption within the last 3 mo was assessed by questionnaires and by hair ethyl glucuronide analysis. Craving was assessed using the Desire for Alcohol Questionnaire. Results: mGlu5 availability was lower in mainly limbic regions of alcohol-dependent subjects than in controls (P < 0.05, familywise error-corrected), ranging from 14% in the posterior cingulate cortex to 36% in the caudate nucleus. Lower mGlu5 availability was associated with higher hair ethyl glucuronide levels for most regions and was related to a lower level of craving specifically in the middle frontal gyrus, cingulate cortex, and inferolateral temporal lobe. Conclusion: These findings provide human in vivo evidence that limbic mGlu5 has a role in the pathophysiology of alcohol dependence, possibly involved in a compensatory mechanism helping to reduce craving during abstinence.
Collapse
Affiliation(s)
- Gil Leurquin-Sterk
- Division of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Jenny Ceccarini
- Division of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Cleo L Crunelle
- Toxicological Center, University of Antwerp, Wilrijk, Belgium.,Department of Psychiatry, University Hospital Brussels, Brussels, Belgium
| | - Bart de Laat
- Division of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,MoSAIC: Molecular Small Animal Imaging Center, KU Leuven, Leuven, Belgium
| | - Jef Verbeek
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Stephanie Deman
- Genomics Core, UZ Leuven, and Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Hugo Neels
- Toxicological Center, University of Antwerp, Wilrijk, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmacy, KU Leuven, Leuven, Belgium; and
| | - Hendrik Peuskens
- University Psychiatric Center, KU Leuven, Kortenberg, and Kliniek Broeders Alexianen, Tienen, Belgium
| | - Koen Van Laere
- Division of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,MoSAIC: Molecular Small Animal Imaging Center, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Goodwani S, Saternos H, Alasmari F, Sari Y. Metabotropic and ionotropic glutamate receptors as potential targets for the treatment of alcohol use disorder. Neurosci Biobehav Rev 2017; 77:14-31. [PMID: 28242339 DOI: 10.1016/j.neubiorev.2017.02.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/13/2017] [Accepted: 02/22/2017] [Indexed: 12/16/2022]
Abstract
Emerging evidence indicates that dysfunctional glutamate neurotransmission is critical in the initiation and development of alcohol and drug dependence. Alcohol consumption induced downregulation of glutamate transporter 1 (GLT-1) as reported in previous studies from our laboratory. Glutamate is the major excitatory neurotransmitter in the brain, which acts via interactions with several glutamate receptors. Alcohol consumption interferes with the glutamatergic signal transmission by altering the functions of these receptors. Among the glutamate receptors involved in alcohol-drinking behavior are the metabotropic receptors such as mGluR1/5, mGluR2/3, and mGluR7, as well as the ionotropic receptors, NMDA and AMPA. Preclinical studies using agonists and antagonists implicate these glutamatergic receptors in the development of alcohol use disorder (AUD). Therefore, the purpose of this review is to discuss the neurocircuitry involving glutamate transmission in animals exposed to alcohol and further outline the role of metabotropic and ionotropic receptors in the regulation of alcohol-drinking behavior. This review provides ample information about the potential therapeutic role of glutamatergic receptors for the treatment of AUD.
Collapse
Affiliation(s)
- Sunil Goodwani
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA; The Neurodegeneration Consortium, Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Hannah Saternos
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Fawaz Alasmari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Youssef Sari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA.
| |
Collapse
|
16
|
Pomierny-Chamiolo L, Miszkiel J, Frankowska M, Bystrowska B, Filip M. Cocaine self-administration, extinction training and drug-induced relapse change metabotropic glutamate mGlu5 receptors expression: Evidence from radioligand binding and immunohistochemistry assays. Brain Res 2016; 1655:66-76. [PMID: 27871824 DOI: 10.1016/j.brainres.2016.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 10/28/2016] [Accepted: 11/11/2016] [Indexed: 12/24/2022]
Abstract
Several behavioral findings highlight the importance of glutamatergic transmission and its metabotropic receptor type 5 (mGlu5) in the controlling of cocaine reward and seeking behaviors. The molecular or neurochemical nature of such interactions is not well recognized, so in the present paper we determine if cocaine self-administration and extinction/reinstatement models with the yoked triad control procedure alter mGlu5 receptor density in rats. [³H]MPEP was used to evaluate mGlu5 receptors density and affinity in selected brain structures, while immunofluorescence analysis was used to detect changes in mGlu5 receptors' brain location. Cocaine self-administration and yoked cocaine delivery evoked a significant elevation in mGlu5 receptors' density in the dorsal striatum, while receptor protein expression was importantly elevated in the substantia nigra and reduced in the nucleus accumbens shell. Cocaine administration followed by 10 extinction training sessions resulted in biphasic mGlu5 receptor density changes in the prefrontal cortex-nucleus accumbens pathway. mGlu5 receptors' up-regulation was noted for cocaine self-administration and extinction training in the hippocampus and in yoked cocaine controls following drug abstinence in the dorsal striatum. A cocaine priming dose (but not a saline priming) resulted in a significant decrease of mGlu5 receptors' density in the nucleus accumbens of rats previously treated with the drug and in the hippocampus of rats previously self-administered cocaine. The latter decrease in mGlu5 receptors' density and protein expression in the hippocampus was parallel to an increase in [³H]MPEP affinity and opposite to a rise observed after single cocaine administration (ip) to drug-naïve yoked saline controls. Additionally, we also observed a significant elevation in the protein expression of the tested receptors in the limbic cortex in both cocaine groups. The present results shown modality dependent and brain-region specific changes in mGlu5 receptors' localization and membrane specific binding.
Collapse
Affiliation(s)
- Lucyna Pomierny-Chamiolo
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland.
| | - Joanna Miszkiel
- Institute of Pharmacology Polish Academy of Sciences, Laboratory of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland
| | - Malgorzata Frankowska
- Institute of Pharmacology Polish Academy of Sciences, Laboratory of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland
| | - Beata Bystrowska
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Malgorzata Filip
- Institute of Pharmacology Polish Academy of Sciences, Laboratory of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland
| |
Collapse
|
17
|
Gawel K, Labuz K, Gibula-Bruzda E, Jenda M, Marszalek-Grabska M, Silberring J, Kotlinska JH. Acquisition and reinstatement of ethanol-induced conditioned place preference in rats: Effects of the cholinesterase inhibitors donepezil and rivastigmine. J Psychopharmacol 2016; 30:676-87. [PMID: 27097732 DOI: 10.1177/0269881116642539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The present study examined the influence of the cholinesterase inhibitors donepezil (a selective inhibitor of acetylcholinesterase) and rivastigmine (also an inhibitor of butyrylcholinesterase) on the acquisition and reinstatement of ethanol-induced conditioned place preference (CPP) in rats. Before the CPP procedure, animals received a single injection of ethanol (0.5 g/kg, 10% w/v, intraperitoneally [i.p.]) for 15 days. The ethanol-induced CPP (biased method) was developed by four injections of ethanol (0.5 g/kg, 10% w/v, i.p.) every second day. Control rats received saline instead of ethanol. Donepezil (0.5, 1 or 3 mg/kg, i.p.) or rivastigmine (0.03, 0.5 or 1 mg/kg, i.p.) were administered before ethanol during conditioning or before the reinstatement of ethanol-induced CPP. The cholinesterase inhibitors were equally effective in increasing (dose dependently) the acquisition of ethanol-induced CPP. Furthermore, priming injections of both inhibitors reinstated (cross-reinstatement) the ethanol-induced CPP with similar efficacy. These effects of both cholinesterase inhibitors were reversed by mecamylamine (3 mg/kg, i.p.), a nicotinic acetylcholine receptor antagonist, but not by scopolamine (0.5 mg/kg, i.p.), a muscarinic acetylcholine receptor antagonist. Thus, our results show that the cholinergic system is involved in the reinforcing properties of ethanol, and nicotinic acetylcholine receptors play an important role in the relapse to ethanol-seeking behaviour.
Collapse
Affiliation(s)
- Kinga Gawel
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | | | - Ewa Gibula-Bruzda
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - Malgorzata Jenda
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | | | - Jerzy Silberring
- Department of Biochemistry and Neurobiology, AGH University of Science and Technology, Krakow, Poland
| | - Jolanta H Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| |
Collapse
|
18
|
D'Souza MS. Glutamatergic transmission in drug reward: implications for drug addiction. Front Neurosci 2015; 9:404. [PMID: 26594139 PMCID: PMC4633516 DOI: 10.3389/fnins.2015.00404] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/12/2015] [Indexed: 12/12/2022] Open
Abstract
Individuals addicted to drugs of abuse such as alcohol, nicotine, cocaine, and heroin are a significant burden on healthcare systems all over the world. The positive reinforcing (rewarding) effects of the above mentioned drugs play a major role in the initiation and maintenance of the drug-taking habit. Thus, understanding the neurochemical mechanisms underlying the reinforcing effects of drugs of abuse is critical to reducing the burden of drug addiction in society. Over the last two decades, there has been an increasing focus on the role of the excitatory neurotransmitter glutamate in drug addiction. In this review, pharmacological and genetic evidence supporting the role of glutamate in mediating the rewarding effects of the above described drugs of abuse will be discussed. Further, the review will discuss the role of glutamate transmission in two complex heterogeneous brain regions, namely the nucleus accumbens (NAcc) and the ventral tegmental area (VTA), which mediate the rewarding effects of drugs of abuse. In addition, several medications approved by the Food and Drug Administration that act by blocking glutamate transmission will be discussed in the context of drug reward. Finally, this review will discuss future studies needed to address currently unanswered gaps in knowledge, which will further elucidate the role of glutamate in the rewarding effects of drugs of abuse.
Collapse
Affiliation(s)
- Manoranjan S D'Souza
- Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University Ada, OH, USA
| |
Collapse
|
19
|
Tomasini MC, Borelli AC, Beggiato S, Tanganelli S, Loche A, Cacciaglia R, Ferraro L, Antonelli T. GET73 Prevents Ethanol-Induced Neurotoxicity in Primary Cultures of Rat Hippocampal Neurons. Alcohol Alcohol 2015; 51:128-35. [PMID: 26271115 DOI: 10.1093/alcalc/agv094] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/23/2015] [Indexed: 12/29/2022] Open
Abstract
AIMS N-[(4-trifluoromethyl) benzyl] 4-methoxybutyramide (GET73) may be considered a promising therapeutic agent for the treatment of alcohol use disorders. The compound displayed anti-alcohol and anxiolytic properties in rat. In the present study, an in vitro experimental model of chronic ethanol treatment was used to investigate the ability of the compound to counteract the ethanol-induced neurotoxicity. METHODS Primary cultures of rat hippocampal neurons were exposed to ethanol (75 mM; 4 days) and the neuroprotective effects of GET73 were assessed by evaluating cell viability, cell morphology, glutamate levels and reactive oxygen species production. RESULTS The exposure to ethanol induced a reduction of cell viability, an alteration of cytoskeleton, a decrease in extracellular glutamate levels and an increase of reactive oxygen species production. The addiction of GET73 (1 and 10 µM) 1 h before and during chronic ethanol exposure prevented all the above ethanol-induced effects. Based on the proposed GET73 mechanism of action, the effects of mGlu5 receptor negative allosteric modulator, 2-methyl-6-(phenylethynyl)-pyridine (MPEP), on ethanol-induced reduction of cell viability were also assessed. The results indicated that the addiction of MPEP (100 µM) 1 h before and during chronic ethanol exposure prevented the ethanol-induced cell viability reduction. CONCLUSION The present findings provide the first evidence that GET73 shows a neuroprotective role against ethanol-induced neurotoxicity in primary cultures of rat hippocampal neurons. Together with previous findings, these results suggest that GET73 possesses multifaceted properties thus lending further support to the significance of developing GET73 as a therapeutic tool for use in the treatment of alcohol use disorders.
Collapse
Affiliation(s)
- Maria C Tomasini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy IRET Foundation, Ozzano Emilia, Bologna, Italy
| | - Andrea C Borelli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Sarah Beggiato
- IRET Foundation, Ozzano Emilia, Bologna, Italy Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Sergio Tanganelli
- IRET Foundation, Ozzano Emilia, Bologna, Italy Department of Medical Sciences, University of Ferrara, Ferrara, Italy LTTA Centre, University of Ferrara, Ferrara, Italy
| | | | | | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy IRET Foundation, Ozzano Emilia, Bologna, Italy LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Tiziana Antonelli
- IRET Foundation, Ozzano Emilia, Bologna, Italy Department of Medical Sciences, University of Ferrara, Ferrara, Italy LTTA Centre, University of Ferrara, Ferrara, Italy
| |
Collapse
|
20
|
Gibula-Bruzda E, Marszalek-Grabska M, Gawel K, Witkowska E, Izdebski J, Kotlinska JH. The influence of the new enkephalin derivative, cyclo[N(ε),N(β)-carbonyl-d-Lys(2),Dap(5)] enkephalinamide (cUENK6), on reinstatement of ethanol-induced conditioned place preference in rats. Physiol Behav 2015; 145:50-6. [PMID: 25817357 DOI: 10.1016/j.physbeh.2015.03.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/18/2015] [Accepted: 03/24/2015] [Indexed: 11/28/2022]
Abstract
The aim of the present study was to determine whether a new cyclic analog of enkephalin, cyclo[N(ε),N(β)-carbonyl-d-Lys(2),Dap(5)] enkephalinamide (cUENK6), a preferential μ-(MORs), and, to a lower extent, a δ-opioid receptor (DORs) agonist in vitro, could reinstate ethanol-induced conditioned place preference (CPP). In our work, male Wistar rats were first conditioned either with ethanol (10% w/v, 0.5g/kg, intraperitoneally (i.p.)) or 0.9% NaCl in a biased CPP procedure. The intracerebroventricular (i.c.v.) administration of DORs antagonist (naltrindole, 2.5 and 5nmol) or MORs antagonist (β-funaltrexamine, 5 and 10nmol), but not the κ opioid receptor (KORs) antagonist (norbinaltorphimine, 5 and 10nmol) was then administered and inhibited the expression of ethanol-induced CPP. After the extinction session, i.c.v. administration of cUENK6 at the dose of 0.125, 0.25 and 0.5nmol occurred, and was found to reinstate the ethanol-induced CPP similar to that of the priming injection of ethanol. However, the reinstated effect of cUENK6 (0.25nmol) was strongly abolished by administration of naltrindole and, to lesser extent, by β-funaltrexamine. Furthermore, the preferential MORs agonist-morphine (13nmol, i.c.v.) and the DORs agonist-[Leu(5)]-enkephalin (2.7 and 5.4nmol, i.c.v.) also reinstated the ethanol-induced CPP. cUENK6 given alone at the dose of 0.25nmol before the testing phase had no effect in animals that received 0.9% NaCl during the conditioning phase and also did not influence their locomotor activity. These data suggest that the effects of cUENK6 did not have an impact on the results obtained in the reinstatement procedure of CPP. Overall, the data support the idea that both MORs and DORs are normally involved in the expression and reinstatement of ethanol conditioned seeking behavior - as indexed by CPP in rats.
Collapse
Affiliation(s)
- Ewa Gibula-Bruzda
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland.
| | | | - Kinga Gawel
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - Ewa Witkowska
- Laboratory of Peptides, Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Jan Izdebski
- Laboratory of Peptides, Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Jolanta H Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| |
Collapse
|
21
|
Collier AD, Khan KM, Caramillo EM, Mohn RS, Echevarria DJ. Zebrafish and conditioned place preference: a translational model of drug reward. Prog Neuropsychopharmacol Biol Psychiatry 2014; 55:16-25. [PMID: 24887295 DOI: 10.1016/j.pnpbp.2014.05.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 05/02/2014] [Accepted: 05/03/2014] [Indexed: 02/03/2023]
Abstract
Addiction and substance abuse are found ubiquitously throughout human society. In the United States, these disorders are responsible for amassing hundreds of billions of dollars in annual costs associated with healthcare, crime and lost productivity. Efficacious treatments remain few in number, the development of which will be facilitated by comprehension of environmental, genetic, pharmacological and neurobiological mechanisms implicated in the pathogenesis of addiction. Animal models such as the zebrafish (Danio rerio) have gained momentum within various domains of translational research, and as a model of complex brain disorders (e.g., drug abuse). Behavioral quantification within the conditioned place preference (CPP) paradigm serves as a measure of the rewarding qualities of a given substance. If the animal develops an increase in preference for the drug paired environment, it is inferred that the drug has positive-reinforcing properties. This paper discusses the utility of the zebrafish model in conjunction with the CPP paradigm and reports CPP behavior following acute exposure to 0.0%, 0.25%, 0.50%, and 1.00% alcohol, and 0 mg/L, 50 mg/L, 100 mg/L and 150 mg/L caffeine.
Collapse
Affiliation(s)
- Adam D Collier
- Department of Psychology, The University of Southern Mississippi, 118 College Drive, Box 5025, Hattiesburg, MS 39406, USA.
| | - Kanza M Khan
- Department of Psychology, The University of Southern Mississippi, 118 College Drive, Box 5025, Hattiesburg, MS 39406, USA.
| | - Erika M Caramillo
- Department of Psychology, The University of Southern Mississippi, 118 College Drive, Box 5025, Hattiesburg, MS 39406, USA.
| | - Richard S Mohn
- Department of Educational Studies and Research, The University of Southern Mississippi, 118 College Drive, Box 5093, Hattiesburg, MS 39406, USA.
| | - David J Echevarria
- Department of Psychology, The University of Southern Mississippi, 118 College Drive, Box 5025, Hattiesburg, MS 39406, USA.
| |
Collapse
|
22
|
Cho HP, Engers DW, Venable DF, Niswender CM, Lindsley CW, Conn PJ, Emmitte KA, Rodriguez AL. A novel class of succinimide-derived negative allosteric modulators of metabotropic glutamate receptor subtype 1 provides insight into a disconnect in activity between the rat and human receptors. ACS Chem Neurosci 2014; 5:597-610. [PMID: 24798819 DOI: 10.1021/cn5000343] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Recent progress in the discovery of mGlu₁ allosteric modulators has suggested the modulation of mGlu₁ could offer possible treatment for a number of central nervous system disorders; however, the available chemotypes are inadequate to fully investigate the therapeutic potential of mGlu₁ modulation. To address this issue, we used a fluorescence-based high-throughput screening assay to screen an allosteric modulator-biased library of compounds to generate structurally diverse mGlu₁ negative allosteric modulator hits for chemical optimization. Herein, we describe the discovery and characterization of a novel mGlu₁ chemotype. This series of succinimide negative allosteric modulators, exemplified by VU0410425, exhibited potent inhibitory activity at rat mGlu₁ but was, surprisingly, inactive at human mGlu₁. VU0410425 and a set of chemically diverse mGlu₁ negative allosteric modulators previously reported in the literature were utilized to examine this species disconnect between rat and human mGlu₁ activity. Mutation of the key transmembrane domain residue 757 and functional screening of VU0410425 and the literature compounds suggests that amino acid 757 plays a role in the activity of these compounds, but the contribution of the residue is scaffold specific, ranging from critical to minor. The operational model of allosterism was used to estimate the binding affinities of each compound to compare to functional data. This novel series of mGlu₁ negative allosteric modulators provides valuable insight into the pharmacology underlying the disconnect between rat and human mGlu₁ activity, an issue that must be understood to progress the therapeutic potential of allosteric modulators of mGlu₁.
Collapse
Affiliation(s)
| | | | | | | | - Craig W. Lindsley
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | | | - Kyle A. Emmitte
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | | |
Collapse
|
23
|
Pomierny-Chamioło L, Rup K, Pomierny B, Niedzielska E, Kalivas PW, Filip M. Metabotropic glutamatergic receptors and their ligands in drug addiction. Pharmacol Ther 2014; 142:281-305. [DOI: 10.1016/j.pharmthera.2013.12.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/02/2013] [Indexed: 02/07/2023]
|
24
|
Smith KL, John CS, Sypek EI, Ongür D, Cohen BM, Barry SM, Bechtholt AJ. Exploring the role of central astrocytic glutamate uptake in ethanol reward in mice. Alcohol Clin Exp Res 2014; 38:1307-14. [PMID: 24655029 DOI: 10.1111/acer.12361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/18/2013] [Indexed: 01/16/2023]
Abstract
BACKGROUND Alcoholism is associated with specific brain abnormalities revealed through postmortem studies, including a reduction in glial cell number and dysregulated glutamatergic neurotransmission. Whether these abnormalities contribute to the etiology of alcoholism, are consequences of alcohol use, or both is still unknown. METHODS We investigated the role of astrocytic glutamate uptake in ethanol (EtOH) binge drinking in mice, using the "drinking in the dark" (DID) paradigm by blocking the astrocytic glutamate transporter (GLT-1) with intracerebroventricular (ICV) administration of dihydrokainic acid (DHK). To determine whether astrocytic glutamate uptake regulates the conditioned rewarding effects of EtOH, we examined the effects of ICV DHK on the acquisition and expression of EtOH-induced conditioned place preference. RESULTS Blocking central astrocytic glutamate uptake selectively attenuated EtOH binge drinking behavior in mice. DHK did not alter the acquisition or expression of preference for EtOH-associated cues, indicating that reduced astrocytic glutamate trafficking may decrease binge-like drinking without altering the conditioned rewarding effects of EtOH. CONCLUSIONS Several alternative conclusions are plausible, however, interpreting these data in the context of the human literature, these findings suggest that the reduction of glia in the alcoholic brain may not be a predisposing factor to developing alcoholism and could be a consequence of EtOH toxicity that decreases excessive EtOH intake.
Collapse
Affiliation(s)
- Karen L Smith
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts; Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| | | | | | | | | | | | | |
Collapse
|
25
|
The utility of the zebrafish model in conditioned place preference to assess the rewarding effects of drugs. Behav Pharmacol 2013; 24:375-83. [PMID: 23811781 DOI: 10.1097/fbp.0b013e328363d14a] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Substance abuse is a significant public health concern both domestically and worldwide. The persistent use of substances regardless of aversive consequences forces the user to give higher priority to the drug than to normal activities and obligations. The harmful and hazardous use of psychoactive substances can lead to a dependence syndrome. In this regard, the genetic and neurobiological underpinnings of reward-seeking behavior need to be fully understood in order to develop effective pharmacotherapies and other methods of treatment. Animal models are often implemented in preclinical screening for testing the efficacy of novel treatments. Several paradigms exist that model various facets of addiction including sensitization, tolerance, withdrawal, drug seeking, extinction, and relapse. Self-administration and, most notably, conditioned place preference (CPP) are relatively simple tests that serve as indicators of the aforementioned aspects of addiction by means of behavioral quantification. CPP is a commonly used technique to evaluate the motivational effects of compounds and experiences that have been associated with a positive or negative reward, which capitalizes on the basic principles of Pavlovian conditioning. During training, the unconditioned stimulus is consistently paired with a neutral set of environmental stimuli, which obtain, during conditioning, secondary motivational properties that elicit approach behavior in the absence of the unconditioned stimulus. For over 50 years, rodents have been the primary test subjects. However, the zebrafish (Danio rerio) is gaining favor as a valuable model organism in the fields of biology, genetics, and behavioral neuroscience. This paper presents a discussion on the merits, advantages, and limitations of the zebrafish model and its utility in relation to CPP.
Collapse
|
26
|
Abstract
RATIONALE An increasingly compelling literature points to a major role for the glutamate system in mediating the effects of alcohol on behavior and the pathophysiology of alcoholism. Preclinical studies indicate that glutamate signaling mediates certain aspects of ethanol's intoxicating and rewarding effects, and undergoes adaptations following chronic alcohol exposure that may contribute to the withdrawal, craving and compulsive drug-seeking that drive alcohol abuse and alcoholism. OBJECTIVES We discuss the potential for targeting the glutamate system as a novel pharmacotherapeutic approach to treating alcohol use disorders, focusing on five major components of the glutamate system: the N-methyl-D-aspartate (NMDA) receptor and specific NMDA subunits, the glycineB site on the NMDA receptors (NMDAR), L-alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid ionotropic (AMPA) and kainate (KAR) receptors, metabotropic receptors (mGluR), and glutamate transporters. RESULTS Chronic alcohol abuse produces a hyperglutamatergic state, characterized by elevated extracellular glutamate and altered glutamate receptors and transporters. Pharmacologically manipulating glutamatergic neurotransmission alters alcohol-related behaviors including intoxication, withdrawal, and alcohol-seeking, in rodents and human subjects. Blocking NMDA and AMPA receptors reduces alcohol consumption in rodents, but side-effects may limit this as a therapeutic approach. Selectively targeting NMDA and AMPA receptor subunits (e.g., GluN2B, GluA3), or the NMDAR glycineB site offers an alternative approach. Blocking mGluR5 potently affects various alcohol-related behaviors in rodents, and mGluR2/3 agonism also suppresses alcohol consumption. Finally, glutamate transporter upregulation may mitigate behavioral and neurotoxic sequelae of excess glutamate caused by alcohol. CONCLUSIONS Despite the many challenges that remain, targeting the glutamate system offers genuine promise for developing new treatments for alcoholism.
Collapse
|
27
|
Manka JT, Rodriguez AL, Morrison RD, Venable DF, Cho HP, Blobaum AL, Daniels JS, Niswender CM, Conn PJ, Lindsley CW, Emmitte KA. Octahydropyrrolo[3,4-c]pyrrole negative allosteric modulators of mGlu1. Bioorg Med Chem Lett 2013; 23:5091-6. [PMID: 23932792 DOI: 10.1016/j.bmcl.2013.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/03/2013] [Accepted: 07/16/2013] [Indexed: 11/29/2022]
Abstract
Development of SAR in an octahydropyrrolo[3,4-c]pyrrole series of negative allosteric modulators of mGlu1 using a functional cell-based assay is described in this Letter. The octahydropyrrolo[3,4-c]pyrrole scaffold was chosen as an isosteric replacement for the piperazine ring found in the initial hit compound. Characterization of selected compounds in protein binding assays was used to identify the most promising analogs, which were then profiled in P450 inhibition assays in order to further assess the potential for drug-likeness within this series of compounds.
Collapse
Affiliation(s)
- Jason T Manka
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lovell KM, Felts AS, Rodriguez AL, Venable DF, Cho HP, Morrison RD, Byers FW, Daniels JS, Niswender CM, Conn PJ, Lindsley CW, Emmitte KA. N-Acyl-N'-arylpiperazines as negative allosteric modulators of mGlu1: identification of VU0469650, a potent and selective tool compound with CNS exposure in rats. Bioorg Med Chem Lett 2013; 23:3713-8. [PMID: 23727046 DOI: 10.1016/j.bmcl.2013.05.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/29/2013] [Accepted: 05/07/2013] [Indexed: 12/12/2022]
Abstract
Development of SAR in an N-acyl-N'-arylpiperazine series of negative allosteric modulators of mGlu1 using a functional cell-based assay is described in this Letter. Characterization of selected compounds in protein binding assays was used to aid in selecting VU0469650 for further profiling in ancillary pharmacology assays and pharmacokinetic studies. VU0469650 demonstrated an excellent selectivity profile and good exposure in both plasma and brain samples following intraperitoneal dosing in rats.
Collapse
Affiliation(s)
- Kimberly M Lovell
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Acevedo MB, Nizhnikov ME, Spear NE, Molina JC, Pautassi RM. Ethanol-induced locomotor activity in adolescent rats and the relationship with ethanol-induced conditioned place preference and conditioned taste aversion. Dev Psychobiol 2012; 55:429-42. [PMID: 22592597 DOI: 10.1002/dev.21048] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/23/2012] [Indexed: 12/18/2022]
Abstract
Adolescent rats exhibit ethanol-induced locomotor activity (LMA), which is considered an index of ethanol's motivational properties likely to predict ethanol self-administration, but few studies have reported or correlated ethanol-induced LMA with conditioned place preference (CPP) by ethanol at this age. The present study assessed age-related differences in ethanol's motor stimulating effects and analyzed the association between ethanol-induced LMA and conventional measures of ethanol-induced reinforcement. Experiment 1 compared ethanol-induced LMA in adolescent and adult rats. Subsequent experiments analyzed ethanol-induced CPP and conditioned taste aversion (CTA) in adolescent rats evaluated for ethanol-induced LMA. Adolescent rats exhibit a robust LMA after high-dose ethanol. Ethanol-induced LMA was fairly similar across adolescents and adults. As expected, adolescents were sensitive to ethanol's aversive reinforcement, but they also exhibited CPP. These measures of ethanol reinforcement, however, were not related to ethanol-induced LMA. Spontaneous LMA in an open field was, however, negatively associated with ethanol-induced CTA.
Collapse
Affiliation(s)
- María Belén Acevedo
- Instituto de Investigación Médica M. y M. Ferreyra INIMEC-CONICET, Friuli 2434, Córdoba, C.P. 5000, Argentina
| | | | | | | | | |
Collapse
|