1
|
Ahn JH, Song EJ, Jung DH, Kim YJ, Seo IS, Park SC, Jung YS, Cho ES, Mo SH, Hong JJ, Cho JY, Park JH. The sesquiterpene lactone estafiatin exerts anti-inflammatory effects on macrophages and protects mice from sepsis induced by LPS and cecal ligation puncture. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153934. [PMID: 35172258 DOI: 10.1016/j.phymed.2022.153934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Previously, we found that the water extract of Artermisia scoparia Waldst. & Kit suppressed the cytokine production of lipopolysaccharide (LPS)-stimulated macrophages and alleviated carrageenan-induced acute inflammation in mice. Artemisia contains various sesquiterpene lactones and most of them exert immunomodulatory activity. PURPOSE In the present study, we investigated the immunomodulatory effect of estafiatin (EST), a sesquiterpene lactone derived from A. scoparia, on LPS-induced inflammation in macrophages and mouse sepsis model. STUDY DESIGN AND METHODS Murine bone marrow-derived macrophages (BMDMs) and THP-1 cells, a human monocytic leukemia cell line, were pretreated with different doses of EST for 2 h, followed by LPS treatment. The gene and protein expression of pro-inflammatory cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-α, and inducible nitric oxide synthase (iNOS) were measured by quantitative real-time polymerase chain reaction (qPCR) and Western blot analysis. The activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) was also evaluated at the level of phosphorylation. The effect of EST on inflammatory cytokine production, lung histopathology, and survival rate was assessed in an LPS-induced mice model of septic shock. The effect of EST on the production of cytokines in LPS-stimulated peritoneal macrophages was evaluated by in vitro and ex vivo experiments and protective effect of EST on cecal ligation and puncture (CLP) mice was also assessed. RESULTS The LPS-induced expression of IL-6, TNF-α, and iNOS was suppressed at the mRNA and protein levels in BMDMs and THP-1 cells, respectively, by pretreatment with EST. The half-maximal inhibitory concentration (IC50) of EST on IL-6 and TNF-α production were determined as 3.2 μM and 3.1 μM in BMDMs, 3 μM and 3.4 μM in THP1 cells, respectively. In addition, pretreatment with EST significantly reduced the LPS-induced phosphorylation p65, p38, JNK, and ERK in both cell types. In the LPS-induced mice model of septic shock, serum levels of IL-6, TNF-α, IL-1β, CXCL1, and CXCL2 were lower in EST-treated mice than in the control animals. Histopathology analysis revealed that EST treatment ameliorated LPS-induced lung damage. Moreover, while 1 of 7 control mice given lethal dose of LPS survived, 3 of 7 EST-treated (1.25 mg/kg) mice and 5 of 7 EST-treated (2.5 mg/kg) mice were survived. Pretreatment of EST dose-dependently suppressed the LPS-induced production of IL-6, TNF-α and CXCL1 in peritoneal macrophages. In CLP-induced mice sepsis model, while all 6 control mice was dead at 48 h, 1 of 6 EST-treated (1.25 mg/kg) mice and 3 of 6 EST-treated (2.5 mg/kg) mice survived for 96 h. CONCLUSION These results demonstrated that EST exerts anti-inflammatory effects on LPS-stimulated macrophages and protects mice from sepsis. Our study suggests that EST could be developed as a new therapeutic agent for sepsis and various inflammatory diseases.
Collapse
Affiliation(s)
- Jae-Hun Ahn
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Eun-Jung Song
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Do-Hyeon Jung
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Yeong-Jun Kim
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - In-Su Seo
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Seong-Chan Park
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - You-Seok Jung
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Eun-Seo Cho
- Department of Food Science & Technology, Chonnam National University, Gwangju, Republic of Korea.
| | - Sang Hyun Mo
- Department of Food Science & Technology, Chonnam National University, Gwangju, Republic of Korea.
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk 28116, Republic of Korea.
| | - Jeong-Yong Cho
- Department of Food Science & Technology, Chonnam National University, Gwangju, Republic of Korea.
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
2
|
Fateh ST, Fateh ST, Shekari F, Mahdavi M, Aref AR, Salehi-Najafabadi A. The Effects of Sesquiterpene Lactones on the Differentiation of Human or Animal Cells Cultured In-Vitro: A Critical Systematic Review. Front Pharmacol 2022; 13:862446. [PMID: 35444549 PMCID: PMC9014292 DOI: 10.3389/fphar.2022.862446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/08/2022] [Indexed: 12/03/2022] Open
Abstract
Cellular differentiation is pivotal in health and disease. Interfering with the process of differentiation, such as inhibiting the differentiation of adipocytes and inducing the differentiation of cancer cells, is considered a therapeutic approach. Sesquiterpene lactones, primarily found in plants, have been attracted attention as differentiating/dedifferentiating agents tested on various human or animal cells. However, a consensus on sesquiterpene lactones’ effects and their mechanism of action is required. In this sense, through a systematic review, we have investigated the differentiating/dedifferentiating effects of sesquiterpene lactones on human or animal cells. 13 different cell lines originated from humans, mice, and rats, in addition to the effects of a total of 21 sesquiterpene lactones, were evaluated in the included studies. These components had either inducing, inhibiting, or no effect on the cells, mediating their effects through JAK-STAT, PI3K-Akt, mitogen-activated protein kinases, NFκB, PPARγ pathways. Although nearly all inducing and inhibiting effects were attributed to cancerous and normal cells, respectively, this is likely a result of a biased study design. Few studies reported negative results along with others, and no study was found reporting only negative results. As a result, not only are the effects and mechanism of action of sesquiterpene lactones not vivid but our knowledge and decisions are also misconducted. Moreover, there is a significant knowledge gap regarding the type of evaluated cells, other sesquiterpene lactones, and the involved signaling pathways. In conclusion, sesquiterpene lactones possess significant effects on differentiation status, leading to potentially efficient therapy of obesity, osteoporosis, and cancer. However, reporting negative results and further investigations on other cells, sesquiterpene lactones, and signaling pathways are highly suggested to pave the path of sesquiterpene lactones to the clinic more consciously.
Collapse
Affiliation(s)
- Sepand Tehrani Fateh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Majid Mahdavi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States.,Translational Sciences, Xsphera Biosciences Inc., Boston, MA, United States
| | - Amir Salehi-Najafabadi
- Department of Microbiology, School of Biology, University College of Science, University of Tehran, Tehran, Iran.,Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Leung I, Veisaga ML, Espinal M, Zhang W, Barnum R, Barbieri MA. Anti-lipid droplets accumulation effect of Annona montana (mountain soursop) leaves extract on differentiation of preadipocytes. BIOCELL 2022; 46:567-578. [PMID: 34970018 PMCID: PMC8713457 DOI: 10.32604/biocell.2022.014009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Annona genus is a member of Annonaceae, one of the largest families of plants across tropical and subtropical regions. This family has been used in several ethnomedicinal practices to treat a multitude of human diseases. However, the molecular mechanism underlying its effect on the lipid droplet formation and on the expression of adipogenic markers of this plant remain to be investigated. In this study, we examined whether the extracts from the aerial part of Annona montana affect in vitro differentiation of preadipocytes. For our investigations, both mouse embryo fibroblast 3T3-L1 and normal human primary subcutaneous preadipocytes were incubated with Annona montana extracts (-and its subfractions-) and then analyzed on preadipocyte differentiation, lipid content, lipid droplet size and number, the expression of adipogenic-specific transcriptional factors, as well as cell survival. From our examinations, we found the Annona montana ethyl acetate extract to exhibit a potent inhibitory effect on adipogenesis, without affecting cell survival, in a dose-dependent manner. Such inhibitory effects included a significant decrease in the accumulation of lipid content by both a dramatic reduction of size and number of lipid droplets. This extract strongly attenuated the expression of PPARγ and HMGB2. It also inhibited the expression of CEBPα, FAS, and Akt without influencing Erk1/2 activities. Our findings suggest that specifically, the Annona montana ethyl acetate extract has a prominent inhibitory effect in cellular pathways of adipocyte differentiation by modulating specific gene expression, which is known to perform a pivotal role during adipogenesis.
Collapse
Affiliation(s)
- Ivy Leung
- Department of Biological Sciences, Florida International University, Miami, 33199, USA
| | - Maria-Luisa Veisaga
- Biomolecular Sciences Institute, Florida International University, Miami, 33199, USA
| | - Margarita Espinal
- Department of Biological Sciences, Florida International University, Miami, 33199, USA
| | - Wei Zhang
- Department of Biological Sciences, Florida International University, Miami, 33199, USA
| | - Robert Barnum
- Department of Biological Sciences, Florida International University, Miami, 33199, USA
| | - Manuel Alejandro Barbieri
- Department of Biological Sciences, Florida International University, Miami, 33199, USA.,Biomolecular Sciences Institute, Florida International University, Miami, 33199, USA.,Fairchild Tropical Botanic Garden, Coral Gables, 33156, USA.,International Center of Tropical Botany, Florida International University, Miami, 33199, USA
| |
Collapse
|
4
|
Yun UJ, Nho CW, Park KW, Yang DK. Hexane Extract of Chloranthus japonicus Increases Adipocyte Differentiation by Acting on Wnt/β-Catenin Signaling Pathway. Life (Basel) 2021; 11:life11030241. [PMID: 33804020 PMCID: PMC7999792 DOI: 10.3390/life11030241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 12/15/2022] Open
Abstract
Chloranthus japonicus has been heavily investigated for the treatment of various diseases. This paper attempts to show that Chloranthus japonicus can modulate adipocyte differentiation of preadipocytes. To establish this, we investigated the effects of Chloranthus japonicus extract in peroxisome proliferator-activated receptor γ (PPARγ) expression, adipogenesis, and the underlying molecular mechanisms in C3H10T1/2 and 3T3-L1 cells. Our data showed that Chloranthus japonicus methanol extract increased lipid accumulation and promoted adipocyte differentiation. Further studies on the fractionation with various solvents led to the identification of Chloranthus japonicus hexane extract (CJHE) as the most potent inducer of adipocyte differentiation. CJHE consistently increased lipid accumulation and adipocyte marker expression including Pparγ and it acted during the early stages of adipocyte differentiation. Mechanistic studies revealed that CJHE and a Wnt inhibitor similarly stimulated adipogenesis and were active in Wnt-selective reporter assays. The effects of CJHE were inhibited by Wnt3a protein treatment and were significantly blunted in β-catenin-silenced cells, further suggesting that CJHE acted on Wnt pathways to promote adipogenesis. We also showed that Chloranthus japonicus extracts generated from different plant parts similarly promoted adipocyte differentiation. These results identified Chloranthus japonicus as a pro-adipogenic natural product and suggest its potential use in metabolic syndrome.
Collapse
Affiliation(s)
- Ui Jeong Yun
- Department of Food Science and Biotechnology, Food Clinical Research Center, Sungkyunkwan University, Suwon 16419, Korea;
| | - Chu Won Nho
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung, Gangwon-do 25451, Korea;
| | - Kye Won Park
- Department of Food Science and Biotechnology, Food Clinical Research Center, Sungkyunkwan University, Suwon 16419, Korea;
- Correspondence: (K.W.P.); (D.K.Y.)
| | - Dong Kwon Yang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeollabuk-do 54596, Korea
- Correspondence: (K.W.P.); (D.K.Y.)
| |
Collapse
|
5
|
Wang X, Liu M, Cai GH, Chen Y, Shi XC, Zhang CC, Xia B, Xie BC, Liu H, Zhang RX, Lu JF, Zhu MQ, Yang SZ, Chu XY, Zhang DY, Wang YL, Wu JW. A Potential Nutraceutical Candidate Lactucin Inhibits Adipogenesis through Downregulation of JAK2/STAT3 Signaling Pathway-Mediated Mitotic Clonal Expansion. Cells 2020; 9:cells9020331. [PMID: 32023857 PMCID: PMC7072480 DOI: 10.3390/cells9020331] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/15/2020] [Accepted: 01/19/2020] [Indexed: 12/12/2022] Open
Abstract
The prevalence of obesity has increased dramatically worldwide in the past ~50 years. Searching for safe and effective anti-obesity strategies are urgently needed. Lactucin, a plant-derived natural small molecule, is known for anti-malaria and anti-hyperalgesia. The study is to investigate whether lactucin plays a key role in adipogenesis. To this end, in vivo male C57BL/6 mice fed a high-fat diet (HFD) were treated with 20 mg/kg/day of lactucin or vehicle by gavage for seven weeks. Compared with vehicle-treated controls, Lactucin-treated mice showed lower body mass and mass of adipose tissue. Consistently, in vitro 3T3-L1 cells were treated with 20 μM of lactucin. Compared to controls, lactucin-treated cells showed significantly less lipid accumulation during adipocyte differentiation and lower levels of lipid synthesis markers. Mechanistically, we showed the anti-adipogenic property of lactucin was largely limited to the early stage of adipogenesis. Lactucin-treated cells fail to undergo mitotic clonal expansion (MCE). Further studies demonstrate that lactucin-induced MCE arrests might result from reduced phosphorylation of JAK2 and STAT3. We then asked whether activation of JAK2/STAT3 would restore the inhibitory effect of lactucin on adipogenesis with pharmacological STAT3 activator colivelin. Our results revealed similar levels of lipid accumulation between lactucin-treated cells and controls in the presence of colivelin, indicating that inactivation of STAT3 is the limiting factor for the anti-adipogenesis of lactucin in these cells. Together, our results provide the indication that lactucin exerts an anti-adipogenesis effect, which may open new therapeutic options for obesity.
Collapse
|
6
|
Chayaratanasin P, Caobi A, Suparpprom C, Saenset S, Pasukamonset P, Suanpairintr N, Barbieri MA, Adisakwattana S. Clitoria ternatea Flower Petal Extract Inhibits Adipogenesis and Lipid Accumulation in 3T3-L1 Preadipocytes by Downregulating Adipogenic Gene Expression. Molecules 2019; 24:molecules24101894. [PMID: 31108834 PMCID: PMC6571662 DOI: 10.3390/molecules24101894] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/28/2019] [Accepted: 05/14/2019] [Indexed: 01/05/2023] Open
Abstract
Clitoria ternatea (commonly known as blue pea) flower petal extract (CTE) is used as a natural colorant in a variety of foods and beverages. The objective of study was to determine the inhibitory effect of CTE on adipogenesis in 3T3-L1 preadipocytes. The phytochemical profiles of CTE were analyzed by liquid chromatography and tandem mass spectrometry (LC-MS/MS). Anti-adipogenesis effect of CTE was measured by using Oil Red O staining, intracellular triglyceride assay, quantitative real-time PCR and western blot analysis in 3T3-L1 adipocytes. Cell cycle studies were performed by flow cytometry. Lipolysis experiments were performed using a colorimetric assay kit. In early stages, CTE demonstrated anti-adipogenic effects through inhibition of proliferation and cell cycle retardation by suppressing expression of phospho-Akt and phospho-ERK1/2 signaling pathway. The results also showed that CTE inhibited the late stage of differentiation through diminishing expression of adipogenic transcription factors including PPARγ and C/EBPα. The inhibitory action was subsequently attenuated in downregulation of fatty acid synthase and acetyl-CoA carboxylase, causing the reduction of TG accumulation. In addition, CTE also enhanced catecholamine-induced lipolysis in adipocytes. These results suggest that CTE effectively attenuates adipogenesis by controlling cell cycle progression and downregulating adipogenic gene expression.
Collapse
Affiliation(s)
- Poramin Chayaratanasin
- Department of Pharmacology, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
- Program in Veterinary Biosciences, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Allen Caobi
- Department of Biological sciences, Florida International University, Miami, FL 33199, USA.
| | - Chaturong Suparpprom
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University, Ta-po, Phitsanulok 65000, Thailand.
| | - Sudarat Saenset
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University, Ta-po, Phitsanulok 65000, Thailand.
| | - Porntip Pasukamonset
- Department of Home Economics, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand.
| | - Nipattra Suanpairintr
- Department of Pharmacology, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | - Sirichai Adisakwattana
- Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
7
|
Ligustilide Ameliorates the Permeability of the Blood–Brain Barrier Model In Vitro During Oxygen–Glucose Deprivation Injury Through HIF/VEGF Pathway. J Cardiovasc Pharmacol 2019; 73:316-325. [DOI: 10.1097/fjc.0000000000000664] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Boudreau A, Poulev A, Ribnicky DM, Raskin I, Rathinasabapathy T, Richard AJ, Stephens JM. Distinct Fractions of an Artemisia scoparia Extract Contain Compounds With Novel Adipogenic Bioactivity. Front Nutr 2019; 6:18. [PMID: 30906741 PMCID: PMC6418310 DOI: 10.3389/fnut.2019.00018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/11/2019] [Indexed: 12/19/2022] Open
Abstract
Adipocytes are important players in metabolic health and disease, and disruption of adipocyte development or function contributes to metabolic dysregulation. Hence, adipocytes are significant targets for therapeutic intervention in obesity and metabolic syndrome. Plants have long been sources for bioactive compounds and drugs. In previous studies, we screened botanical extracts for effects on adipogenesis in vitro and discovered that an ethanolic extract of Artemisia scoparia (SCO) could promote adipocyte differentiation. To follow up on these studies, we have used various separation methods to identify the compound(s) responsible for SCO's adipogenic properties. Fractions and subfractions of SCO were tested for effects on lipid accumulation and adipogenic gene expression in differentiating 3T3-L1 adipocytes. Fractions were also analyzed by Ultra Performance Liquid Chromatography- Mass Spectrometry (UPLC-MS), and resulting peaks were putatively identified through high resolution, high mass accuracy mass spectrometry, literature data, and available natural products databases. The inactive fractions contained mostly quercetin derivatives and chlorogenates, including chlorogenic acid and 3,5-dicaffeoylquinic acid, which had no effects on adipogenesis when tested individually, thus ruling them out as pro-adipogenic bioactives in SCO. Based on these studies we have putatively identified the principal constituents in SCO fractions and subfractions that promoted adipocyte development and fat cell gene expression as prenylated coumaric acids, coumarin monoterpene ethers, 6-demethoxycapillarisin and two polymethoxyflavones.
Collapse
Affiliation(s)
- Anik Boudreau
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Alexander Poulev
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, United States
| | - David M Ribnicky
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, United States
| | - Ilya Raskin
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, United States
| | | | - Allison J Richard
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Jacqueline M Stephens
- Pennington Biomedical Research Center, Baton Rouge, LA, United States.,Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
9
|
Guo L, Li K, Cui ZW, Kang JS, Son BG, Choi YW. S-Petasin isolated from Petasites japonicus exerts anti-adipogenic activity in the 3T3-L1 cell line by inhibiting PPAR-γ pathway signaling. Food Funct 2019; 10:4396-4406. [DOI: 10.1039/c9fo00549h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
S-Petasin from Petasites japonicus exerts anti-adipogenic activity in 3T3-L1 cells through inhibition of the expression of PPAR-γ.
Collapse
Affiliation(s)
- Lu Guo
- Department of Horticultural Bioscience
- Pusan National University
- Miryang 50463
- Republic of Korea
| | - Ke Li
- Department of Horticultural Bioscience
- Pusan National University
- Miryang 50463
- Republic of Korea
| | - Zheng Wei Cui
- Department of Horticultural Bioscience
- Pusan National University
- Miryang 50463
- Republic of Korea
| | - Jum Soon Kang
- Department of Horticultural Bioscience
- Pusan National University
- Miryang 50463
- Republic of Korea
| | - Beung Gu Son
- Department of Horticultural Bioscience
- Pusan National University
- Miryang 50463
- Republic of Korea
| | - Young Whan Choi
- Department of Horticultural Bioscience
- Pusan National University
- Miryang 50463
- Republic of Korea
- Life and Industry Convergence Research Institute
| |
Collapse
|
10
|
Abood S, Veisaga ML, López LA, Barbieri MA. Dehydroleucodine inhibits mitotic clonal expansion during adipogenesis through cell cycle arrest. Phytother Res 2018; 32:1583-1592. [DOI: 10.1002/ptr.6089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 01/03/2018] [Accepted: 03/12/2018] [Indexed: 01/04/2023]
Affiliation(s)
- S. Abood
- Department of Biological Sciences; Florida International University; Miami FL 33199 USA
| | - M. L. Veisaga
- Biomolecular Sciences Institute; Florida International University; Miami FL 33199 USA
| | - L. A. López
- Laboratory of Cytoskeleton and Cell Cycle, Institute of Histology and Embryology, Faculty of Medicine; National University of Cuyo; Mendoza 5500 Argentina
| | - M. A. Barbieri
- Department of Biological Sciences; Florida International University; Miami FL 33199 USA
- Biomolecular Sciences Institute; Florida International University; Miami FL 33199 USA
- Fairchild Tropical Botanic Garden; 10901 Old Cutler Road Coral Gables FL 33156 USA
- International Center of Tropical Botany; Florida International University; Miami FL 33199 USA
| |
Collapse
|
11
|
Abood S, Eichelbaum S, Mustafi S, Veisaga ML, López LA, Barbieri M. Biomedical Properties and Origins of Sesquiterpene Lactones, with a Focus on Dehydroleucodine. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dehydroleucodine, a sesquiterpene lactone, belongs to the terpenoid class of secondary metabolites. Dehydroleucodine and other Artemisia-derived phytochemicals evolved numerous biodefenses that were first co-opted for human pharmacological use by traditional cultures in the Middle East, Asia, Europe and the Americas. Later, these phytochemicals were modified through the use of medicinal chemical techniques to increase their potency. All sesquiterpene lactones contain an α-methylene-γ-lactone group, which confers thiol reactivity, which is responsible, in part, for their therapeutic effects. A wide range of therapeutic uses of sequiterpene lactones has been found, including anti-adipogenic, cytoprotective, anti-microbial, anti-viral, anti-fungal, anti-malarial and, anti-migraine effects. Dehydroleucodine significantly inhibits differentiation of murine preadipocytes and also significantly decreases the accumulation of lipid content by a dramatic down regulation of adipogenic-specific transcriptional factors PPARγ and C-EBPα. Dehydroleucodine also inhibits secretion of matrix metalloprotease-2 (MMP-2), which is a known protease involved in migration and invasion of B16 cells. In addition to these anti-adipogenic and anti-cancer effects, dehydroleucodine effectively neutralizes several bacterial species, including Bacillus cereus, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Helicobacter pylori, methicillin resistant Staphylococcus aueus (MRSA) and S. epidermis (MRSE). The compound also inhibits the growth and secretion of several toxins of Pseudomonas aeruginosa, possesses gastro-protective qualities and possesses anti-parasitic properties against Trypanosoma cruzi, responsible for Chagas disease. Other sesquiterpene lactones, such as parthenolide, costunolide, and helanin, also possess significant therapeutic utility.
Collapse
Affiliation(s)
- Steven Abood
- Department of Biological Sciences; Florida International University, Miami, FL 33199, USA
| | - Steven Eichelbaum
- Department of Biological Sciences; Florida International University, Miami, FL 33199, USA
| | - Sushmita Mustafi
- Department of Biological Sciences; Florida International University, Miami, FL 33199, USA
| | - Maria-Luisa Veisaga
- Biomolecular Sciences Institute; Florida International University, Miami, FL 33199, USA
| | - Luis A. López
- Laboratory of Cytoskeleton and Cell Cycle, Institute of Histology and Embryology, Faculty of Medicine, National University of Cuyo, 5500 Mendoza, Argentina
| | - Manuel Barbieri
- Department of Biological Sciences; Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute; Florida International University, Miami, FL 33199, USA
- Fairchild Tropical Botanic Garden, 10901 Old Cutler Road, Coral Gables, FL 33156, USA
- International Center of Tropical Botany, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
12
|
Abstract
Sesquiterpene lactones (STLs) are a large and structurally diverse group of plant metabolites generally found in the Asteraceae family. STLs exhibit a wide spectrum of biological activities and it is generally accepted that their major mechanism of action is the alkylation of the thiol groups of biological molecules. The guaianolides is one of various groups of STLs. Anti-tumour and anti-migraine effects, an allergenic agent, an inhibitor of smooth muscle cells and of meristematic cell proliferation are only a few of the most commonly reported activities of STLs. In amphibians, fully grown ovarian oocytes are arrested at the beginning of meiosis I. Under stimulus with progesterone, this meiotic arrest is released and meiosis progresses to metaphase II, a process known as oocyte maturation. There are previous records of the inhibitory effect of dehydroleucodin (DhL), a guaianolide lactone, on the progression of meiosis. It has been also shown that DhL and its 11,13-dihydroderivative (2H-DhL; a mixture of epimers at C-11) act as blockers of the resumption of meiosis in fully grown ovarian oocytes from the amphibian Rhinella arenarum (formerly classified as Bufo arenarum). The aim of this study was to analyze the effect of four closely related guaianolides, i.e., DhL, achillin, desacetoxymatricarin and estafietin as possible inhibitors of meiosis in oocytes of amphibians in vitro and discuss some structure-activity relationships. It was found that the inhibitory effect on meiosis resumption is greater when the lactone has two potentially reactive centres, either a α,β-α',β'-diunsaturated cyclopentanone moiety or an epoxide group plus an exo-methylene-γ-lactone function.
Collapse
|
13
|
Wang GY, Wang N, Liao HN. Effects of Muscone on the Expression of P-gp, MMP-9 on Blood-Brain Barrier Model In Vitro. Cell Mol Neurobiol 2015; 35:1105-15. [PMID: 25976179 PMCID: PMC11488062 DOI: 10.1007/s10571-015-0204-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/05/2015] [Indexed: 11/26/2022]
Abstract
Muscone is the main chemical ingredient in Musk which is main crude drug in Tongqiaohuoxue decoction (TQHXD), and TQHXD has a protective effect on damaged neurons, so we hypothesize that muscone can alter blood-brain barrier (BBB) permeability via the modulation of P-glycoprotein (P-gp) and matrix metalloproteinase-9 (MMP-9) expression. In this study, astrocytes (AC) and human umbilical vein endothelial cells (ECV304) were co-cultured to simulate the BBB model in vitro. Leak testing, transmembrane resistance experiments, and BBB-specific enzyme testing were used to test whether the model was successful. Different concentrations of muscone permeating the BBB were detected by gas chromatography (GC). The change of the transendothelial electrical resistance (TEER) on the BBB in vitro after treating with muscone was detected by Millicell-ERS. The protein expression of P-gp, MMP-9 in normal, and oxygen/glucose deprivation (OGD) BBB model was determined by western blotting to inquire that the mechanism of muscone penetrates the BBB model in vitro. The results show that muscone was detected in the lower medium of the BBB model by GC; the values of TEER were no significant difference before and after muscone (8 μM) was added to the BBB model; the expression of P-gp significantly decreased after the BBB model treatment with muscone (4, 8, and 16 μM) for 24 h; the expression of P-gp and MMP-9 in different concentrations of muscone groups had different degrees of reduction compared with the BBB in the state of OGD. In conclusion, muscone could permeate the BBB model, and it was associated with the inhibition of P-gp and MMP-9 expression. An understanding of the mechanisms of muscone across the BBB is crucial to the development of therapeutic modalities for cerebral vascular diseases.
Collapse
Affiliation(s)
- Guang-Yun Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road, Hefei, 230012, China.
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Chinese Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China.
| | - Ning Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road, Hefei, 230012, China.
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Chinese Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China.
- Department of Pharmacy, Anhui University of Chinese Medicine, Xiang Shan Road, Hefei, China.
| | - Hua-Ning Liao
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road, Hefei, 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
- Chinese Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
| |
Collapse
|
14
|
Sesquiterpene lactones as drugs with multiple targets in cancer treatment: focus on parthenolide. Anticancer Drugs 2013; 23:883-96. [PMID: 22797176 DOI: 10.1097/cad.0b013e328356cad9] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sesquiterpene lactones (SLs) constitute a large and diverse group of biologically active plant compounds that possess anti-inflammatory and antitumor activity. The subclass germacranolides is one of the major groups of SLs. It includes parthenolide, a highly cytotoxic SL that is being tested in clinical trials as an anti-cancer agent. In this review, we focus on SL antitumor activity related to cell-cycle arrest, differentiation, apoptosis induction through the intrinsic pathway, and sensitization of the extrinsic pathway. We also address the regression of tumors in response to cotreatment with conventional chemotherapeutics. We review the nuclear factor-κB-targeted anti-inflammatory activity in vitro and in vivo and relate it to the SL structural features involved in the molecular mechanisms. It is obvious that SLs are emerging as promising anticancer agents, but more investigations are required to fully understand the molecular mechanisms of known SLs in different cell death modalities and how these mechanisms contribute toward the potent antitumor and anti-inflammatory activities of SLs.
Collapse
|
15
|
The Use of California Sagebrush (Artemisia californica) Liniment to Control Pain. Pharmaceuticals (Basel) 2012; 5:1045-53. [PMID: 24281255 PMCID: PMC3816656 DOI: 10.3390/ph5101045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/06/2012] [Accepted: 09/17/2012] [Indexed: 11/17/2022] Open
Abstract
The incidence of arthritis is increasing every year, as does the need for pain medication. The current work reviews an American Indian liniment that is traditionally used for pain therapy. The chemistry, therapeutic use and safety of the liniment are reviewed. The liniment contains monoterpenoids, sesquiterpenes, flavonoids, alkaloids and other compounds.
Collapse
|