1
|
Silva S, Bicker J, Fialho S, Cunha S, Falcão A, Fortuna A. Intranasal delivery of paroxetine: A preclinical study on pharmacokinetics, depressive-like behaviour, and neurochemical sex differences. Biochem Pharmacol 2024; 223:116184. [PMID: 38556027 DOI: 10.1016/j.bcp.2024.116184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/09/2024] [Accepted: 03/29/2024] [Indexed: 04/02/2024]
Abstract
Treatment of major depressive disorder remains a major unmet clinical need. Given the advantages of intranasal administration for targeted brain delivery, the present study aimed at investigating the pharmacokinetics of paroxetine, after its intranasal instillation and assessing its potential therapeutic effect on female and male mice subjected to unpredictable chronic mild stress (UCMS) protocol. IN administration revealed direct nose-to-brain paroxetine delivery but dose- and sex-dependent differences. Pharmacokinetics was nonlinear and paroxetine concentrations were consistently higher in plasma and brain of male mice. Additionally, UCMS decreased animal preference for sucrose in both male and female mice following acute (p < 0.01) and chronic stress (p < 0.05), suggesting anhedonia. Both male and female mice exhibited depressive-like behavior in the forced swimming test. UCMS females displayed a significantly longer immobility time and shorter climbing time than the control group (p < 0.05), while no differences were found between male mice. Two weeks of paroxetine intranasal administration reduced immobility time and lengthened climbing and swimming time, approaching values similar to those observed in the healthy control group. The therapeutic effect was stronger on female mice. Importantly, melatonin plasma levels were significantly decreased in female mice following UCMS (p < 0.05), while males exhibited heightened corticosterone levels. On the other hand, treatment with IN paroxetine significantly increased corticosterone and melatonin levels in both sexes compared to healthy mice (p < 0.05). Intranasal paroxetine delivery undoubtedly ameliorated the behavioral despair, characteristic of depressive-like animals. Despite its efficiency in male and female mice subjected to UCMS, females were more prone to this novel therapeutic strategy.
Collapse
Affiliation(s)
- Soraia Silva
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - S Fialho
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Susana Cunha
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
2
|
Medina-Saldivar C, Cruz-Visalaya S, Zevallos-Arias A, Pardo GVE, Pacheco-Otálora LF. Differential effect of chronic mild stress on anxiety and depressive-like behaviors in three strains of male and female laboratory mice. Behav Brain Res 2024; 460:114829. [PMID: 38141784 DOI: 10.1016/j.bbr.2023.114829] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Major depressive disorder is the most common psychiatric disorder worldwide. To understand mechanisms and search for new approaches to treating depression, animal models are crucial. Chronic mild stress (CMS) is the most used animal model of depression. Although CMS is considered a robust model of depression, conflicting results have been reported for emotion-related behaviors, which the intrinsic characteristics of each rodent strain could explain. To further shed light on the impact of genetic background on the relevant parameters commonly addressed in depression, we examined the effect of 4-weeks CMS on anxiety and depression-related behaviors and body weight gain in three strain mice (BALB/c, C57BL/6, and CD1) of both sexes. CMS reduced body weight gain in C57BL/6NCrl and CD1 male mice. C57BL/6 animals exhibited a more pronounced anxious-like behavior than CD1 and BALB/c mice in the light-dark box (LDB) and the elevated plus maze (EPM) tests, whereas BALB/c animals exhibited the more robust depressive-like phenotype in the splash test (ST), tail suspension test (TST) and forced-swimming test (FST). Under CMS, exposure did not affect anxiety-related behaviors in any strain but induced depression-like behaviors strain-dependently. CMS C57BL/6 and CD1 mice of both sexes showed depression-like behaviors, and CMS BALB/c male mice exhibited reduced depressive behaviors in the FST. These results suggest a differential effect of stress, with the C57BL/6 strain being more vulnerable to stress than the CD1 and BALB/c strain mice. Furthermore, our findings emphasize the need for researchers to consider mouse strains and behavioral tests in their CMS experimental designs.
Collapse
Affiliation(s)
- Carlos Medina-Saldivar
- Laboratorio de Investigación en Neurociencia, Instituto Científico, Universidad Andina del Cusco, Cuzco, Peru
| | - Sergio Cruz-Visalaya
- Laboratorio de Investigación en Neurociencia, Instituto Científico, Universidad Andina del Cusco, Cuzco, Peru
| | - Anzu Zevallos-Arias
- Laboratorio de Investigación en Neurociencia, Instituto Científico, Universidad Andina del Cusco, Cuzco, Peru
| | - Grace V E Pardo
- Laboratorio de Investigación en Neurociencia, Instituto Científico, Universidad Andina del Cusco, Cuzco, Peru.
| | - Luis F Pacheco-Otálora
- Laboratorio de Investigación en Neurociencia, Instituto Científico, Universidad Andina del Cusco, Cuzco, Peru
| |
Collapse
|
3
|
Pardo GVE, Alfaro Saca EE, Becerra Flores CT, Delgado Casós WF, Pacheco-Otalora LF. Limited bedding nesting paradigm alters maternal behavior and pup's early developmental milestones but did not induce anxiety- or depressive-like behavior in two different inbred mice. Dev Psychobiol 2023; 65:e22357. [PMID: 36567650 DOI: 10.1002/dev.22357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 12/24/2022]
Abstract
Animal models are crucial to understanding the mechanisms underlying the deleterious consequences of early-life stress. Here, we aimed to examine the effect of the limited bedding nesting (LBN) paradigm on early life development milestones and anxiety- and/or depression-like behavior in adolescent and adult mice from two inbred mice of both sexes. C57BL/6NCrl and BALB/c litters were exposed to the LBN paradigm postnatal day (PND) 2-9. Maternal behavior recording occurred on PND 3-9, and pups were weighed daily and examined to verify the eye-opening on PND 10-22. The male and female offspring underwent evaluation in the open field test, elevated plus-maze, and the forced swimming test during adolescence (PND 45-49) and adulthood (PND 75-79). We found that LBN impaired the maternal behavior patterns of both strain dams, mainly on C57BL/6NCrl strain. Also, LBN delayed the pup's eye-opening time and reduced body weight gain, impacting C57BL/6NCrl pups more. We also found that LBN decreased anxiety-related indices in adolescent and adult male but not female mice of both strains. Furthermore, LBN decreased depression-related indices only adolescent female and male BALB/c and female but not male C57BL/6NCrl mice. These findings reinforce the evidence that the LBN paradigm impairs the maternal behavior pattern and pup's early developmental milestones but does not induce anxiety- or depressive-like behavior outcomes during later life.
Collapse
Affiliation(s)
- Grace V E Pardo
- Laboratorio de Investigación en Neurociencia, Instituto Científico de Investigación, Universidad Andina del Cusco, Cuzco, Peru
| | - Eros Emanuel Alfaro Saca
- Laboratorio de Investigación en Neurociencia, Instituto Científico de Investigación, Universidad Andina del Cusco, Cuzco, Peru
| | | | - Walter Fares Delgado Casós
- Laboratorio de Investigación en Neurociencia, Instituto Científico de Investigación, Universidad Andina del Cusco, Cuzco, Peru
| | - Luis F Pacheco-Otalora
- Laboratorio de Investigación en Neurociencia, Instituto Científico de Investigación, Universidad Andina del Cusco, Cuzco, Peru
| |
Collapse
|
4
|
Mirtazapine attenuates the cocaine-induced locomotor sensitization in male and female C57BL/6J and BALBA/cJ mouse. Pharmacol Biochem Behav 2023; 222:173507. [PMID: 36481182 DOI: 10.1016/j.pbb.2022.173507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Clinical studies have described the efficacy of various therapeutic approaches. Results are inconsistent and clinical application is limited. Clinical trials have suggested that individual variability in the response to pharmacological therapies and sex affects the efficacy of some antidepressant drugs. Mouse strain-dependent variability influenced the response to antidepressant drugs. Some mouse strains respond faster and better to antidepressants than other mouse strains. We recently reported a series of preclinical studies that showed that dosing of mirtazapine, a noradrenergic and serotonergic antidepressant, in male and female Wistar rats decreased cocaine-induced locomotor activity and attenuated the induction and expression of cocaine-induced locomotor sensitization. Therefore, the aim of this study was to evaluate the mirtazapine effects, on cocaine-induced locomotor activity and cocaine-induced locomotor sensitization in male and female mice of the C57BL/6J and BALB/cJ strains, which differ in sensitivity to the cocaine motor effects and response to antidepressant drugs. METHODS Male and female BALB/cJ and C57BL/6J inbred mice (20-25 g) were daily dosed with 10 mg/kg of cocaine during the induction and expression of locomotor sensitization. During drug withdrawal, cocaine was withdrawn, and the groups received daily mirtazapine (30 mg/kg, i.p.) or saline. Mirtazapine was administered 30 min before cocaine. After each administration, locomotor activity for each animal was recorded for 30 min in transparent Plexiglass activity chambers. RESULTS Cocaine-induced locomotor activity were greater in C57BL/6J strain mice than BALB/cJ strain mice during the induction and expression phase of locomotor sensitization. The female mice of both strains showed a higher cocaine locomotor response than males and mirtazapine significantly decreased cocaine-induced locomotor activity, as well as the induction and expression of locomotor sensitization, regardless of mouse strain or sex. CONCLUSION The results suggest mirtazapine may be considered an effective therapeutic option to treat cocaine use disorder in men and women with very diverse genetic backgrounds.
Collapse
|
5
|
Fitzgerald PJ. Are Noradrenergic Transmission Reducing Drugs Antidepressants? Front Behav Neurosci 2021; 15:673634. [PMID: 34658805 PMCID: PMC8514666 DOI: 10.3389/fnbeh.2021.673634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 09/07/2021] [Indexed: 01/08/2023] Open
Abstract
Major depressive disorder (MDD) remains a significant public health problem worldwide, and revised treatment strategies are therefore urgently needed, including the creation of novel antidepressant compounds or using existing molecular entities in new ways. Etiologic theories of MDD from decades ago have suggested that synaptic deficiencies of monoaminergic neurotransmitters play a causative role in this neuropsychiatric disorder, and that boosting monoamines with drugs such as SSRIs, SNRIs, TCAs, and MAOIs has antidepressant effects and in some individuals can even induce hypomania or mania. While other factors, such as various intracellular molecular pathways and hippocampal neurogenesis, undoubtedly also play a role in MDD, monoaminergic boosting drugs nonetheless have clearly demonstrated antidepressant properties. There is also, however, a body of studies in the preclinical literature suggesting that monoaminergic transmission reducing drugs, including noradrenergic ones, also have antidepressant-like behavioral properties in rodents. Given that there is increasing evidence that the monoamines have u-shaped or Janus-faced dose-response properties, in which a mid-range value is "optimal" in a variety of behavioral and physiological processes, it is plausible that either too much or too little synaptic norepinephrine in key circuits may exacerbate MDD in some individuals. Here we briefly review rodent depression-related behavioral data, focusing on the forced swim test, from three major classes of noradrenergic transmission reducing drugs (alpha2 agonists, beta blockers, alpha1 antagonists), and find much support for the hypothesis that they have antidepressant-like properties. Whether these drugs are antidepressants in human subjects remains to be determined.
Collapse
Affiliation(s)
- Paul J Fitzgerald
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
6
|
Herzog DP, Perumal N, Manicam C, Treccani G, Nadig J, Rossmanith M, Engelmann J, Jene T, Hasch A, van der Kooij MA, Lieb K, Gassen NC, Grus FH, Müller MB. Longitudinal CSF proteome profiling in mice to uncover the acute and sustained mechanisms of action of rapid acting antidepressant (2R,6R)-hydroxynorketamine (HNK). Neurobiol Stress 2021; 15:100404. [PMID: 34632008 PMCID: PMC8488754 DOI: 10.1016/j.ynstr.2021.100404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/16/2021] [Accepted: 09/26/2021] [Indexed: 02/04/2023] Open
Abstract
Delayed onset of antidepressant action is a shortcoming in depression treatment. Ketamine and its metabolite (2R,6R)-hydroxynorketamine (HNK) have emerged as promising rapid-acting antidepressants. However, their mechanism of action remains unknown. In this study, we first described the anxious and depression-prone inbred mouse strain, DBA/2J, as an animal model to assess the antidepressant-like effects of ketamine and HNK in vivo. To decode the molecular mechanisms mediating HNK's rapid antidepressant effects, a longitudinal cerebrospinal fluid (CSF) proteome profiling of its acute and sustained effects was conducted using an unbiased, hypothesis-free mass spectrometry-based proteomics approach. A total of 387 proteins were identified, with a major implication of significantly differentially expressed proteins in the glucocorticoid receptor (GR) signaling pathway, providing evidence for a link between HNK and regulation of the stress hormone system. Mechanistically, we identified HNK to repress GR-mediated transcription and reduce hormonal sensitivity of GR in vitro. In addition, mammalian target of rapamycin (mTOR) and brain-derived neurotrophic factor (BDNF) were predicted to be important upstream regulators of HNK treatment. Our results contribute to precise understanding of the temporal dynamics and molecular targets underlying HNK's rapid antidepressant-like effects, which can be used as a benchmark for improved treatment strategies for depression in future.
Collapse
Affiliation(s)
- David P Herzog
- Department of Psychiatry and Psychotherapy and Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Natarajan Perumal
- Experimental and Translational Ophthalmology, Department of Ophthalmology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Caroline Manicam
- Experimental and Translational Ophthalmology, Department of Ophthalmology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Giulia Treccani
- Department of Psychiatry and Psychotherapy and Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany.,Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg University Medical Center, Mainz, Germany.,Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Jens Nadig
- Department of Psychiatry and Psychotherapy and Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Milena Rossmanith
- Experimental and Translational Ophthalmology, Department of Ophthalmology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Jan Engelmann
- Department of Psychiatry and Psychotherapy and Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Tanja Jene
- Department of Psychiatry and Psychotherapy and Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Annika Hasch
- Department of Psychiatry and Psychotherapy and Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Michael A van der Kooij
- Department of Psychiatry and Psychotherapy and Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany.,Leibniz Institute for Resilience Research, Mainz, Germany
| | - Klaus Lieb
- Department of Psychiatry and Psychotherapy and Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany.,Leibniz Institute for Resilience Research, Mainz, Germany
| | - Nils C Gassen
- Neurohomeostasis Research Group, Department of Psychiatry and Psychotherapy, University Medical Center Bonn, Bonn, Germany
| | - Franz H Grus
- Experimental and Translational Ophthalmology, Department of Ophthalmology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Marianne B Müller
- Department of Psychiatry and Psychotherapy and Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany.,Leibniz Institute for Resilience Research, Mainz, Germany
| |
Collapse
|
7
|
Maiolati M, Tarmati V, Latagliata C, Cabib S, Orsini C. Opposite genotype-specific effects of serotoninergic treatments on Pavlovian Conditioned Approach in mice of two inbred strains C57 BL/6J and DBA/2J. Behav Pharmacol 2021; 32:392-403. [PMID: 33709985 DOI: 10.1097/fbp.0000000000000629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Individual variability in the response to pharmacological therapies is a major problem in the treatment of psychiatric disorders. Comparative studies of phenotypes expressed by mice of the C57BL/6J (C57) and DBA/2J (DBA) inbred strains can help identify neurobiological determinants of this variability at preclinical levels. We have recently demonstrated that whereas young adult mice of both strains develop sign-tracking in a Pavlovian Conditioned Approach (PCA), a trait associated with dysfunctional behavior in rat models, in full adult C57 mice acquisition of this phenotype is inhibited by pre-frontal cortical (PFC) serotonin (5HT) transmission. These findings suggest a different role of 5HT transmission on sign-tracking development in mice of the two genotypes. In the present experiments, we tested the effects of the 5-HT synthesis booster 5-hydroxytryptophan (5-HTP) and of the selective 5HT reuptake inhibitor (SSRI) fluoxetine on the development and expression of sign-tracking in young adult mice from both inbred strains. In mice of the C57 strain, administration of 5-HTP before each training session blocked the training-induced shift to positive PCA scores which indicates the development of sign-tracking, whereas the same treatment was ineffective in mice of DBA strain. On the other hand, a single administration of fluoxetine was ineffective in unhandled saline- and 5-HTP-treated C57 mice, whereas it enhanced the expression of positive PCA scores by mice of DBA strain treated with 5-HTP during training. These findings confirm the strain-specific inhibitory role of PFC 5-HT transmission on sign-tracking development by mice of the C57 strain and support the hypothesis that different genotype-specific neurobiological substrates of dysfunctional phenotypes contribute to variable effects of pharmacotherapies.
Collapse
Affiliation(s)
- Marzia Maiolati
- PhD Program in Behavioral Neuroscience, Department of Psychology, University of Rome "Sapienza"
| | - Valeria Tarmati
- PhD Program in Behavioral Neuroscience, Department of Psychology, University of Rome "Sapienza"
| | | | - Simona Cabib
- IRCSS Fondazione Santa Lucia, Department of Experimental Neurosciences
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| | - Cristina Orsini
- IRCSS Fondazione Santa Lucia, Department of Experimental Neurosciences
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| |
Collapse
|
8
|
Tavares RL, de Vasconcelos MHA, Dutra MLDV, D’Oliveira AB, Lima MDS, Salvadori MGDSS, Pereira RDA, Alves AF, do Nascimento YM, Tavares JF, Guzman-Quevedo O, Aquino JDS. Mucuna pruriens Administration Minimizes Neuroinflammation and Shows Anxiolytic, Antidepressant and Slimming Effects in Obese Rats. Molecules 2020; 25:molecules25235559. [PMID: 33256223 PMCID: PMC7730813 DOI: 10.3390/molecules25235559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/08/2020] [Accepted: 11/14/2020] [Indexed: 12/11/2022] Open
Abstract
This study evaluated the effect of Mucuna pruriens (MP) administration on neuroinflammation and behavioral and murinometric parameters in obese rats. Proximate composition, oligosaccharide and phenolic compound profile of MP were determined. Wistar adult male rats were randomized into healthy (HG) and obese group (OG). The HG consumed a control chow diet while OG consumed a cafeteria diet for eight weeks. Then, they were subdivided into: Healthy (HG); Healthy with MP administration (HGMP); Obese (OG); Obese with MP administration (OGMP), with the consumption of the respective diets remaining for another eight weeks, in addition to gavage with MP extract to supplemented groups (750 mg/kg weight). MP presented a composition rich in proteins and phenolic compounds, especially catechin, in addition to 1-kestose and levodopa. Supplementation reduced food intake, body weight, and thoracic and abdominal circumferences in obese rats. MP showed anxiolytic and antidepressant effects and reduced morphological damage and expression of interleukin 6 in the hippocampus of obese rats. MP treatment showed satietogenic, slimming, anxiolytic and antidepressant effects, besides to minimizing hippocampal neuroinflammation in obese rats. Our results demonstrated the potential anti-obesity of MP which are probably related to the high content of bioactive compounds present in this plant extract.
Collapse
Affiliation(s)
- Renata leite Tavares
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba, Cidade Universitária, s/n-Castelo Branco III, João Pessoa 58051-085, Brazil; (R.l.T.); (M.H.A.d.V.); (M.L.d.V.D.); (A.B.D.)
| | - Maria Helena Araújo de Vasconcelos
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba, Cidade Universitária, s/n-Castelo Branco III, João Pessoa 58051-085, Brazil; (R.l.T.); (M.H.A.d.V.); (M.L.d.V.D.); (A.B.D.)
| | - Maria Letícia da Veiga Dutra
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba, Cidade Universitária, s/n-Castelo Branco III, João Pessoa 58051-085, Brazil; (R.l.T.); (M.H.A.d.V.); (M.L.d.V.D.); (A.B.D.)
| | - Aline Barbosa D’Oliveira
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba, Cidade Universitária, s/n-Castelo Branco III, João Pessoa 58051-085, Brazil; (R.l.T.); (M.H.A.d.V.); (M.L.d.V.D.); (A.B.D.)
| | - Marcos dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, Rod. BR 407 km 08, s/n-Jardim São Paulo, Petrolina 56314-522, Brazil;
| | | | - Ramon de Alencar Pereira
- Pathology Laboratory, Department of Pathology, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, n.6627-Pampulha, Belo Horizonte 31270-901, Brazil;
| | - Adriano Francisco Alves
- Department of Physiology and Pathology, Federal University of Paraíba, Cidade Universitária, s/n-Castelo Branco III, João Pessoa 58051-085, Brazil;
| | - Yuri Mangueira do Nascimento
- Pharmaceutical Technology Laboratory, Department of Pharmaceutical Sciences, Federal University of Paraíba, Cidade Universitária, s/n-Castelo Branco III, João Pessoa 58051-085, Brazil; (Y.M.d.N.); (J.F.T.)
| | - Josean Fechine Tavares
- Pharmaceutical Technology Laboratory, Department of Pharmaceutical Sciences, Federal University of Paraíba, Cidade Universitária, s/n-Castelo Branco III, João Pessoa 58051-085, Brazil; (Y.M.d.N.); (J.F.T.)
| | - Omar Guzman-Quevedo
- Laboratory Neuronutrition and Metabolic Disorders, Higher Technological Institute of Tacámbaro, Av. Tecnológico 201, Tecario, Tacámbaro 61651, Mexico;
| | - Jailane de Souza Aquino
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba, Cidade Universitária, s/n-Castelo Branco III, João Pessoa 58051-085, Brazil; (R.l.T.); (M.H.A.d.V.); (M.L.d.V.D.); (A.B.D.)
- Correspondence: ; Tel.: +55-83-3209-8715
| |
Collapse
|
9
|
Park DI, Novak B, Yan Y, Kaya ME, Turck CW. Paroxetine binding and activation of phosphofructokinase implicates energy metabolism in antidepressant mode of action. J Psychiatr Res 2020; 129:8-14. [PMID: 32540574 DOI: 10.1016/j.jpsychires.2020.05.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 12/16/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the predominant drugs prescribed for Major Depressive Disorder. The immediate pharmacological target of SSRIs is the serotonin transporter. However, the delayed therapeutic effect and high rate of patient non-response make it highly likely that SSRIs also have other molecular targets that are yet to be identified. Cellular thermal shift assay (CETSA) is a method based on thermal stabilization of target proteins upon drug binding. In the present study, we show that the SSRI paroxetine binds to phosphofructokinase (PFK) protein using CETSA. We found that mouse brain PFK and recombinant human PFK proteins are stabilized by paroxetine incubation. Chronic paroxetine treatment also significantly increased mouse brain PFK thermal stability. Paroxetine significantly elevated in vitro and in vivo PFK activity. Levels of several metabolites in glutamate- and energy metabolism-related pathways are significantly correlated with PFK activity in mouse hippocampus. Our data show that paroxetine can bind to PFK and affect its activity. Implications of these results for the antidepressant mode of action of paroxetine are discussed.
Collapse
Affiliation(s)
- Dong Ik Park
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, 80804, Munich, Germany; Danish Research Institute of Translational Neuroscience (DANDRITE), Department of Biomedicine, Aarhus University, Aarhus, Denmark; The Danish National Research Foundation Center, PROMEMO, Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Božidar Novak
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, 80804, Munich, Germany
| | - Yu Yan
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, 80804, Munich, Germany
| | - Melahat Ezgi Kaya
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, 80804, Munich, Germany
| | - Christoph W Turck
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, 80804, Munich, Germany
| |
Collapse
|
10
|
Odaira T, Nakagawasai O, Takahashi K, Nemoto W, Sakuma W, Lin JR, Tan-No K. Mechanisms underpinning AMP-activated protein kinase-related effects on behavior and hippocampal neurogenesis in an animal model of depression. Neuropharmacology 2019; 150:121-133. [PMID: 30914305 DOI: 10.1016/j.neuropharm.2019.03.026] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/01/2019] [Accepted: 03/19/2019] [Indexed: 01/04/2023]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is critical for whole-body energy metabolism regulation. Recent studies have suggested that physical exercise ameliorates depressive-like behaviors via AMPK activation; however, the underlying mechanism is unclear. Here, we examined the effects and underlying mechanisms of AMPK activation on depressive-like behavior in olfactory bulbectomized (OBX) mice. We treated OBX mice with the AMPK activator, 5-aminoimidazole-4-carboxamide-1-β-d-ribonucleotide (AICAR) on the 7th or 14th day after bilateral bulbectomy and evaluated depressive-like behavior using the tail-suspension test (TST) and forced swimming test (FST) on the 21st day. The expression of phosphorylated AMPK, protein kinase C ζ (PKCζ), nuclear factor-kappa B (NF-κB), brain-derived neurotrophic factor (BDNF), and cAMP response element-binding protein (CREB) in the hippocampus was assessed by western blotting. Hippocampal neurogenesis and localization of AMPK and phosphorylated NF-κB were examined by immunohistochemistry. Chronic AICAR treatment suppressed the prolonged immobility of OBX mice in the TST and FST, and increased the levels of phosphorylated AMPK, PKCζ, NF-κB, CREB, and BDNF. Hippocampal neurogenesis in OBX mice was promoted by chronic AICAR treatment. Co-administration of AICAR with the PKCζ inhibitor or the neurotrophic tyrosine kinase receptor type 2 (TrkB) antagonist, ANA-12, inhibited these effects. Phosphorylated AMPK was detected in mature and immature hippocampal neurons and microglia, while phosphorylated NF-κB was detected only in neurons in AICAR-treated OBX mice. These data indicate that AMPK activation produces anti-depressant effects, which are mediated by elevated hippocampal neurogenesis potentially via PKCζ/NF-κB/BDNF/TrkB/CREB signaling in neurons.
Collapse
Affiliation(s)
- Takayo Odaira
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Osamu Nakagawasai
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | - Kohei Takahashi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Wataru Nemoto
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Wakana Sakuma
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Jia-Rong Lin
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Koichi Tan-No
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| |
Collapse
|
11
|
Carrillo-Roa T, Labermaier C, Weber P, Herzog DP, Lareau C, Santarelli S, Wagner KV, Rex-Haffner M, Harbich D, Scharf SH, Nemeroff CB, Dunlop BW, Craighead WE, Mayberg HS, Schmidt MV, Uhr M, Holsboer F, Sillaber I, Binder EB, Müller MB. Common genes associated with antidepressant response in mouse and man identify key role of glucocorticoid receptor sensitivity. PLoS Biol 2017; 15:e2002690. [PMID: 29283992 PMCID: PMC5746203 DOI: 10.1371/journal.pbio.2002690] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 11/21/2017] [Indexed: 12/29/2022] Open
Abstract
Response to antidepressant treatment in major depressive disorder (MDD) cannot be predicted currently, leading to uncertainty in medication selection, increasing costs, and prolonged suffering for many patients. Despite tremendous efforts in identifying response-associated genes in large genome-wide association studies, the results have been fairly modest, underlining the need to establish conceptually novel strategies. For the identification of transcriptome signatures that can distinguish between treatment responders and nonresponders, we herein submit a novel animal experimental approach focusing on extreme phenotypes. We utilized the large variance in response to antidepressant treatment occurring in DBA/2J mice, enabling sample stratification into subpopulations of good and poor treatment responders to delineate response-associated signature transcript profiles in peripheral blood samples. As a proof of concept, we translated our murine data to the transcriptome data of a clinically relevant human cohort. A cluster of 259 differentially regulated genes was identified when peripheral transcriptome profiles of good and poor treatment responders were compared in the murine model. Differences in expression profiles from baseline to week 12 of the human orthologues selected on the basis of the murine transcript signature allowed prediction of response status with an accuracy of 76% in the patient population. Finally, we show that glucocorticoid receptor (GR)-regulated genes are significantly enriched in this cluster of antidepressant-response genes. Our findings point to the involvement of GR sensitivity as a potential key mechanism shaping response to antidepressant treatment and support the hypothesis that antidepressants could stimulate resilience-promoting molecular mechanisms. Our data highlight the suitability of an appropriate animal experimental approach for the discovery of treatment response-associated pathways across species. Major depression is the second leading cause of disability worldwide. However, only one-third of patients with depression benefit from the first antidepressant compound they are prescribed. It is a fundamental problem that the outcomes of individual antidepressant treatments are still highly unpredictable. In clinical studies, discovery of biomarkers for antidepressant response is hampered by confounding factors such as the heterogeneity of the disease phenotype and additional environmental factors, e.g., previous life events and different schedules of psychopharmacological treatment, which reduce the power to detect true response biomarkers. To overcome some of these limitations, we have established a conceptually novel approach that allows the selection of extreme phenotypes in an antidepressant-responsive mouse strain. In the first step, we identify signatures in the transcriptome of peripheral blood associated with responses following stratification into good and poor treatment responders. As proof of concept, we translate the murine data to a population of depressed patients. We show that differences in expression profiles from baseline to week 12 of the human orthologues predict response status in patients. We finally provide evidence that sensitivity of the glucocorticoid receptor could be a potential key mechanism shaping response to antidepressant treatment.
Collapse
Affiliation(s)
- Tania Carrillo-Roa
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | | | - Peter Weber
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - David P. Herzog
- Department of Psychiatry and Psychotherapy & German Resilience Center (DRZ), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Caleb Lareau
- Department of Biostatistics, Harvard University, Boston, Massachusetts, United States of America
| | - Sara Santarelli
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Klaus V. Wagner
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Monika Rex-Haffner
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Daniela Harbich
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | | | - Charles B. Nemeroff
- Department of Psychiatry and Behavioral Sciences, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Boadie W. Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - W. Edward Craighead
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Psychology, Emory University, Atlanta, Georgia, United States of America
| | - Helen S. Mayberg
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Mathias V. Schmidt
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Manfred Uhr
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | - Elisabeth B. Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Marianne B. Müller
- Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy & German Resilience Center (DRZ), Johannes Gutenberg University Medical Center, Mainz, Germany
- * E-mail:
| |
Collapse
|
12
|
The Antidepressant Effects of an mGlu2/3 Receptor Antagonist and Ketamine Require AMPA Receptor Stimulation in the mPFC and Subsequent Activation of the 5-HT Neurons in the DRN. Neuropsychopharmacology 2016; 41:1046-56. [PMID: 26245499 PMCID: PMC4748429 DOI: 10.1038/npp.2015.233] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/01/2015] [Accepted: 08/02/2015] [Indexed: 11/08/2022]
Abstract
We have reported the antidepressant effects of both metabotropic glutamate 2/3 (mGlu2/3) receptor antagonists and ketamine in several animal models, and proposed that serotonergic (5-HTergic) transmission is involved in these actions. Given that the projections from the medial prefrontal cortex (mPFC) to the dorsal raphe nucleus (DRN), where the majority of serotonin (5-HT) neurons exist, are reportedly involved in the antidepressant effects, in this study, we investigated using the forced swimming test (FST) of C57BL/6J male mice, the role of 5-HT neurons in the DRN regulated by the mPFC-DRN projections in the antidepressant effects of an mGlu2/3 receptor antagonist, LY341495, and ketamine. Following systemic administration/microinjection into the mPFC, both LY341495 and ketamine were found to exert antidepressant effects in the FST, and the effects were attenuated by depletion of 5-HT by treatment with an inhibitor of 5-HT synthesis, PCPA. The antidepressant effects of LY341495 and ketamine were also blocked by systemic administration/microinjection into the mPFC of an AMPA receptor antagonist, NBQX. Moreover, systemic administration/microinjection into the mPFC of LY341495 and ketamine significantly increased the c-Fos expression in the 5-HT neurons in the DRN, and the effect of systemic administration of these drugs on the neuronal c-Fos expression was attenuated by microinjection of NBQX into the mPFC. Our findings suggest that activation of 5-HT neurons in the DRN regulated by stimulation of the AMPA receptor in the mPFC may be involved in the antidepressant effects of an mGlu2/3 receptor antagonist and ketamine.
Collapse
|
13
|
Sugimoto Y, Nishimura K, Itoh A, Tanahashi T, Nakajima H, Oshiro H, Sun S, Toda T, Yamada J. Serotonergic mechanisms are involved in antidepressant-like effects of bisbenzylisoquinolines liensinine and its analogs isolated from the embryo of Nelumbo nucifera Gaertner seeds in mice. J Pharm Pharmacol 2015; 67:1716-22. [DOI: 10.1111/jphp.12473] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/06/2015] [Indexed: 11/30/2022]
Abstract
Abstract
Objectives
We attempted to ascertain if bisbenzylisoquinoline alkaloids, liensinine and isoliensinine from Nelumbo nucifera Gaertner have antidepressant-like effects and compare the effects with those previously obtained by their analogue neferine.
Methods
Using mice, the forced swimming test (FST) was carried out after treatment with liensinine, isoliensinine and neferine.
Key findings
Liensinine and isoliensinine elicited antidepressant-like effects in mice after the FST. Anti-immobility effects of liensinine and isoliensinine were antagonized by the 5-hydroxytryptamine1A (5-HT1A) receptor antagonist WAY 100635, but not by the α1-adrenoceptor antagonist prazosin. The anti-immobility effects of liensinine, isoliensinine and neferine were blocked by pretreatment with p-chlorophenylalanine (PCPA), which depletes serotonin (5-HT).
Conclusions
These data suggest that liensinine and isoliensinine from Nelumbo nucifera Gaertner have antidepressant-like effects and that antidepressant-like effects of liensinine and its analogues are closely related to serotonergic mechanisms.
Collapse
Affiliation(s)
- Yumi Sugimoto
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Yasuda Women’s University, Hiroshima, Japan
- Department of Organic Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Katsumi Nishimura
- Department of Organic Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Atsuko Itoh
- Department of Organic Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Takao Tanahashi
- Department of Organic Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Hiroshi Nakajima
- Research Center for Industry Innovation, Osaka City University, Osaka, Japan
| | - Hideo Oshiro
- Shanghai University of Traditional Chinese Medicine, Osaka, Japan
| | - Shujian Sun
- Shanghai University of Traditional Chinese Medicine, Osaka, Japan
| | - Takahiro Toda
- Laboratory of Pharmacology, Department of Clinical Pharmacy, Yokohama College of Pharmacy, Yokohama, Japan
| | - Jun Yamada
- Laboratory of Pharmacology, Department of Clinical Pharmacy, Yokohama College of Pharmacy, Yokohama, Japan
| |
Collapse
|
14
|
Selective inhibitors of the FK506-binding protein 51 by induced fit. Nat Chem Biol 2014; 11:33-7. [PMID: 25436518 DOI: 10.1038/nchembio.1699] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 10/09/2014] [Indexed: 01/17/2023]
Abstract
The FK506-binding protein 51 (FKBP51, encoded by the FKBP5 gene) is an established risk factor for stress-related psychiatric disorders such as major depression. Drug discovery for FKBP51 has been hampered by the inability to pharmacologically differentiate against the structurally similar but functional opposing homolog FKBP52, and all known FKBP ligands are unselective. Here, we report the discovery of the potent and highly selective inhibitors of FKBP51, SAFit1 and SAFit2. This new class of ligands achieves selectivity for FKBP51 by an induced-fit mechanism that is much less favorable for FKBP52. By using these ligands, we demonstrate that selective inhibition of FKBP51 enhances neurite elongation in neuronal cultures and improves neuroendocrine feedback and stress-coping behavior in mice. Our findings provide the structural and functional basis for the development of mechanistically new antidepressants.
Collapse
|
15
|
Caldarone BJ, Zachariou V, King SL. Rodent models of treatment-resistant depression. Eur J Pharmacol 2014; 753:51-65. [PMID: 25460020 DOI: 10.1016/j.ejphar.2014.10.063] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/16/2014] [Accepted: 10/09/2014] [Indexed: 01/06/2023]
Abstract
Major depression is a prevalent and debilitating disorder and a substantial proportion of patients fail to reach remission following standard antidepressant pharmacological treatment. Limited efficacy with currently available antidepressant drugs highlights the need to develop more effective medications for treatment- resistant patients and emphasizes the importance of developing better preclinical models that focus on treatment- resistant populations. This review discusses methods to adapt and refine rodent behavioral models that are predictive of antidepressant efficacy to identify populations that show reduced responsiveness or are resistant to traditional antidepressants. Methods include separating antidepressant responders from non-responders, administering treatments that render animals resistant to traditional pharmacological treatments, and identifying genetic models that show antidepressant resistance. This review also examines pharmacological and non-pharmacological treatments regimes that have been effective in refractory patients and how some of these approaches have been used to validate animal models of treatment-resistant depression. The goals in developing rodent models of treatment-resistant depression are to understand the neurobiological mechanisms involved in antidepressant resistance and to develop valid models to test novel therapies that would be effective in patients that do not respond to traditional monoaminergic antidepressants.
Collapse
Affiliation(s)
- Barbara J Caldarone
- Department of Neurology, Brigham and Women's Hospital and NeuroBehavior Laboratory, Harvard NeuroDiscovery Center, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | - Venetia Zachariou
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY 10029, USA
| | - Sarah L King
- School of Psychology, University of Sussex, Brighton, East Sussex, UK
| |
Collapse
|
16
|
Immobility responses between mouse strains correlate with distinct hippocampal serotonin transporter protein expression and function. Int J Neuropsychopharmacol 2014; 17:1737-50. [PMID: 24833265 DOI: 10.1017/s146114571400073x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mouse strain differences in immobility and in sensitivity to antidepressants have been observed in the forced swimming test (FST) and the tail suspension test (TST). However, the neurotransmitter systems and neural substrates that contribute to these differences remain unknown. To investigate the role of the hippocampal serotonin transporter (5-HTT), we measured baseline immobility and the immobility responses to fluoxetine (FLX) in the FST and the TST in male CD-1, C57BL/6, DBA and BALB/c mice. We observed strain differences in baseline immobility time, with CD-1 mice showing the longest and DBA mice showing the shortest. In contrast, DBA and BALB/c mice showed the highest sensitivity to FLX, whereas CD-1 and C57BL/6 mice showed the lowest sensitivity. Also we found strain differences in both the total 5-HTT protein level and the membrane-bound 5-HTT level (estimated by V max) as follows: DBA>BALB/c>CD-1=C57BL/6. The uptake efficiency of the membrane-bound 5-HTT (estimated by 1/K m) was highest in DBA and BALB/c mice and lowest in CD-1 and C57BL/6 mice. A correlation analysis of subregions within the hippocampus revealed that immobility time was negatively correlated with V max and positively correlated with K m in the hippocampus. Therefore a higher uptake capacity of the membrane-bound 5-HTT in the hippocampus was associated with lower baseline immobility and greater sensitivity to FLX. These results suggest that alterations in hippocampal 5-HTT activity may contribute to mouse strain differences in the FST and the TST.
Collapse
|
17
|
Proietti Onori M, Ceci C, Laviola G, Macrì S. A behavioural test battery to investigate tic-like symptoms, stereotypies, attentional capabilities, and spontaneous locomotion in different mouse strains. Behav Brain Res 2014; 267:95-105. [PMID: 24675156 DOI: 10.1016/j.bbr.2014.03.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/11/2014] [Accepted: 03/16/2014] [Indexed: 01/08/2023]
Abstract
The preclinical study of human disorders associated with comorbidities and for which the aetiology is still unclear may substantially benefit from multi-strain studies conducted in mice. The latter can help isolating experimental populations (strains) exhibiting distinct facets in the parameters isomorphic to the symptoms of a given disorder. Through a reverse-translation approach, multi-strain studies can inform both natural predisposing factors and environmental modulators. Thus, mouse strains selected for a particular trait may be leveraged to generate hypothesis-driven studies aimed at clarifying the potential role played by the environment in modulating the exhibition of the symptoms of interest. Tourette's syndrome (TS) constitutes a paradigmatic example whereby: it is characterized by a core symptom (tics) often associated with comorbidities (attention-deficit-hyperactivity and obsessive-compulsive symptoms); it has a clear genetic origin though specific genes are, as yet, unidentified; its course (exacerbations and remissions) is under the influence of environmental factors. Based on these considerations, we tested four mouse strains (ABH, C57, CD1, and SJL) - varying along a plethora of behavioural, neurochemical, and immunological parameters - on a test battery tailored to address the following domains: tics (through the i.p. administration of the selective 5-HT2 receptor agonist DOI, 5mg/kg); locomotion (spontaneous locomotion in the home-cage); perseverative responding in an attentional set shifting task; and behavioural stereotypies in response to a single amphetamine (10mg/kg, i.p.) injection. Present data demonstrate that while ABH and SJL mice respectively exhibit selective increments in amphetamine-induced sniffing behaviour and DOI-induced tic-like behaviours, C57 and CD1 mice show a distinct phenotype, compared to other strains, in several parameters.
Collapse
Affiliation(s)
- Martina Proietti Onori
- Section of Behavioural Neuroscience, Department of Cell Biology & Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Chiara Ceci
- Section of Behavioural Neuroscience, Department of Cell Biology & Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Laviola
- Section of Behavioural Neuroscience, Department of Cell Biology & Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Simone Macrì
- Section of Behavioural Neuroscience, Department of Cell Biology & Neuroscience, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
18
|
Su J, Hato-Yamada N, Araki H, Yoshimura H. Test-retest paradigm of the forced swimming test in female mice is not valid for predicting antidepressant-like activity: participation of acetylcholine and sigma-1 receptors. J Pharmacol Sci 2013; 123:246-55. [PMID: 24162025 DOI: 10.1254/jphs.13145fp] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The forced swimming test (FST) in mice is widely used to predict the antidepressant activity of a drug, but information describing the immobility of female mice is limited. We investigated whether a prior swimming experience affects the immobility duration in a second FST in female mice and whether the test-retest paradigm is a valid screening tool for antidepressants. Female ICR mice were exposed to the FST using two experimental paradigms: a single FST and a double FST in which mice had experienced FST once 24 h prior to the second trail. The initial FST experience reliably prolonged immobility duration in the second FST. The antidepressants imipramine and paroxetine significantly reduced immobility duration in the single FST, but not in the double FST. Scopolamine and the sigma-1 (σ1) antagonist NE-100 administered before the second trial significantly prevented the prolongation of immobility. Neither a 5-HT1A nor a 5-HT2A receptor agonist affected immobility duration. We suggest that the test-retest paradigm in female mice is not adequate for predicting antidepressant-like activity of a drug; the prolongation of immobility in the double FST is modulated through acetylcholine and σ1 receptors.
Collapse
Affiliation(s)
- Jing Su
- Department of Pharmacology and Pharmacy, Ehime University Graduate School of Medicine, Japan
| | | | | | | |
Collapse
|
19
|
Egashira N, Abe M, Shirakawa A, Niki T, Mishima K, Iwasaki K, Oishi R, Fujiwara M. Effects of mood stabilizers on marble-burying behavior in mice: involvement of GABAergic system. Psychopharmacology (Berl) 2013; 226:295-305. [PMID: 23086022 DOI: 10.1007/s00213-012-2904-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 10/09/2012] [Indexed: 01/23/2023]
Abstract
RATIONALE Obsessive-compulsive disorder (OCD) is characterized by recurrent unwanted thoughts (obsessions), usually accompanied by repetitive behaviors (compulsions) intended to alleviate anxiety. Marble-burying behavior is a pharmacological model for study of OCD. OBJECTIVES In the present study, we examined the effects of mood stabilizers on marble-burying behavior in mice, as well as the role of GABA receptors in this behavior. METHODS The effects of treatment with valproate, carbamazepine, lithium carbonate, lamotrigine, muscimol and baclofen on marble-burying behavior in mice were evaluated. RESULTS Valproate (10, 30 and 100 mg/kg, i.p.) and carbamazepine (30 and 100 mg/kg, p.o.) significantly reduced marble-burying behavior without affecting total locomotor activity in ICR mice. Lamotrigine (30 mg/kg, i.p.) also significantly reduced marble-burying behavior in ddY mice. On the other hand, lithium carbonate (10, 30 and 100 mg/kg, i.p.) reduced total locomotor activity without affecting marble-burying behavior in ddY mice. The selective GABA(A) receptor agonist muscimol (1 mg/kg) significantly reduced marble-burying behavior without affecting total locomotor activity, whereas the selective GABA(B) receptor agonist baclofen (3 mg/kg) reduced total locomotor activity without affecting marble-burying behavior. Moreover, the selective GABA(A) receptor antagonist bicuculline (3 mg/kg) significantly counteracted the decrease in marble-burying induced by the administration of muscimol (1 mg/kg) and valproate (100 mg/kg). CONCLUSIONS These results suggest that GABAergic mechanism is involved in marble-burying behavior, and that valproate, carbamazepine and lamotrigine reduce marble-burying behavior. Moreover, valproate reduces marble-burying behavior via a GABA(A) receptor-dependent mechanism.
Collapse
Affiliation(s)
- Nobuaki Egashira
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Sugimoto Y, Tagawa N, Kobayashi Y, Mitsui-Saito K, Hotta Y, Yamada J. Involvement of the sigma1 receptor in the antidepressant-like effects of fluvoxamine in the forced swimming test in comparison with the effects elicited by paroxetine. Eur J Pharmacol 2012; 696:96-100. [PMID: 23041149 DOI: 10.1016/j.ejphar.2012.09.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 09/13/2012] [Accepted: 09/22/2012] [Indexed: 11/25/2022]
Abstract
We studied the involvement of the sigma(1) receptor in the antidepressant-like effects of the selective serotonin reuptake inhibitor (SSRI) fluvoxamine in DBA/2 mice using the forced swimming test. The effects of the selective sigma(1) receptor antagonist N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino) ethylamine (BD1047) at 1mg/kg significantly antagonized the anti-immobility elicited by fluvoxamine (10mg/kg). However, the anti-immobility effects elicited by another SSRI, paroxetine (5m/kg), were not altered by BD1047. The selective sigma(1) receptor agonist 2S-(2α,6α,11R(*))-1,2,3,4,5,6-hexahydro-6,11-dimethyl-3-(2-propenyl)-2,6-methano-3-benzazocin-8-ol ((+)SKF-10047) elicited dose-dependent anti-immobility effects in DBA/2 mice. BD1047 significantly blocked the anti-immobility effects induced by (+)SKF-10047 at 10mg/kg. These results suggested that the sigma(1) receptor was associated with fluvoxamine-induced antidepressant-like effects but not with paroxetine-induced antidepressant-like effects.
Collapse
Affiliation(s)
- Yumi Sugimoto
- Laboratory of Pharmacology, Department of Clinical Pharmacy, Yokohama College of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066, Japan.
| | | | | | | | | | | |
Collapse
|
21
|
Nesher E, Gross M, Lisson S, Tikhonov T, Yadid G, Pinhasov A. Differential responses to distinct psychotropic agents of selectively bred dominant and submissive animals. Behav Brain Res 2012; 236:225-235. [PMID: 22982068 DOI: 10.1016/j.bbr.2012.08.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 08/24/2012] [Accepted: 08/26/2012] [Indexed: 12/14/2022]
Abstract
Dominance and submissiveness are two opposite poles of behavior representing important functional elements in the development of social interactions. We previously demonstrated the inheritability of these traits by selective breeding based upon the dominant-submissive relationships (DSR) food competition paradigm. Continued multigenerational behavioral selection of Sabra mice yielded animal populations with strong and stable features of dominance and submissiveness. We found that these animals react differentially to stressogenic triggers, antidepressants and mood stabilizing agents. The anxiolytic compound diazepam (1.5mg/kg, i.p.) reduced anxiety-like behavior of submissive animals, but showed anxiogenic effects among dominant animals. In the Forced Swim test, the antidepressant paroxetine (1, 3 and 10mg/kg, i.p.) markedly reduced immobility of submissive animals, demonstrating antidepressant-like effect. In contrast, when administered to dominant animals, paroxetine caused extreme (frenetic) activity. The mood stabilizer lithium (0.4%, p.o.) selectively influenced dominant mice, without affecting the behavior of submissive animals. In summary, we describe here two distinct animal populations possessing strong dominant and submissive phenotypes. We suggest that these populations hold potential as tools for studying the molecular basis and pharmacogenetics of dominant and submissive behavior.
Collapse
Affiliation(s)
- Elimelech Nesher
- Department of Molecular Biology, Ariel University Center, Ariel, Israel; Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Moshe Gross
- Department of Molecular Biology, Ariel University Center, Ariel, Israel; Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Serah Lisson
- Department of Molecular Biology, Ariel University Center, Ariel, Israel; Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Tatiana Tikhonov
- Department of Molecular Biology, Ariel University Center, Ariel, Israel
| | - Gal Yadid
- Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Albert Pinhasov
- Department of Molecular Biology, Ariel University Center, Ariel, Israel.
| |
Collapse
|