1
|
Lin KQ, Liu HF, Chen C, Li JY, Pan WD, Sun C, Lou HY. Structurally Diverse Coumarins from Peucedanum praeruptorum and their Anti-Inflammatory Activities via NF-κB Signaling Pathway. Chem Biodivers 2024; 21:e202400184. [PMID: 38372676 DOI: 10.1002/cbdv.202400184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
The phytochemical study of Peucedanum praeruptorum led to the isolation of twenty-five coumarins (1-25). Of which, (±) praeruptol A (±1), one pair of previous undescribed seco-coumarin enantiomers were obtained. Their structures were established according to HR-ESI-MS, NMR, X-ray single crystal diffraction analysis, as well as ECD calculation. All compounds were tested for anti-inflammatory activity in the RAW264.7 macrophage model, and eight compounds (7-10, and 13-16) exhibited significant inhibitory effects with IC50 values ranging from 9.48 to 34.66 μM. Among them, compound 7 showed the strongest inhibitory effect, which significantly suppressed the production of IL-6, IL-1β, and TNF-α, as well as iNOS and COX-2 in a concentration-dependent manner. Further investigated results showed that compound 7 exerted an anti-inflammatory effect via the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Kai-Qin Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Han-Fei Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Centre of Guizhou Province, Guizhou Medical University, Guiyang, 550014, China
| | - Chao Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Centre of Guizhou Province, Guizhou Medical University, Guiyang, 550014, China
| | - Jin-Yu Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Centre of Guizhou Province, Guizhou Medical University, Guiyang, 550014, China
| | - Wei-Dong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Chao Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Centre of Guizhou Province, Guizhou Medical University, Guiyang, 550014, China
| | - Hua-Yong Lou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Centre of Guizhou Province, Guizhou Medical University, Guiyang, 550014, China
| |
Collapse
|
2
|
Wang Q, Ding L, Wang R, Liang Z. A Review on the Morphology, Cultivation, Identification, Phytochemistry, and Pharmacology of Kitagawia praeruptora (Dunn) Pimenov. Molecules 2023; 28:8153. [PMID: 38138641 PMCID: PMC10745425 DOI: 10.3390/molecules28248153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Kitagawia praeruptora (Dunn) Pimenov, commonly known as Qianhu in China, is a widely used folk Chinese herbal medicine. This article reviews its botanical traits, ethnopharmacology, cultivation techniques, identification, phytochemical compositions, and pharmacological effects. Over 70 coumarin compounds, including simple coumarins, pyranocoumarins, and furanocoumarins, have been isolated within this plant. Additionally, K. praeruptora contains other components such as flavonoids, fatty acids, benzoic acids, and sterols. This information highlights the importance of utilizing active ingredients and excavating pharmacological effects. With its remarkable versatility, K. praeruptora exhibits a wide range of pharmacological effects. It has been found to possess expectorant and bronchodilator properties, cardiovascular protection, antimicrobial and antioxidant activities, anti-tumor effects, and even antidiabetic properties. It is recommended to focus on the development of new drugs that leverage the active ingredients of K. praeruptora and explore its potential for new clinical applications and holistic utilization.
Collapse
Affiliation(s)
| | | | - Ruihong Wang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Q.W.); (L.D.)
| | - Zongsuo Liang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Q.W.); (L.D.)
| |
Collapse
|
3
|
Hu J, Liu R, Yang Z, Pan X, Li Y, Gong Y, Guo D. Praeruptorin A inhibits the activation of NF-κB pathway and the expressions of inflammatory factors in poly (I:C)-induced RAW264.7 cells. Chem Biol Drug Des 2023; 102:1110-1120. [PMID: 37500542 DOI: 10.1111/cbdd.14310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/03/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Praeruptorin A (PA), a natural coumarin compound, has significant anti-inflammatory effects. In this study, we evaluate the anti-inflammatory effect of PA on RAW 264.7 mouse macrophages induced by Polyinosinic acid-polycytidylic acid (poly (I:C)). RAW 264.7 mouse macrophages induced by poly (I:C) were treated with or without PA, the viability of which was determined to screen working solution of PA. RNA-sequencing was applied to analyze the differentially expressed genes (DEGs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were carried out. The expressions of interleukin (IL)-1β, heme oxygenase 1 (HMOX1), prostaglandin-endoperoxide synthase 2 (PTGS2), ATP binding cassette subfamily A member 1 (Abca1) and NF-κB-related proteins were measured by enzyme-linked immunosorbent assay (ELISA), quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot. As a result, PA at 1, 2, 3, 4 and 5 μM slightly affected cell viability, while PA at 6 and 7 μM significantly inhibited cell viability. GO and KEGG analysis results revealed that DEGs were mainly enriched in the pathways related to inflammatory signaling. Through further analysis, we obtained five possible targets of PA, and verified that PA inhibited the expressions of IL-1β, HMOX1, PTGS2 and Abca1 as well as the activation of NF-κB pathway in poly (I:C)-induced RAW264.7 cells. To summarize, PA may inhibit expressions of the inflammation-related genes in poly (I:C)-induced RAW264.7 cells, which demonstrates its potential as a drug against virus related diseases.
Collapse
Affiliation(s)
- Jiayan Hu
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Roujun Liu
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Zhouxin Yang
- Laboratory of Critical Care Medicine, Zhejiang Hospital, Hangzhou, China
| | - Xinyu Pan
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yuanjing Li
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yanghui Gong
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Dongyang Guo
- School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou City University, Hangzhou, China
| |
Collapse
|
4
|
Khandy MT, Sofronova AK, Gorpenchenko TY, Chirikova NK. Plant Pyranocoumarins: Description, Biosynthesis, Application. PLANTS (BASEL, SWITZERLAND) 2022; 11:3135. [PMID: 36432864 PMCID: PMC9693251 DOI: 10.3390/plants11223135] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 05/23/2023]
Abstract
This overview article contains information about pyranocoumarins over the last 55 years. The article is based on the authors' phytochemical and physiological studies in vivo and in vitro as well as search and analysis of data in literature available on Google Scholar, Web of Science, PubMed, and ScienceDirect before January 2022. Pyranocoumarins are synthesized in plants of the Apiaceae, Rutaceae families, and one species in each of the Cornaceae, Calophyllaceae, and Fabaceae families can synthesize this class of compounds. The physiological role of these compounds in plants is not clear. It has been proven that these substances have a wide range of biological activities: anti-cancer, anti-spasmatic, and anticoagulant, and they also inhibit erythrocyte lysis and accumulation of triacylglycerides. The overview generalizes the modern understanding of the classification, structure, and biological activity of natural pyranocoumarins, and summarizes dispersed data into a unified scheme of biosynthesis. The review analyzes data on the localization and productivity of these substances in individual organs and the whole plant. It discusses a link between the unique structure of these substances and their biological activity, as well as new opportunities for pyranocoumarins in pharmacology. The article evaluates the potential of different plant species as producers of pyranocoumarins and considers the possibilities of cell cultures to obtain the end product.
Collapse
Affiliation(s)
- Maria T. Khandy
- Laboratory of Cell and Developmental Biology, Federal Scientific Center of East-Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Stoletiya Vladivostoka Ave. 159, Vladivostok 690022, Russia
- Laboratory of Biomedical Cell Technologies of the Center for Genomic and Regenerative Medicine, Institute of Life Sciences and Biomedicine, Far Eastern Federal University, FEFU Campus, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
| | - Anastasia K. Sofronova
- Laboratory of Biomedical Cell Technologies of the Center for Genomic and Regenerative Medicine, Institute of Life Sciences and Biomedicine, Far Eastern Federal University, FEFU Campus, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
| | - Tatiana Y. Gorpenchenko
- Laboratory of Cell and Developmental Biology, Federal Scientific Center of East-Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Stoletiya Vladivostoka Ave. 159, Vladivostok 690022, Russia
| | - Nadezhda K. Chirikova
- Department of Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, 58 Belinsky Str., Yakutsk 677000, Russia
| |
Collapse
|
5
|
Ding H, Liu F, Wang M, Dong B, Li X. Study on Chinese patent medicine based on major component analysis and quality control evaluation: A case study of Jizhi Syrup. J Pharm Biomed Anal 2021; 209:114531. [PMID: 34929568 DOI: 10.1016/j.jpba.2021.114531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
Jizhi Syrup (JZS) is a popular Chinese patent medicine (CPM) for the treatment of respiratory diseases in clinical practice, especially acute or chronic bronchitis. JZS is a complex formula composed of 8 kinds of herbs and lack of comprehensive researches on chemical components. To further define its components, ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS) and headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) were utilized to identify and classify the chemical components of JZS. A total of 178 chemical compounds encompassing the 8 herbs of JZS were identified and the chemical components were comprehensively explicit. It made up for the gap that volatile components were not studied in the previous study. Based on this, a new method for the quality control of JZS based on its characteristic components was established by fingerprints, multi-component quantitative analysis and quantity transfer of JZS. A dual-wavelength high-performance liquid chromatography (HPLC) fingerprints were established at 210 nm and 260 nm. Four volatile components (linalool, bornyl acetate, 2-undecanone and α-terpineol) and eight nonvolatile components (ephedrine hydrochloride, protocatechuic acid, 5-caffeoylquinic acid, 4-hydroxybenzoic acid, naringin, neohesperidin, glycyrrhizic acid and praeruptorin A) were quantitated by HS-SPME-GC-MS and HPLC-diode array detection (DAD). Meanwhile, six exclusive nonvolatile components were studied for the quantity transfer of Herbs-Intermediate-CPM and all the transfer rates were between 55.23% and 89.20%. This study is the first comprehensive study of the major components in JZS, and its results can be useful to standardize the quality control and provide a valuable reference for other CPMs.
Collapse
Affiliation(s)
- Haoran Ding
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Liu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengyue Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bangjian Dong
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
6
|
Xu Z, Kang A, Shan J, Song M, Xie T. An LC-MS/MS Method for the Pharmacokinetic and in Vitro Metabolism Studies of Praeruptorin A in Rat. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412917666210827103645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective:
The study aims to investigate the pharmacokinetic profile of Praeruptorin A and khellactone and in vitro hydrolysis of praeruptorin A to khellactone in different biological samples.
Methods:
A LC-MS/MS method was established. Analytes and internal standard (IS) were isolated using the protein precipitation method and then separated on a Thermo BDS Hypersil C18 (2.1 mm×50 mm, 2.4μm) column using a mobile phase consisting of 0.05% formic acid solution and acetonitrile. Samples were analyzed in positive electrospray-ionization (ESI) mode using multiple reaction monitoring (MRM).
Results:
The calibration plots gave desirable linearity (r2>0.99) in the concentration range from 0.99-990.0 and 2.0-2000.0 ng/mL for Praeruptorin A and khellactone, respectively. In addition, the LOQs of these analytes were sufficient for vivo pharmacokinetic study and vitro hydrolysis study of Praeruptorin A. The intra-batch and inter-batch precision were all within 14.05%, and the accuracy was between 89.39% and 109.50%. The extraction efficiency of PA and khellactone ranged from 76.35 ~ 89.58%. The matrix effects of analytes and the IS were between 89.67% ~ 105.26%.
Conclusion:
The liver CYPs mediated by the metabolism of PA may contribute to the systemic exposure of its active metabolite, khellactone, in rats.
Collapse
Affiliation(s)
- Zhuicheng Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - An Kang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengmeng Song
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tong Xie
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
7
|
Plant-Derived Molecules α-Boswellic Acid Acetate, Praeruptorin-A, and Salvianolic Acid-B Have Age-Related Differential Effects in Young and Senescent Human Fibroblasts In Vitro. Molecules 2019; 25:molecules25010141. [PMID: 31905790 PMCID: PMC6982785 DOI: 10.3390/molecules25010141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 11/20/2022] Open
Abstract
Testing and screening of plant-derived molecules on normal human cells in vitro is a widely used approach for discovering their eventual health beneficial effects for human ageing and longevity. As little is known about age-associated differential effects of such molecules, here we report that young (<25% replicative lifespan completed) and near-senescent (>90% replicative lifespan completed) human skin fibroblasts exposed for 1–15 days to a wide range of concentrations (0.1–100 μM) of the three selected phytochemicals, namely α-boswellic acid acetate (ABC), praeruptorin-A (PTA), and salvianolic acid-B (SAB) had age-related differential effects. The parameters studied were the metabolic activity (MTT assay), cellular morphological phenotype, one-step growth characteristics, expression of genes involved in the cell cycle regulation and cytokine network genes, protein levels of p53, cytosolic superoxide dismutase (SOD1) and microtubule-associated protein 1A/1B-light chain 3 (LC3), and the extent of protein carbonylation and protein aggregation as a sign of oxidative stress. All three compounds showed biphasic hormetic dose response by stimulating cell growth, survival and metabolic activity at low doses (up to 1 μM), while showing inhibitory effects at high doses (>10 μM). Furthermore, the response of early passage young cells was different from that of the late passage near-senescent cells, especially with respect to the expression of cell cycle-related and inflammation-related genes. Such studies have importance with respect to the use of low doses of such molecules as health-promoting and/or ageing-interventions through the phenomenon of hormesis.
Collapse
|
8
|
Lin SC, Shi LS, Ye YL. Advanced Molecular Knowledge of Therapeutic Drugs and Natural Products Focusing on Inflammatory Cytokines in Asthma. Cells 2019; 8:cells8070685. [PMID: 31284537 PMCID: PMC6678278 DOI: 10.3390/cells8070685] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023] Open
Abstract
Asthma is a common respiratory disease worldwide. Cytokines play a crucial role in the immune system and the inflammatory response to asthma. Abnormal cytokine expression may lead to the development of asthma, which may contribute to pathologies of this disease. As cytokines exhibit pleiotropy and redundancy characteristics, we summarized them according to their biologic activity in asthma development. We classified cytokines in three stages as follows: Group 1 cytokines for the epithelial environment stage, Group 2 cytokines for the Th2 polarization stage, and Group 3 cytokines for the tissue damage stage. The recent cytokine-targeting therapy for clinical use (anti-cytokine antibody/anti-cytokine receptor antibody) and traditional medicinal herbs (pure compounds, single herb, or natural formula) have been discussed in this review. Studies of the Group 2 anti-cytokine/anti-cytokine receptor therapies are more prominent than the studies of the other two groups. Anti-cytokine antibodies/anti-cytokine receptor antibodies for clinical use can be applied for patients who did not respond to standard treatments. For traditional medicinal herbs, anti-asthmatic bioactive compounds derived from medicinal herbs can be divided into five classes: alkaloids, flavonoids, glycosides, polyphenols, and terpenoids. However, the exact pathways targeted by these natural compounds need to be clarified. Using relevant knowledge to develop more comprehensive strategies may provide appropriate treatment for patients with asthma in the future.
Collapse
Affiliation(s)
- Sheng-Chieh Lin
- Division of Allergy, Asthma and Immunology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei 23561, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Li-Shian Shi
- Department of Biotechnology, National Formosa University, Yunlin 63201, Taiwan
| | - Yi-Ling Ye
- Department of Biotechnology, National Formosa University, Yunlin 63201, Taiwan.
| |
Collapse
|
9
|
Liu L, Wang LP, He S, Ma Y. Immune Homeostasis: Effects of Chinese Herbal Formulae and Herb-Derived Compounds on Allergic Asthma in Different Experimental Models. Chin J Integr Med 2018; 24:390-398. [PMID: 29752613 DOI: 10.1007/s11655-018-2836-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Indexed: 12/18/2022]
Abstract
Allergic asthma is thought to arise from an imbalance of immune regulation, which is characterized by the production of large quantities of IgE antibodies by B cells and a decrease of the interferon-γ/interleukin-4 (Th1/Th2) ratio. Certain immunomodulatory components and Chinese herbal formulae have been used in traditional herbal medicine for thousands of years. However, there are few studies performing evidence-based Chinese medicine (CM) research on the mechanisms and effificacy of these drugs in allergic asthma. This review aims to explore the roles of Chinese herbal formulae and herb-derived compounds in experimental research models of allergic asthma. We screened published modern CM research results on the experimental effects of Chinese herbal formulae and herb-derived bioactive compounds for allergic asthma and their possible underlying mechanisms in English language articles from the PubMed and the Google Scholar databases with the keywords allergic asthma, experimental model and Chinese herbal medicine. We found 22 Chinese herb species and 31 herb-derived anti-asthmatic compounds as well as 12 Chinese herbal formulae which showed a reduction of airway hyperresponsiveness, allergen-specifific immunoglobulin E, inflflammatory cell infifiltration and a regulation of Th1 and Th2 cytokines in vivo, in vitro and ex vivo, respectively. Chinese herbal formulae and herbderived bioactive compounds exhibit immunomodulatory, anti-inflflammatory and anti-asthma activities in different experimental models and their various mechanisms of action are being investigated in modern CM research with genomics, proteomics and metabolomics technologies, which will lead to a new era in the development of new drug discovery for allergic asthma in CM.
Collapse
Affiliation(s)
- Lu Liu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.,University Course of Traditional Chinese Medicine, Medical University of Vienna, A-1090, Vienna, Austria
| | - Lin-Peng Wang
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Shan He
- Molecular Research in Traditional Chinese Medicine Group, Department of Pathophysiology and Allergy Research, Vienna General Hospital, Medical University of Vienna, A-1090, Vienna, Austria
| | - Yan Ma
- University Course of Traditional Chinese Medicine, Medical University of Vienna, A-1090, Vienna, Austria. .,Molecular Research in Traditional Chinese Medicine Group, Department of Pathophysiology and Allergy Research, Vienna General Hospital, Medical University of Vienna, A-1090, Vienna, Austria.
| |
Collapse
|
10
|
Liu X, Chin JF, Qu X, Bi H, Liu Y, Yu Z, Zhai Z, Qin A, Zhang B, Dai M. The Beneficial Effect of Praeruptorin C on Osteoporotic Bone in Ovariectomized Mice via Suppression of Osteoclast Formation and Bone Resorption. Front Pharmacol 2017; 8:627. [PMID: 28955232 PMCID: PMC5601062 DOI: 10.3389/fphar.2017.00627] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/28/2017] [Indexed: 01/23/2023] Open
Abstract
Being a highly prevalent disease, osteoporosis causes metabolism defects. Low bone density, compromised bone strength, and an increased danger of fragility fracture are its main characteristics. Natural compounds have been considered as potential alternative therapeutic agents for treating osteoporosis. In this study, we demonstrated that a natural compound, praeruptorin C (Pra-C), derived from the dried roots of Peucedanum praeruptorum, has beneficial effects in suppressing osteoclast formation and resorption function via attenuating the activation of nuclear factor kappa B as well as c-Jun N-terminal kinase/mitogen-activated protein kinase signaling pathways. Moreover, Pra-C was tested in the ovariectomized (OVX) mice, a well-established model of post-menopausal bone loss, and the results indicated Pra-C exerted beneficial effects on inhibiting excessive osteoclast activity and increasing bone mass of OVX mice. Therefore, the protective effects of Pra-C on OVX mice bone are related to its inhibition of osteoclast formation and bone resorption, suggesting that Pra-C is a good potential candidate for osteoporosis treatment.
Collapse
Affiliation(s)
- Xuqiang Liu
- Department of Orthopedics, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, The First Affiliated Hospital of Nanchang UniversityNanchang, China
| | - Jie-Fen Chin
- Department of Orthopedics, Erasmus University Medical CenterRotterdam, Netherlands
| | - Xinhua Qu
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Haidi Bi
- Department of Orthopedics, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, The First Affiliated Hospital of Nanchang UniversityNanchang, China
| | - Yuan Liu
- Department of Orthopedics, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, The First Affiliated Hospital of Nanchang UniversityNanchang, China
| | - Ziqiang Yu
- Department of Orthopedics, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, The First Affiliated Hospital of Nanchang UniversityNanchang, China
| | - Zanjing Zhai
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - An Qin
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Bin Zhang
- Department of Orthopedics, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, The First Affiliated Hospital of Nanchang UniversityNanchang, China
| | - Min Dai
- Department of Orthopedics, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, The First Affiliated Hospital of Nanchang UniversityNanchang, China
| |
Collapse
|
11
|
Liu X, Chen DW, Wu X, Zhao Z, Fu ZW, Huang CT, Ye LX, Du Z, Yu Y, Fang ZZ, Sun HZ. The Inhibition of UDP-Glucuronosyltransferase (UGT) Isoforms by Praeruptorin A and B. Phytother Res 2016; 30:1872-1878. [PMID: 27534594 DOI: 10.1002/ptr.5697] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Xin Liu
- The First Affiliated Hospital of Jinzhou Medical University; Jinzhou Liaoning China
| | - Da-Wei Chen
- Department of Thyroid and Neck Tumor; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy; Huanhuxi Road, Ti-Yuan-Bei, Hexi District Tianjin 300060 China
| | - Xue Wu
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics; Chinese Academy of Sciences and the First Affiliated Hospital of Liaoning Medical University; Dalian China
| | - Zhenying Zhao
- Tianjin Union Medical Center; 190 Jieyuan Road, Hongqiao District Tianjin 300121 China
| | - Zhi-Wei Fu
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics; Chinese Academy of Sciences and the First Affiliated Hospital of Liaoning Medical University; Dalian China
| | - Chun-Ting Huang
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics; Chinese Academy of Sciences and the First Affiliated Hospital of Liaoning Medical University; Dalian China
| | - Li-Xin Ye
- Department of Radiology; The 464th Hospital of PLA; No.600 Hongqi South Rd, Nankai District Tianjin 300381 China
| | - Zuo Du
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics; Chinese Academy of Sciences and the First Affiliated Hospital of Liaoning Medical University; Dalian China
| | - Yang Yu
- Department of Thyroid and Neck Tumor; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy; Huanhuxi Road, Ti-Yuan-Bei, Hexi District Tianjin 300060 China
| | - Zhong-Ze Fang
- Department of Toxicology, School of Public Health; Tianjin Medical University; 22 Qixiangtai Road, Heping District Tianjin 300070 China
| | - Hong-Zhi Sun
- The First Affiliated Hospital of Jinzhou Medical University; Jinzhou Liaoning China
| |
Collapse
|
12
|
Lee E, Kim SG, Park NY, Park HH, Jeong KT, Choi J, Lee IH, Lee H, Kim KJ, Lee E. KOTMIN13, a Korean herbal medicine alleviates allergic inflammation in vivo and in vitro. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:169. [PMID: 27267050 PMCID: PMC4896024 DOI: 10.1186/s12906-016-1155-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/28/2016] [Indexed: 12/20/2022]
Abstract
Background The ethanol extract of KOTMIN13, composed of Inula japonica Flowers, Trichosanthes kirilowii Semen, Peucedanum praeruptorum Radix, and Allium macrostemon Bulbs, was investigated for its anti-asthmatic and anti-allergic activities. Methods The anti-asthmatic effects of KOTMIN13 were evaluated on ovalbumin (OVA)-induced murine asthma model. Anti-allergic properties of KOTMIN13 in bone-marrow derived mast cells (BMMC) and passive cutaneous anaphylaxis (PCA) in vivo were also examined. Results In asthma model, KOTMIN13 effectively suppressed airway hyperresponsiveness induced by aerosolized methacholine when compared to the levels of OVA-induced mice. KOTMIN13 treatment reduced the total leukocytes, eosinophil percentage, and Th2 cytokines in the bronchoalveolar lavage fluids in OVA-induced mice. The increased levels of eotaxin and Th2 cytokines in the lung as well as serum IgE were decreased by KOTMIN13. The histological analysis shows that the increased inflammatory cell infiltration and mucus secretion were also reduced. In addition, the degranulation and leukotriene C4 production were inhibited in BMMC with IC50 values of 3.9 μg/ml and 1.7 μg/ml, respectively. Furthermore, KOTMIN13 treatment attenuated mast-mediated PCA reaction. Conclusions These results demonstrate that KOTMIN13 has anti-asthmatic and anti-allergic effects in vivo and in vitro models.
Collapse
|
13
|
Pharmacokinetic and Metabolic Characteristics of Herb-Derived Khellactone Derivatives, A Class of Anti-HIV and Anti-Hypertensive: A Review. Molecules 2016; 21:314. [PMID: 27005602 PMCID: PMC6273974 DOI: 10.3390/molecules21030314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 02/18/2016] [Accepted: 03/02/2016] [Indexed: 12/18/2022] Open
Abstract
A vast number of structural modifications have been performed for khellactone derivatives (KDs) that have been widely concerned owing to their diverse biological properties, including anti-hypertension, anti-HIV, reversing P-glycoprotein (P-gp) mediated multidrug resistance, and anti-inflammation effects, to find the most active entity. However, extensive metabolism of KDs results in poor oral bioavailability, thus hindering the clinical trial performance of those components. The primary metabolic pathways have been revealed as hydrolysis, oxidation, acyl migration, and glucuronidation, while carboxylesterases and cytochrome P450 3A (CPY3A), as well as UDP-glucuronosyltransferases (UGTs) primarily mediate these metabolic pathways. Attention was mainly paid to the pharmacological features, therapeutic mechanisms and structure-activity relationships of KDs in previous reviews, whereas their pharmacokinetic and metabolic characteristics have seldom been discussed. In the present review, KDs' metabolism and their pharmacokinetic properties are summarized. In addition, the structure-metabolism relationships of KDs and the potential drug-drug interactions (DDIs) induced by KDs were also extensively discussed. The polarity, the acyl groups substituted at C-3' and C-4' positions, the configuration of C-3' and C-4', and the moieties substituted at C-3 and C-4 positions play the determinant roles for the metabolic profiles of KDs. Contributions from CYP3A4, UGT1A1, P-gp, and multidrug resistance-associated protein 2 have been disclosed to be primary for the potential DDIs. The review is expected to provide meaningful information and helpful guidelines for the further development of KDs.
Collapse
|
14
|
Lee J, Lee YJ, Kim J, Bang OS. Pyranocoumarins from Root Extracts of Peucedanum praeruptorum Dunn with Multidrug Resistance Reversal and Anti-Inflammatory Activities. Molecules 2015; 20:20967-78. [PMID: 26610461 PMCID: PMC6332054 DOI: 10.3390/molecules201219738] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/10/2015] [Accepted: 11/17/2015] [Indexed: 01/11/2023] Open
Abstract
In the search for novel herbal-based anticancer agents, we isolated a new angular-type pyranocoumarin, (+)-cis-(3′S,4′S)-3′-angeloyl-4′-tigloylkhellactone (1) along with 12 pyranocoumarins (2–13), two furanocoumarins (14, 15), and a polyacetylene (16) were isolated from the roots of Peucedanum praeruptorum using chromatographic separation methods. The structures of the compounds were determined using spectroscopic analysis with nuclear magnetic resonance (NMR) and high-resolution-electrospray ionization-mass spectrometry (HR-ESI-MS). The multidrug-resistance (MDR) reversal and anti-inflammatory effects of all the isolated compounds were evaluated in human sarcoma MES-SA/Dx5 and lipopolysaccharide (LPS)-induced RAW 264.7 cells. Among the 16 tested compounds, two (2 and 16) downregulated nitric oxide (NO) production and five (1, 7, 8, 11, and 13) inhibited the efflux of drugs by MDR protein, indicating the reversal of MDR. Therefore, these compounds may be potential candidates for the development of effective agents against MDR forms of cancer.
Collapse
Affiliation(s)
- Jun Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
- Korean Medicine Life Science, University of Science & Technology, Daejeon 34054, Korea.
| | - You Jin Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Jinhee Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Ok-Sun Bang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| |
Collapse
|
15
|
Yu Q, Ma L, Shen Y, Zhai W, Zhou Y. [Effect of angular pyranocoumarin isolated from peucedanum praeruptorum on the proliferation and apoptosis of U266 cells]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2015; 36:937-41. [PMID: 26632467 PMCID: PMC7342426 DOI: 10.3760/cma.j.issn.0253-2727.2015.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To investigate the effects of angular pyranocoumarin (±) -4'-O- acetyl-3'-Oangeloyl- cis- khellactone (APC) extracted from peucedanum praeruptoruon on the proliferation and apoptosis of U266 cells, and to explore its related mechanism. METHODS APC was extracted by petroleum ether technique, and its purity was tested by high performance liquid chromatography, and its chemical structure was identified by magnetic resonance spectroscopy. U266 cells were treated with APC in various concentrations (0, 10, 20, 30, 40 μg/ml)for different durations(24 and 48 h). The inhibitive effect of APC on cell growth was detected by CCK-8 method. After U266 cells were incubated with APC(0, 10, 20, 30, 40 μg/ml)for 24 h, the apoptosis of cells were observed by flow cytometry stained with Annexin Ⅴ/PI and Hochest33342; the expression levels of caspase-3, 8, ERK, p-ERK, AKT and p-AKT protein were assayed by Western blot; the expression of hTERT mRNA was measured by RT-PCR. RESULTS The purity of APC identified by magnetic resonance imaging was 98.8%. The proliferation of U266 cells was inhibited, and the apoptosis was induced in a time- and/or dose- dependent manner after treatment with APC. APC could upregulate the caspase- 8, 3 protein expression and downregulate the p- ERK, p-AKT protein expression along with the increase of APC dose. APC also could downregulate the hTERT mRNA expression. CONCLUSION Angular pyranocoumarin APC could inhibit the proliferation and induce the apoptosis of U266 cells. The probable mechanism might be achieved by upregulating caspase-8, 3 protein expression and downregulating p-ERK, P-AKT protein and the hTERT mRNA expression.
Collapse
Affiliation(s)
- Qinghong Yu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Li Ma
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yiping Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | | | - Yuhong Zhou
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| |
Collapse
|
16
|
Li J, Zhang F, Li J. The Immunoregulatory Effects of Traditional Chinese Medicine on Treatment of Asthma or Asthmatic Inflammation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:1059-81. [PMID: 26364661 DOI: 10.1142/s0192415x15500615] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Asthma is a chronic respiratory symptoms with variable airflow limitation and airway hyperresponsiveness (AHR), and causes high economic burden. Traditional Chinese medicine (TCM) has a long-lasting history of using herbal medicine in the treatment of various respiratory diseases including asthma. In the last several decades, an increasing number of herbs have been shown to be effective in the treatment of asthma in clinical trials or asthmatic inflammation in animal models. Literature about the effects of TCM on the immune system were searched in electronic databases such as PubMed, Google Scholar and Scopus from 2000 to 2014. 'TCM' and 'asthma' were used as keywords for the searches. Over 400 literatures were searched and the literatures about the immune system were selected and reviewed. We only reviewed literatures published in English. Accumulating evidence suggests that TCM can directly inhibit the activation and migration of inflammatory cells, regulate the balance of Th1/Th2 responses, and suppress allergic hyperreactivity through inducing regulatory T cells or attenuating the function of dendritic cells (DCs). These studies provided useful information to facilitate the use of TCM to treat asthma. This review was conducted to classify the findings based on their possible mechanisms of action reported.
Collapse
Affiliation(s)
- Jinyu Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Fuchun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
17
|
Xu C, Luo M, Jiang H, Yu L, Zeng S. Involvement of CAR and PXR in the transcriptional regulation of CYP2B6 gene expression by ingredients from herbal medicines. Xenobiotica 2015; 45:773-81. [DOI: 10.3109/00498254.2015.1020076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Sarkhail P. Traditional uses, phytochemistry and pharmacological properties of the genus Peucedanum: a review. JOURNAL OF ETHNOPHARMACOLOGY 2014; 156:235-70. [PMID: 25193684 DOI: 10.1016/j.jep.2014.08.034] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/25/2014] [Accepted: 08/25/2014] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Peucedanum (Apiaceae) comprising more than 120 species is widely distributed in Europe, Asia and Africa. The ethnopharmacologial history of this genus indicated that some extracts of aerial and underground parts of several Peucedanum species have been used in folk medicine for treatment of various conditions, such as cough, cramps, pain, rheumatism, asthma and angina. This review focuses on ethnopharmacological uses of Peucedanum species, as well as the phytochemical, pharmacological and toxicological studies on this genus. Through this review, I intend to highlight the known and potential effects of the Peucedanum species or their isolated compounds and show which traditional medicine uses have been supported by pharmacological investigations. METHODS Information on the Peucedanum species was collected from scientific journals, books, thesis and reports via a library and electronic search (using Google Scholar, Pubmed, Scopus, Web of Science and ScienceDirect). This review covers the available literature from 1970 to the end of September 2013. RESULTS Although, there are about 120 species in this genus, so far many species have received no or little attention and most of pharmacological studies were performed on just about 20 species. Many phytochemical investigations on this genus confirmed that Peucedanum species are rich in essential oils and coumarins. The present review article shows that Peucedanum species have a wide spectrum of pharmacological activities and the most reported activities of Peucedanum plants come back to the presence of coumarins, flavonoids, phenolics and essential oils. CONCLUSIONS The present review confirms that some Peucedanum species have emerged as a good source of the traditional medicine for treatment of inflammation, microbial infections, cardiopulmonary diseases and provides new insights for further investigations on isolated compounds, especially on praeruptorins, to find novel therapeutics and aid drug discovery. However, for using Peucedanum species to prevent and treat various diseases, additional pharmacological studies to find the mechanism of action, safety and efficacy of them before starting clinical trials are required.
Collapse
Affiliation(s)
- Parisa Sarkhail
- Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, 16th Azar Street, PO Box 14155-6451, Tehran 14176, Iran.
| |
Collapse
|
19
|
Xiong Y, Wang J, Yu H, Zhang X, Miao C, Ma S. The effects of nodakenin on airway inflammation, hyper-responsiveness and remodeling in a murine model of allergic asthma. Immunopharmacol Immunotoxicol 2014; 36:341-8. [PMID: 25090633 DOI: 10.3109/08923973.2014.947035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CONTEXT Nodakenin is a major coumarin glucoside in the root of Peucedanum decursivum Maxim, a commonly used traditional Chinese medicine for the treatment of asthma and chronic bronchitis for thousands of years. OBJECTIVE In this work, the anti-asthma potential of nodakenin was studied by investigation of its effect to suppress airway inflammation, hyper-responsiveness and remodeling in a murine model of chronic asthma. MATERIALS AND METHODS BALB/c mice sensitized to ovalbumin (OVA) were challenged with aerosolized OVA for 8 weeks, orally administered with nodakenin at doses of 5, 10 and 20 mg/kg before each OVA challenge. RESULTS Compared with the model group, nodakenin treatment markedly inhibited airway inflammation, hyper-responsiveness and remodeling, showing improvement in subepithelial fibrosis, smooth muscle hypertrophy, and goblet cell hyperplasia, and decreased levels of interleukin (IL)-4, IL-5, IL-13 and matrix metalloproteinase-2/-9 in bronchoalveolar lavage fluid, and the level of OVA-specific IgE in serum. In addition, the NF-κB DNA-binding activity in lung tissues was also reduced by nodakenin treatment. CONCLUSIONS These data indicated that nodakenin might mitigate the development of chronic experimental allergic asthma.
Collapse
Affiliation(s)
- Youyi Xiong
- College of Food and Drug, Anhui Science and Technology University , Fengyang, Anhui , People's Republic of China and
| | | | | | | | | | | |
Collapse
|
20
|
Anti-inflammatory effects of diethylcarbamazine: A review. Eur J Pharmacol 2014; 734:35-41. [DOI: 10.1016/j.ejphar.2014.03.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/19/2014] [Accepted: 03/24/2014] [Indexed: 12/31/2022]
|
21
|
1H nuclear magnetic resonance based-metabolomic characterization of Peucedani Radix and simultaneous determination of praeruptorin A and praeruptorin B. J Pharm Biomed Anal 2014; 93:86-94. [DOI: 10.1016/j.jpba.2013.08.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/18/2013] [Accepted: 08/20/2013] [Indexed: 01/04/2023]
|
22
|
Wenjie W, Houqing L, Liming S, Ping Z, Gengyun S. Effects of praeruptorin C on blood pressure and expression of phospholamban in spontaneously hypertensive rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:195-198. [PMID: 24075213 DOI: 10.1016/j.phymed.2013.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 07/25/2013] [Accepted: 08/23/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND The traditional Chinese medicine Praeruptorin c (Pra-c) has many physiological and pharmacological effects, including antagonistic effects on blood pressure and calcium levels, maintenance of cellular calcium homeostasis, and improved cardiac systolic and diastolic function. It is potentially a novel and versatile drug for the treatment and prevention of cardiovascular diseases. OBJECTIVE To explore the possible impact of Pra-c on blood pressure in SHR and its mechanism of action. MATERIALS AND METHODS Twenty SHR were randomly divided into a Pra-c group [Pra-c was administered intragastrically, 20 mg kg(-1) d(-1), n=10] or an untreated control group (n=10), containing 10 age-matched SD rats. Each group of rats was followed for 8 weeks. Before and during the treatment, tail artery systolic blood pressure was measured using a tail-cuff every 2 weeks. After 8 weeks, the rats were sacrificed and RNA was extracted from homogenates of cardiac tissue. Tissue from the left ventricle was fixed, sectioned and H&E stained to assess possible changes in myocardial cell structure and morphology. Semi-quantitative RT-PCR was used to assess changes in phospholamban gene expression in treated and untreated rats. RESULTS SHR treated with Pra-c for 8 weeks had a lower systolic pressure than untreated SHR (p<0.05), two measures of cardiac damage, the heart mass index and left ventricle mass index (HMI and LVMI, respectively) were improved, and the level of PLB mRNA expression was lower in the untreated SHR group (p<0.05). DISCUSSION AND CONCLUSION With continuous hypertension, SHR gradually formed or developed cardiac hypertrophy and fibrosis. Pra-c had a clear effect on blood pressure in SHR, and reversed SHR ventricular remodeling by upregulating the gene expression of sarcoplasmic reticulum PLB.
Collapse
Affiliation(s)
- Wang Wenjie
- Tongling Clinical College of Anhui Medical University, Tongling, Anhui 244000, China
| | - Lu Houqing
- Tongling Clinical College of Anhui Medical University, Tongling, Anhui 244000, China
| | - Sun Liming
- Lianyungang Hospital Affiliated to Bengbu Medical College, Lianyungang, Jiangsu 233003, China
| | - Zhong Ping
- Tongling Clinical College of Anhui Medical University, Tongling, Anhui 244000, China
| | - Sun Gengyun
- The First Affiliated Hospital of Medical University of Anhui, Hefei, Anhui 230022, China.
| |
Collapse
|
23
|
Biological activities and pharmacokinetics of praeruptorins from Peucedanum species: a systematic review. BIOMED RESEARCH INTERNATIONAL 2013; 2013:343808. [PMID: 24371820 PMCID: PMC3858972 DOI: 10.1155/2013/343808] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 09/02/2013] [Accepted: 09/22/2013] [Indexed: 01/06/2023]
Abstract
Praeruptorins belonging to the angular-type pyranocoumarins are bioactive constituents that have been isolated from some Peucedanum species such as P. praeruptorum, which is used in traditional Chinese medicine for treatment of cold, cough, upper respiratory infections, and so forth. Many reports have demonstrated that the beneficial pharmacological effects of P. praeruptorum root on cardiovascular, pulmonary, immune, and nervous system diseases were attributed to the presence of praeruptorins. The aim of this review is to explain the recent efforts of scientists in pharmacological screening of natural and synthetic praeruptorin derivatives, studying the mechanisms of some praeruptorins action, pharmacokinetics, toxicity, and relevant structure-activity relationships. Based on reported data about the pharmacological properties of praeruptorins and semisynthetic derivatives of them, it is hopeful that in the near future more studies focus on the discovery of the new application and therapeutic uses of these bioactive compounds and understanding the specific mechanisms of them. The present discusses the reports on molecular and biological activities of praeruptorins of the genus Peucedanum, from 1976 onwards.
Collapse
|
24
|
Metabolic characterization of (±)-praeruptorin A in vitro and in vivo by high performance liquid chromatography coupled with hybrid triple quadrupole-linear ion trap mass spectrometry and time-of-flight mass spectrometry. J Pharm Biomed Anal 2013; 90:98-110. [PMID: 24342524 DOI: 10.1016/j.jpba.2013.10.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 10/05/2013] [Accepted: 10/07/2013] [Indexed: 11/22/2022]
Abstract
(±)-Praeruptorin A (PA) is the major bioactive component in Peucedani Radix (Chinese name: Qian-hu), and exhibits dramatically anti-hypertensive effect typically through acting as a calcium channel blocker. The current study aims on the characterization of the metabolic profiles of PA in vitro and in vivo using high performance liquid chromatography (HPLC) coupled with hybrid triple quadrupole-linear ion trap mass spectrometry (Q-trap-MS) and time-of-flight mass spectrometry (TOF-MS). A total of 12 phase I metabolites (M1-12) in rat liver microsomes (RLMs), 9 phase I metabolites (M1-3, M5-6 and M9-12) in human liver microsomes (HLMs), 2 hydrolyzed products in rat plasma (M11 and M12), none metabolite in human plasma, none metabolite in rat intestinal bacteria, 7 metabolites (M1, M4-7, M13 and M15) in PA-treated rat urine and 6 metabolites (M1, M4-7 and M15) in PA-treated feces were detected and tentatively identified using predictive multiple reaction monitoring-information dependent acquisition-enhanced product ion (predictive MRM-IDA-EPI) mode in combination with enhanced mass spectrum-information dependent acquisition-enhanced product ion (EMS-IDA-EPI) mode in the mass spectrometer domain, respectively, while TOF-MS was adopted to confirm the identification. Further, 2 glucuronidated metabolites (M13-14) in RLMs and none metabolite in HLMs of cis-khellactone (CKL), which was the main actual form of PA in vivo, were generated, while its sulfated product was not observed in either rat liver S9 fractions (RS9) or human liver S9 fractions (HS9). Oxidation, hydrolysis, intra-molecular acyl migration and glucuronidation were demonstrated to be the predominant metabolic types for PA in vitro and in vivo. Judging from the decrement of peak areas, PA was metabolized quickly in both RLMs and HLMs, indicating extensively hepatic first-pass elimination. Taken together, the metabolic fates of (±)-praeruptorin A in vitro and in vivo were elucidated in current study, and Q-trap-MS coupled with LightSight™ software can be adopted as a useful tool for quick detection and identification of metabolites in complex biological matrices.
Collapse
|
25
|
Yu PJ, Li JR, Zhu ZG, Kong HY, Jin H, Zhang JY, Tian YX, Li ZH, Wu XY, Zhang JJ, Wu SG. Praeruptorin D and E attenuate lipopolysaccharide/hydrochloric acid induced acute lung injury in mice. Eur J Pharmacol 2013; 710:39-48. [DOI: 10.1016/j.ejphar.2013.03.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 03/22/2013] [Accepted: 03/28/2013] [Indexed: 11/16/2022]
|