1
|
Cosola C, Sabatino A, di Bari I, Fiaccadori E, Gesualdo L. Nutrients, Nutraceuticals, and Xenobiotics Affecting Renal Health. Nutrients 2018; 10:nu10070808. [PMID: 29937486 PMCID: PMC6073437 DOI: 10.3390/nu10070808] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) affects 8–16% of the population worldwide. In developed countries, the most important risk factors for CKD are diabetes, hypertension, and obesity, calling into question the importance of educating and acting on lifestyles and nutrition. A balanced diet and supplementation can indeed support the maintenance of a general health status, including preservation of renal function, and can help to manage and curb the main risk factors for renal damage. While the concept of protein and salt restriction in nephrology is historically acknowledged, the role of some nutrients in renal health and the importance of nutrition as a preventative measure for renal care are less known. In this narrative review, we provide an overview of the demonstrated and potential actions of some selected nutrients, nutraceuticals, and xenobiotics on renal health and function. The direct and indirect effects of fiber, protein, fatty acids, curcumin, steviol glycosides, green tea, coffee, nitrates, nitrites, and alcohol on kidney health are reviewed here. In view of functional and personalized nutrition, understanding the renal and systemic effects of dietary components is essential since many chronic conditions, including CKD, are related to systemic dysfunctions such as chronic low-grade inflammation.
Collapse
Affiliation(s)
- Carmela Cosola
- Department of Emergency and Organ Transplantation-Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Alice Sabatino
- Department of Medicine and Surgery, Parma University Medical School, 43126 Parma, Italy.
| | - Ighli di Bari
- Department of Emergency and Organ Transplantation-Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Enrico Fiaccadori
- Department of Medicine and Surgery, Parma University Medical School, 43126 Parma, Italy.
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation-Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, 70124 Bari, Italy.
| |
Collapse
|
2
|
Turolo S, Edefonti A, Syren ML, Marangoni F, Morello W, Agostoni C, Montini G. Fatty Acids in Nephrotic Syndrome and Chronic Kidney Disease. J Ren Nutr 2017; 28:145-155. [PMID: 29153556 DOI: 10.1053/j.jrn.2017.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 12/14/2022] Open
Abstract
The role of fatty acids (FAs) in inflammation and in the related chronic diseases has been demonstrated. However, there is a lack of consistent and agreed knowledge about the role of FA profile and renal physiology and pathology, most articles focusing on the effect of polyunsaturated FAs supplementation, without considering the impact of basal FA metabolism on the efficacy of the supplementation. Here, we have summarized the specific literature concerning the assessment of circulating FA in 2 renal diseases, namely nephrotic syndrome and chronic kidney disease, also under hemodialytic treatment, and have received the most significant contributions in the last years. The effects of changes of FA profile and metabolism and the possible involvement of polyunsaturated FA metabolites in raising and modulating inflammation are discussed.
Collapse
Affiliation(s)
- Stefano Turolo
- Pediatric Department of Nephrology Dialysis and Transplantation, IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Alberto Edefonti
- Pediatric Department of Nephrology Dialysis and Transplantation, IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marie Louise Syren
- Pediatric Clinic IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | - William Morello
- Pediatric Department of Nephrology Dialysis and Transplantation, IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Carlo Agostoni
- Pediatric Clinic IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giovanni Montini
- Pediatric Department of Nephrology Dialysis and Transplantation, IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Pediatric Clinic IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
3
|
Qiu Z, Zhang S, Li A, Yu J, Li N, Huang F, Liu B. The role of curcumin in disruption of HIF-1α accumulation to alleviate adipose fibrosis via AMPK-mediated mTOR pathway in high-fat diet fed mice. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.03.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
4
|
Zhang K, Liu Y, Liu X, Chen J, Cai Q, Wang J, Huang H. Apocynin improving cardiac remodeling in chronic renal failure disease is associated with up-regulation of epoxyeicosatrienoic acids. Oncotarget 2016; 6:24699-708. [PMID: 26322503 PMCID: PMC4694789 DOI: 10.18632/oncotarget.5084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/07/2015] [Indexed: 12/28/2022] Open
Abstract
Cardiac remodeling is one of the most common cardiac abnormalities and associated with a high mortality in chronic renal failure (CRF) patients. Apocynin, a nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase inhibitor, has been showed cardio-protective effects. However, whether apocynin can improve cardiac remodeling in CRF and what is the underlying mechanism are unclear. In the present study, we enrolled 94 participants. In addition, we used 5/6 nephrectomized rats to mimic cardiac remodeling in CRF. Serum levels of epoxyeicosatrienoic acids (EETs) and its mainly metabolic enzyme-soluble epoxide hydrolase (sEH) were measured. The results showed that the serum levels of EETs were significantly decreased in renocardiac syndrome participants (P < 0.05). In 5/6 nephrectomized CRF model, the ratio of left ventricular weight / body weight, left ventricular posterior wall thickness, and cardiac interstitial fibrosis were significantly increased while ejection fraction significantly decreased (P < 0.05). All these effects could partly be reversed by apocynin. Meanwhile, we found during the process of cardiac remodeling in CRF, apocynin significantly increased the reduced serum levels of EETs and decreased the mRNA and protein expressions of sEH in the heart (P < 0.05). Our findings indicated that the protective effect of apocynin on cardiac remodeling in CRF was associated with the up-regulation of EETs. EETs may be a new mediator for the injury of kidney-heart interactions.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, China
| | - Yu Liu
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530000, China
| | - Xiaoqiang Liu
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jie Chen
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, China.,Department of Radiation Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qingqing Cai
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jingfeng Wang
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, China
| | - Hui Huang
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, China
| |
Collapse
|
5
|
Hernández-Reséndiz S, Correa F, García-Niño WR, Buelna-Chontal M, Roldán FJ, Ramírez-Camacho I, Delgado-Toral C, Carbó R, Pedraza-Chaverrí J, Tapia E, Zazueta C. Cardioprotection by curcumin post-treatment in rats with established chronic kidney disease. Cardiovasc Drugs Ther 2016; 29:111-20. [PMID: 25779825 DOI: 10.1007/s10557-015-6581-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE The pathogenic mechanisms leading to cardiovascular disorders in patients with chronic kidney disease have not been clearly established, although increased oxidative stress has been pointed out as a potential cause. Therefore, as cardiovascular events are still the first cause of death in patients with chronic kidney disease and traditional drugs or therapies rarely have effects on cardiac complications, we sought to determine the effect of curcumin in treating cardiac dysfunction in rats with established chronic renal disease. METHODS AND RESULTS Treatment consisted in daily administration of curcumin (120 mg/kg/day) dissolved in 0.05% carboxymethylcellulose via oral gavages during 30 days, beginning from day 30 after 5/6 nephrectomy (5/6Nx). Cardiac function, markers of oxidative stress, activation of PI3K/Akt/GSK3β and MEK1/2-ERK1/2 pathway, metalloproteinase-II (MMP-2) content, overall gelatinolytic activity, ROS production and mitochondrial integrity were evaluated after 1-month treatment. Curcumin restored systolic blood pressure, diminished interventricular and rear wall thickening, decreased left ventricle dimension at end-systole (LVSd) and restored ejection fraction in nephrectomized rats. Also, it diminished metalloproteinase-II levels and overall gelatinase activity, decreased oxidative stress and inhibited the mitochondrial permeability transition pore opening. CONCLUSION Our findings suggest that curcumin might have therapeutic potential in treatment of heart disease in patients with established CKD by attenuating oxidative stress-related events as cardiac remodeling, mitochondrial dysfunction and cell death.
Collapse
Affiliation(s)
- Sauri Hernández-Reséndiz
- Department of Cardiovascular Biomedicine, National Institute of Cardiology I. Ch, Juan Badiano No. 1. Colonia Sección XVI, México, 14080, DF, Mexico
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Červenka L, Melenovský V, Husková Z, Škaroupková P, Nishiyama A, Sadowski J. Inhibition of soluble epoxide hydrolase counteracts the development of renal dysfunction and progression of congestive heart failure in Ren-2 transgenic hypertensive rats with aorto-caval fistula. Clin Exp Pharmacol Physiol 2015; 42:795-807. [DOI: 10.1111/1440-1681.12419] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/27/2015] [Accepted: 05/01/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Luděk Červenka
- Centre for Experimental Medicine; Institute for Clinical and Experimental Medicine; Prague Czech Republic
- Department of Pathophysiology; 2nd Faculty of Medicine; Charles University; Prague Czech Republic
| | - Vojtěch Melenovský
- Department of Cardiology; Institute for Clinical and Experimental Medicine; Prague Czech Republic
| | - Zuzana Husková
- Centre for Experimental Medicine; Institute for Clinical and Experimental Medicine; Prague Czech Republic
| | - Petra Škaroupková
- Centre for Experimental Medicine; Institute for Clinical and Experimental Medicine; Prague Czech Republic
| | | | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology; M. Mossakowski Medical Research Centre; Polish Academy of Science; Warsaw Poland
| |
Collapse
|
7
|
Červenka L, Melenovský V, Husková Z, Sporková A, Bürgelová M, Škaroupková P, Hwang SH, Hammock BD, Imig JD, Sadowski J. Inhibition of soluble epoxide hydrolase does not improve the course of congestive heart failure and the development of renal dysfunction in rats with volume overload induced by aorto-caval fistula. Physiol Res 2015; 64:857-73. [PMID: 26047375 DOI: 10.33549/physiolres.932977] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The detailed mechanisms determining the course of congestive heart failure (CHF) and associated renal dysfunction remain unclear. In a volume overload model of CHF induced by creation of aorto-caval fistula (ACF) in Hannover Sprague-Dawley (HanSD) rats we explored the putative pathogenetic contribution of epoxyeicosatrienoic acids (EETs), active products of CYP-450 dependent epoxygenase pathway of arachidonic acid metabolism, and compared it with the role of the renin-angiotensin system (RAS). Chronic treatment with cis-4-[4-(3-adamantan-1-yl-ureido) cyclohexyloxy]benzoic acid (c-AUCB, 3 mg/l in drinking water), an inhibitor of soluble epoxide hydrolase (sEH) which normally degrades EETs, increased intrarenal and myocardial EETs to levels observed in sham-operated HanSD rats, but did not improve the survival or renal function impairment. In contrast, chronic angiotensin-converting enzyme inhibition (ACEi, trandolapril, 6 mg/l in drinking water) increased renal blood flow, fractional sodium excretion and markedly improved survival, without affecting left ventricular structure and performance. Hence, renal dysfunction rather than cardiac remodeling determines long-term mortality in advanced stage of CHF due to volume overload. Strong protective actions of ACEi were associated with suppression of the vasoconstrictor/sodium retaining axis and activation of vasodilatory/natriuretic axis of the renin-angiotensin system in the circulating blood and kidney tissue.
Collapse
Affiliation(s)
- L Červenka
- Department of Pathophysiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Deletion of soluble epoxide hydrolase attenuates cardiac hypertrophy via down-regulation of cardiac fibroblasts-derived fibroblast growth factor-2. Crit Care Med 2014; 42:e345-54. [PMID: 24448199 DOI: 10.1097/ccm.0000000000000226] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Inhibition of soluble epoxide hydrolase (Ephx2) has been shown to play a protective role in cardiac hypertrophy, but the mechanism is not fully understood. We tested the hypothesis that deletion of soluble epoxide hydrolase attenuates cardiac hypertrophy via down-regulation of cardiac fibroblasts-derived fibroblast growth factor-2. DESIGN Prospective, controlled, and randomized animal study. SETTING University laboratory. SUBJECTS Male wild-type C57BL/6 mice and Ephx2 (-/-) mice. INTERVENTIONS Male wild-type or Ephx2 (-/-) mice were subjected to transverse aorta constriction surgery. MEASUREMENTS AND MAIN RESULTS Four weeks after transverse aorta constriction, Ephx2 (-/-) mice did not develop significant cardiac hypertrophy as that of wild-type mice, indicated by no changes in the ratio of heart weight/body weight and ventricular wall thickness after transverse aorta constriction. Cardiac fibroblast growth factor-2 increased in wild-type-transverse aorta constriction group but this did not change in Ephx2 (-/-)-transverse aorta constriction group, and the serum level of fibroblast growth factor-2 did not change in both groups. In vitro, cardiac fibroblasts were stimulated by angiotensin II to analyze the expression of fibroblast growth factor-2. The effect of increased fibroblast growth factor-2 from cardiac fibroblasts induced by angiotensin II was attenuated by soluble epoxide hydrolase deletion. ERK1/2, p38, and AKT kinase were involved in fibroblast growth factor-2 expression regulated by angiotensin II, and soluble epoxide hydrolase deletion lowered the phosphorylation of ERK1/2 not p38 or AKT to mediate fibroblast growth factor-2 expression. In addition, soluble epoxide hydrolase deletion did not attenuate cardiomyocytes hypertrophy induced by exogenous fibroblast growth factor-2. CONCLUSIONS Our present data demonstrated that deletion of soluble epoxide hydrolase prevented cardiac hypertrophy not only directly to cardiomyocytes but also to cardiac fibroblasts by reducing expression of fibroblast growth factor-2.
Collapse
|
9
|
Aspromonte N, Monitillo F, Puzzovivo A, Valle R, Caldarola P, Iacoviello M. Modulation of cardiac cytochrome P450 in patients with heart failure. Expert Opin Drug Metab Toxicol 2014; 10:327-339. [PMID: 24387291 DOI: 10.1517/17425255.2014.872240] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION There is increasing evidence that cytochrome P450 (CYP) plays a role in the onset, progression and prognosis of cardiovascular disease (CVD), in particular, heart failure (HF). The importance of CYP enzymes in cardiovascular physiology derives from their ability to metabolize arachidonic acid to epoxyeicosatrienoic and hydroxyeicosatetraenoic acids, which are involved in the maintenance of cardiovascular health, including the regulation of vascular tone, cardiac ion channels and heart contractility. Moreover, CYP plays a central role in the Phase I metabolism of drugs and other xenobiotics. Inter-individual variability in expression and function of CYP enzymes is a major factor accounting for individual susceptibility to drug response. AREAS COVERED This review focuses on current knowledge of the role of CYP enzymes and their metabolites in the pathogenesis of CVD, in particular, HF. The role of CYP enzymes in affecting individual response to cardiovascular drugs is also discussed. The literature search was performed using the PubMed database. EXPERT OPINION More research is needed to elucidate the mechanisms by which CYP affects the pathophysiology of HF and also the mechanism by which HF alters cardiac and hepatic CYP enzymes.
Collapse
Affiliation(s)
- Nadia Aspromonte
- San Filippo Neri Hospital, Department of Cardiology , Via Martinotti 20, 00135 Rome , Italy +39 06 33062294 ; +39 06 33062489 ;
| | | | | | | | | | | |
Collapse
|