1
|
Hosseini Nasab N, Raza H, Eom YS, Shah FH, Kwak JH, Kim SJ. Exploring chalcone-sulfonyl piperazine hybrids as anti-diabetes candidates: design, synthesis, biological evaluation, and molecular docking study. Mol Divers 2025; 29:43-59. [PMID: 38775996 DOI: 10.1007/s11030-024-10831-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/25/2024] [Indexed: 02/02/2025]
Abstract
To address the escalating rates of diabetes mellitus worldwide, there is a growing need for novel compounds. The demand for more affordable and efficient methods of managing diabetes is increasing due to the inevitable side effects associated with existing antidiabetic medications. In this present research, various chalcone-sulfonyl piperazine hybrid compounds (5a-k) were designed and synthesized to develop inhibitors against alpha-glucosidase and alpha-amylase. In addition, several spectroscopic methods, including FT-IR, 1H-NMR, 13C-NMR, and HRMS, were employed to confirm the exact structures of the synthesized derivatives. All synthesized compounds were evaluated for their ability to inhibit alpha-glucosidase and alpha-amylase in vitro using acarbose as the reference standard and they showed excellent to good inhibitory potentials. Compound 5k exhibited excellent inhibitory activity against alpha-glucosidase (IC50 = 0.31 ± 0.01 µM) and alpha-amylase (IC50 = 4.51 ± 1.15 µM), which is 27-fold more active against alpha-glucosidase and 7-fold more active against alpha-amylase compared to acarbose, which had IC50 values of 8.62 ± 1.66 µM for alpha-glucosidase and 30.97 ± 2.91 µM for alpha-amylase. It was discovered from the Lineweaver-Burk plot that 5k exhibited competitive inhibition against alpha-glucosidase. Furthermore, cytotoxicity screening assay results against human fibroblast HT1080 cells showed that all compounds had a good level of safety profile. To explore the binding interactions of the most potent compound (5k) with the active site of enzymes, molecular docking research was conducted, and the results obtained supported the experimental data.
Collapse
Affiliation(s)
- Narges Hosseini Nasab
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, 32588, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Hussain Raza
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, 32588, Republic of Korea
| | - Young Seok Eom
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, 32588, Republic of Korea
| | - Fahad Hassan Shah
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, 32588, Republic of Korea
| | - Jae-Hwan Kwak
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Song Ja Kim
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, 32588, Republic of Korea.
| |
Collapse
|
2
|
You Y, Zhu K, Wang J, Liang Q, Li W, Wang L, Guo B, Zhou J, Feng X, Shi J. ROCK inhibitor: Focus on recent updates. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
3
|
Multitargeting the Action of 5-HT 6 Serotonin Receptor Ligands by Additional Modulation of Kinases in the Search for a New Therapy for Alzheimer's Disease: Can It Work from a Molecular Point of View? Int J Mol Sci 2022; 23:ijms23158768. [PMID: 35955902 PMCID: PMC9368844 DOI: 10.3390/ijms23158768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/26/2022] Open
Abstract
In view of the unsatisfactory treatment of cognitive disorders, in particular Alzheimer’s disease (AD), the aim of this review was to perform a computer-aided analysis of the state of the art that will help in the search for innovative polypharmacology-based therapeutic approaches to fight against AD. Apart from 20-year unrenewed cholinesterase- or NMDA-based AD therapy, the hope of effectively treating Alzheimer’s disease has been placed on serotonin 5-HT6 receptor (5-HT6R), due to its proven, both for agonists and antagonists, beneficial procognitive effects in animal models; however, research into this treatment has so far not been successfully translated to human patients. Recent lines of evidence strongly emphasize the role of kinases, in particular microtubule affinity-regulating kinase 4 (MARK4), Rho-associated coiled-coil-containing protein kinase I/II (ROCKI/II) and cyclin-dependent kinase 5 (CDK5) in the etiology of AD, pointing to the therapeutic potential of their inhibitors not only against the symptoms, but also the causes of this disease. Thus, finding a drug that acts simultaneously on both 5-HT6R and one of those kinases will provide a potential breakthrough in AD treatment. The pharmacophore- and docking-based comprehensive literature analysis performed herein serves to answer the question of whether the design of these kind of dual agents is possible, and the conclusions turned out to be highly promising.
Collapse
|
4
|
Tan C, Yang SJ, Zhao DH, Li J, Yin LQ. Antihypertensive activity of indole and indazole analogues: A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
5
|
Uppulapu SK, Alam MJ, Kumar S, Banerjee SK. Indazole and its Derivatives in Cardiovascular Diseases: Overview, Current Scenario, and Future Perspectives. Curr Top Med Chem 2022; 22:1177-1188. [PMID: 34906057 PMCID: PMC10782885 DOI: 10.2174/1568026621666211214151534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022]
Abstract
Indazoles are a class of heterocyclic compounds with a bicyclic ring structure composed of a pyrazole ring and a benzene ring. Indazole-containing compounds with various functional groups have important pharmacological activities and can be used as structural motifs in designing novel drug molecules. Some of the indazole-containing molecules are approved by FDA and are already in the market. However, very few drugs with indazole rings have been developed against cardiovascular diseases. This review aims to summarize the structural and pharmacological functions of indazole derivatives which have shown efficacy against cardiovascular pathologies in experimental settings.
Collapse
Affiliation(s)
- Shravan Kumar Uppulapu
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, India
| | - Md. Jahangir Alam
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, India
| | - Santosh Kumar
- Department of Cardiovascular Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Sanjay Kumar Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, India
| |
Collapse
|
6
|
Xu H, Shen Y, Liang C, Wang H, Huang J, Xue P, Luo M. Inhibition of the mevalonate pathway improves myocardial fibrosis. Exp Ther Med 2021; 21:224. [PMID: 33603833 PMCID: PMC7851600 DOI: 10.3892/etm.2021.9655] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
The mevalonate (MVA) pathway serves an important role in ventricular remodeling. Targeting the MVA pathway has protective effects against myocardial fibrosis. The present study aimed to investigate the mechanism behind these effects. Primary cultured cardiac fibroblasts from C57BL/6 mice were treated in vitro in 5 groups: i) negative control; ii) angiotensin II (Ang II) model (1x10-5 mol/l); iii) Ang II + rosuvastatin (ROS); iv) Ang II + alendronate (ALE); and v) Ang II + fasudil (FAS). Collagen and crystal violet staining were used to assess morphological changes in cardiac fibroblasts. Reverse transcription quantitative PCR and western blotting were used to analyze the expression of key signaling molecules involved in the MVA pathway. Collagen staining in the ALE, FAS, and ROS groups was weak compared with the Ang II group, while the rate of cell proliferation in the ROS, ALE, and FAS groups was slower compared with that in the Ang II group. In addition, the expression of key signaling molecules in the MVA pathway, including transforming growth factor-β1 (TGF-β1), heat shock protein 47 (HSP47), collagen type I α1 (COL1A1), vascular endothelial growth factor 2 (VEGF2) and fibroblast growth factor 2 (FGF2), was decreased in the FAS and ROS groups compared with the Ang II model. Compared with the Ang II group, 3-Hydroxy-3-Methylglutaryl-CoA reductase (HMGCR) gene expression was significantly lowered in the drug intervention groups, whereas farnesyl pyrophosphate synthase (FDPS) expression was downregulated in the ALE group, but elevated in the FAS and ROS groups. Compared with that in the Ang II group, ras homolog family member A (RhoA) expression was downregulated in the FAS and ROS groups, whilst mevalonate kinase expression was reduced in the ROS group. Protein expression of TGF-β1, COL1A1 and HSP47 were decreased following intervention with each of the three drugs compared with the Ang II group. Overall, rosuvastatin, aledronate and fasudil decreased the proliferation of myocardial fibroblasts and inhibited collagen synthesis. Rosuvastatin had the strongest protective effects against myocardial fibrosis compared with the other drugs tested, suggesting this to be a potential agent for the clinical treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Huifeng Xu
- Department of Cardiology, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Yi Shen
- Department of Geriatrics, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Chenyu Liang
- Department of Cardiology, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Haifeng Wang
- Department of Geriatrics, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Junling Huang
- Department of Geriatrics, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Pengcheng Xue
- Department of Cardiology, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Ming Luo
- Department of Cardiology, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| |
Collapse
|
7
|
Utreja D, Kaur J, Kaur K, Jain P. Recent Advances in 1,3,5-Triazine Derivatives as Antibacterial Agents. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x17666200129094032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Triazine, one of the nitrogen containing heterocyclic compounds has attracted the considerable
interest of researchers due to the vast array of biological properties such as anti-viral, antitumor,
anti-convulsant, analgesic, antioxidant, anti-depressant, herbicidal, insecticidal, fungicidal,
antibacterial and anti-inflammatory activities offered by it. Various antibacterial agents have been
synthesized by researchers to curb bacterial diseases but due to rapid development in drug resistance,
tolerance and side effects, there had always been a need for the synthesis of a new class of antibacterial
agents that would exhibit improved pharmacological action. Therefore, this review mainly focuses
on the various methods for the synthesis of triazine derivatives and their antibacterial activity.
Collapse
Affiliation(s)
- Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana-141004, India
| | - Jagdish Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana-141004, India
| | - Komalpreet Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana-141004, India
| | - Palak Jain
- Department of Chemistry, Punjab Agricultural University, Ludhiana-141004, India
| |
Collapse
|
8
|
Patil V, Noonikara-Poyil A, Joshi SD, Patil SA, Patil SA, Lewis AM, Bugarin A. Synthesis, molecular docking studies, and in vitro evaluation of 1,3,5-triazine derivatives as promising antimicrobial agents. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Abbhi V, Piplani P. Rho-kinase (ROCK) Inhibitors - A Neuroprotective Therapeutic Paradigm with a Focus on Ocular Utility. Curr Med Chem 2020; 27:2222-2256. [PMID: 30378487 DOI: 10.2174/0929867325666181031102829] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Glaucoma is a progressive optic neuropathy causing visual impairment and Retinal Ganglionic Cells (RGCs) death gradually posing a need for neuroprotective strategies to minimize the loss of RGCs and visual field. It is recognized as a multifactorial disease, Intraocular Pressure (IOP) being the foremost risk factor. ROCK inhibitors have been probed for various possible indications, such as myocardial ischemia, hypertension, kidney diseases. Their role in neuroprotection and neuronal regeneration has been suggested to be of value in the treatment of neurological diseases, like spinal-cord injury, Alzheimer's disease and multiple sclerosis but recently Rho-associated Kinase inhibitors have been recognized as potential antiglaucoma agents. EVIDENCE SYNTHESIS Rho-Kinase is a serine/threonine kinase with a kinase domain which is constitutively active and is involved in the regulation of smooth muscle contraction and stress fibre formation. Two isoforms of Rho-Kinase, ROCK-I (ROCK β) and ROCK-II (ROCK α) have been identified. ROCK II plays a pathophysiological role in glaucoma and hence the inhibitors of ROCK may be beneficial to ameliorate the vision loss. These inhibitors decrease the intraocular pressure in the glaucomatous eye by increasing the aqueous humour outflow through the trabecular meshwork pathway. They also act as anti-scarring agents and hence prevent post-operative scarring after the glaucoma filtration surgery. Their major role involves axon regeneration by increasing the optic nerve blood flow which may be useful in treating the damaged optic neurons. These drugs act directly on the neurons in the central visual pathway, interrupting the RGC apoptosis and therefore serve as a novel pharmacological approach for glaucoma neuroprotection. CONCLUSION Based on the results of high-throughput screening, several Rho kinase inhibitors have been designed and developed comprising of diverse scaffolds exhibiting Rho kinase inhibitory activity from micromolar to subnanomolar ranges. This diversity in the scaffolds with inhibitory potential against the kinase and their SAR development will be intricated in the present review. Ripasudil is the only Rho kinase inhibitor marketed to date for the treatment of glaucoma. Another ROCK inhibitor AR-13324 has recently passed the clinical trials whereas AMA0076, K115, PG324, Y39983 and RKI-983 are still under trials. In view of this, a detailed and updated account of ROCK II inhibitors as the next generation therapeutic agents for glaucoma will be discussed in this review.
Collapse
Affiliation(s)
- Vasudha Abbhi
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study (UGCCAS), Panjab University, Chandigarh 160014, India
| | - Poonam Piplani
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study (UGCCAS), Panjab University, Chandigarh 160014, India
| |
Collapse
|
10
|
Yao Y, Li R, Liu X, Yang F, Yang Y, Li X, Shi X, Yuan T, Fang L, Du G, Jiao X, Xie P. Discovery of Novel N-Substituted Prolinamido Indazoles as Potent Rho Kinase Inhibitors and Vasorelaxation Agents. Molecules 2017; 22:E1766. [PMID: 29048389 PMCID: PMC6151428 DOI: 10.3390/molecules22101766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/16/2017] [Indexed: 01/04/2023] Open
Abstract
Inhibitors of Rho kinase (ROCK) have potential therapeutic applicability in a wide range of diseases, such as hypertension, stroke, asthma and glaucoma. In a previous article, we described the lead discovery of DL0805, a new ROCK I inhibitor, showing potent inhibitory activity (IC50 6.7 μM). Herein, we present the lead optimization of compound DL0805, resulting in the discovery of 24- and 39-fold more-active analogues 4a (IC50 0.27 μM) and 4b (IC50 0.17 μM), among other active analogues. Moreover, ex-vivo studies demonstrated that 4a and 4b exhibited comparable vasorelaxant activity to the approved drug fasudil in rat aortic rings. The research of a preliminary structure-activity relationship (SAR) indicated that the target compounds containing a β-proline moiety have improved activity against ROCK I relative to analogues bearing an α-proline moiety, and among the series of the derivatives with a β-proline-derived indazole scaffold, the inhibitory activity of the target compounds with a benzyl substituent is superior to those with a benzoyl substituent.
Collapse
Affiliation(s)
- Yangyang Yao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Renze Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xiaoyu Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Feilong Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Ying Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xiaoyu Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xiang Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Tianyi Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Lianhua Fang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xiaozhen Jiao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Ping Xie
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
11
|
Research advances in kinase enzymes and inhibitors for cardiovascular disease treatment. Future Sci OA 2017; 3:FSO204. [PMID: 29134113 PMCID: PMC5674217 DOI: 10.4155/fsoa-2017-0010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/29/2017] [Indexed: 12/13/2022] Open
Abstract
The targeting of protein kinases has great future potential for the design of new drugs against cardiovascular diseases (CVDs). Enormous efforts have been made toward achieving this aim. Unfortunately, kinase inhibitors designed to treat CVDs have suffered from numerous limitations such as poor selectivity, bad permeability and toxicity. So, where are we now in terms of discovering effective kinase targeting drugs to treat CVDs? Various drug design techniques have been approached for this purpose since the discovery of the inhibitory activity of Staurosporine against protein kinase C in 1986. This review aims to provide context for the status of several emerging classes of direct kinase modulators to treat CVDs and discuss challenges that are preventing scientists from finding new kinase drugs to treat heart disease.
Collapse
|
12
|
Cai C, Wu Q, Luo Y, Ma H, Shen J, Zhang Y, Yang L, Chen Y, Wen Z, Wang Q. In silico prediction of ROCK II inhibitors by different classification approaches. Mol Divers 2017; 21:791-807. [DOI: 10.1007/s11030-017-9772-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 07/19/2017] [Indexed: 11/25/2022]
|
13
|
Elgendy IY, Winchester DE, Pepine CJ. Experimental and early investigational drugs for angina pectoris. Expert Opin Investig Drugs 2016; 25:1413-1421. [PMID: 27791405 PMCID: PMC5228503 DOI: 10.1080/13543784.2016.1254617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ischemic heart disease (IHD) is a major cause of death and disability among Western countries and angina pectoris is the most prevalent symptomatic manifestation. Strategies to improve management of chronic stable angina are a priority. Areas covered: A comprehensive review was conducted using the Medline and Cochrane databases as well as the clinical trial databases in the United States and Europe. Traditional therapies for angina will be discussed. This review particularly emphasizes investigational therapies for angina (including pharmacological agents, cell and gene based therapies, and herbal medications). Expert opinion: There has been renewed interest in older anti-angina agents (e.g., perhexiline, amiodarone, and phosphodiestrase-5 inhibitors). Other anti-inflammatory agents (e.g., allopurinol and febuxostat) are currently undergoing evaluation for angina therapy. Therapeutic angiogenesis continues to face some challenges. Future trials should evaluate the optimum patient population that would benefit from this form of therapy.
Collapse
Affiliation(s)
- Islam Y Elgendy
- a Division of Cardiovascular Medicine , University of Florida, and North Florida/South Georgia Veterans Health System , Gainesville , FL , USA
| | - David E Winchester
- a Division of Cardiovascular Medicine , University of Florida, and North Florida/South Georgia Veterans Health System , Gainesville , FL , USA
| | - Carl J Pepine
- a Division of Cardiovascular Medicine , University of Florida, and North Florida/South Georgia Veterans Health System , Gainesville , FL , USA
| |
Collapse
|
14
|
Szasz T, Webb RC. Rho-Mancing to Sensitize Calcium Signaling for Contraction in the Vasculature: Role of Rho Kinase. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:303-322. [PMID: 28212799 DOI: 10.1016/bs.apha.2016.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vascular smooth muscle contraction is an important physiological process contributing to cardiovascular homeostasis. The principal determinant of smooth muscle contraction is the intracellular free Ca2+ concentration, and phosphorylation of myosin light chain (MLC) by activated myosin light chain kinase (MLCK) in response to increased Ca2+ is the main pathway by which vasoconstrictor stimuli induce crossbridge cycling of myosin and actin filaments. A secondary pathway for vascular smooth muscle contraction that is not directly dependent on Ca2+ concentration, but rather mediating Ca2+ sensitization, is the RhoA/Rho kinase pathway. In response to contractile stimuli, the small GTPase RhoA activates its downstream effector Rho kinase which, in turn, promotes contraction via myosin light chain phosphatase (MLCP) inhibition. RhoA/Rho kinase-mediated MLCP inhibition occurs mainly by phosphorylation and inhibition of MYPT1, the regulatory subunit of MLCP, or by CPI-17-mediated inhibition of the catalytic subunit of MLCP. In this review, we describe the molecular mechanisms underlying the pivotal role exerted by Rho kinase on vascular smooth muscle contraction and discuss the main regulatory pathways for its activity.
Collapse
Affiliation(s)
- T Szasz
- Augusta University, Augusta, GA, United States.
| | - R C Webb
- Augusta University, Augusta, GA, United States
| |
Collapse
|
15
|
Amoozadeh A, Tabrizian E, Salehi M, Kubicki M, Rahmani S, Shamsi T, Bitaraf M. Catalyst-free synthesis of (7 E)-7-benzylidene-3,3a,4,5,6,7-hexahydro-2,3-diphenyl-2 H-indazole derivatives in PEG-400 as a green and reusable solvent. JOURNAL OF CHEMICAL RESEARCH 2016. [DOI: 10.3184/174751916x14709222930154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The reaction of 2,6-bisbenzylidenecyclohexanones and phenylhydrazine in polyethylene glycol (PEG)-400 as a green and reusable solvent under catalyst-free conditions gave hexahydroindazoles as the major product and, in some cases, tetrahydroindazoles were also produced as a minor product. The products were easily separated by simple recrystallisation. The structures of the indazoles were confirmed using FTIR and NMR spectroscopy. Two X-ray structures are reported.
Collapse
Affiliation(s)
- Ali Amoozadeh
- Department of Organic Chemistry, Faculty of Chemistry, Semnan University, Semnan 35131-19111, Iran
| | - Elham Tabrizian
- Department of Organic Chemistry, Faculty of Chemistry, Semnan University, Semnan 35131-19111, Iran
| | - Mehdi Salehi
- Department of Organic Chemistry, Faculty of Chemistry, Semnan University, Semnan 35131-19111, Iran
| | - Maciej Kubicki
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland
| | - Salman Rahmani
- Department of Organic Chemistry, Faculty of Chemistry, Semnan University, Semnan 35131-19111, Iran
| | - Taiebeh Shamsi
- Department of Organic Chemistry, Faculty of Chemistry, Semnan University, Semnan 35131-19111, Iran
| | - Mehrnoosh Bitaraf
- Department of Organic Chemistry, Faculty of Chemistry, Semnan University, Semnan 35131-19111, Iran
| |
Collapse
|
16
|
Yuan TY, Chen YC, Zhang HF, Li L, Jiao XZ, Xie P, Fang LH, Du GH. DL0805-2, a novel indazole derivative, relaxes angiotensin II-induced contractions of rat aortic rings by inhibiting Rho kinase and calcium fluxes. Acta Pharmacol Sin 2016; 37:604-16. [PMID: 27041459 DOI: 10.1038/aps.2015.161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 12/25/2015] [Indexed: 12/30/2022]
Abstract
AIM DL0805-2 [N-(1H-indazol-5-yl)-1-(4-methylbenzyl) pyrrolidine-3-carboxamide] is a DL0805 derivative with more potent vasorelaxant activity and lower toxicity. This study was conducted to investigate the vasorelaxant mechanisms of DL0805-2 on angiotensin II (Ang II)-induced contractions of rat thoracic aortic rings in vitro. METHODS Rat thoracic aortic rings and rat aortic vascular smooth muscle cells (VSMCs) were pretreated with DL0805-2, and then stimulated with Ang II. The tension of the aortic rings was measured through an isometric force transducer. Ang II-induced protein phosphorylation, ROS production and F-actin formation were assessed with Western blotting and immunofluorescence assays. Intracellular free Ca(2+) concentrations were detected with Fluo-3 AM. RESULTS Pretreatment with DL0805-2 (1-100 μmol/L) dose-dependently inhibited the constrictions of the aortic rings induced by a single dose of Ang II (10(-7) mol/L) or accumulative addition of Ang II (10(-10)-10(-7) mol/L). The vasodilatory effect of DL0805-2 was independent of endothelium. In the aortic rings, pretreatment with DL0805-2 (1, 3, and 10 μmol/L) suppressed Ang II-induced Ca(2+) influx and intracellular Ca(2+) mobilization, and Ang II-induced phosphorylation of two substrates of Rho kinase (MLC and MYPT1). In VSMCs, pretreatment with DL0805-2 (1, 3, and 10 μmol/L) also suppressed Ang II-induced Ca(2+) fluxes and phosphorylation of MLC and MYPT1. In addition, pretreatment with DL0805-2 attenuated ROS production and F-actin formation in the cells. CONCLUSION DL0805-2 exerts a vasodilatory action in rat aortic rings through inhibiting the Rho/ROCK pathway and calcium fluxes.
Collapse
|
17
|
Overview of Antagonists Used for Determining the Mechanisms of Action Employed by Potential Vasodilators with Their Suggested Signaling Pathways. Molecules 2016; 21:495. [PMID: 27092479 PMCID: PMC6274436 DOI: 10.3390/molecules21040495] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/23/2016] [Accepted: 03/28/2016] [Indexed: 01/04/2023] Open
Abstract
This paper is a review on the types of antagonists and the signaling mechanism pathways that have been used to determine the mechanisms of action employed for vasodilation by test compounds. Thus, we exhaustively reviewed and analyzed reports related to this topic published in PubMed between the years of 2010 till 2015. The aim of this paperis to suggest the most appropriate type of antagonists that correspond to receptors that would be involved during the mechanistic studies, as well as the latest signaling pathways trends that are being studied in order to determine the route(s) that atest compound employs for inducing vasodilation. The methods to perform the mechanism studies were included. Fundamentally, the affinity, specificity and selectivity of the antagonists to their receptors or enzymes were clearly elaborated as well as the solubility and reversibility. All the signaling pathways on the mechanisms of action involved in the vascular tone regulation have been well described in previous review articles. However, the most appropriate antagonists that should be utilized have never been suggested and elaborated before, hence the reason for this review.
Collapse
|
18
|
Wei L, Surma M, Shi S, Lambert-Cheatham N, Shi J. Novel Insights into the Roles of Rho Kinase in Cancer. Arch Immunol Ther Exp (Warsz) 2016; 64:259-78. [PMID: 26725045 PMCID: PMC4930737 DOI: 10.1007/s00005-015-0382-6] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/24/2015] [Indexed: 12/12/2022]
Abstract
Rho-associated coiled-coil kinase (ROCK) is a major downstream effector of the small GTPase RhoA. The ROCK family, consisting of ROCK1 and ROCK2, plays a central role in the organization of the actin cytoskeleton, and is involved in a wide range of fundamental cellular functions such as contraction, adhesion, migration, proliferation, and apoptosis. Since the discovery of effective inhibitors such as fasudil and Y27632, the biological roles of ROCK have been extensively explored in numerous diseases, including cancer. Accumulating evidence supports the concept that ROCK plays important roles in tumor development and progression through regulating many key cellular functions associated with malignancy, including tumorigenicity, tumor growth, metastasis, angiogenesis, tumor cell apoptosis/survival and chemoresistance as well. This review focuses on the new advances of the most recent 5 years from the studies on the roles of ROCK in cancer development and progression; the discussion is mainly focused on the potential value of ROCK inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Lei Wei
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA. .,Department of Cellular and Integrative Physiology, Indiana University, School of Medicine, 1044 West Walnut Street, R4-370, Indianapolis, IN, 46202-5225, USA.
| | - Michelle Surma
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA
| | - Stephanie Shi
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA
| | - Nathan Lambert-Cheatham
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA
| | - Jianjian Shi
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA.
| |
Collapse
|
19
|
Feng Y, LoGrasso PV, Defert O, Li R. Rho Kinase (ROCK) Inhibitors and Their Therapeutic Potential. J Med Chem 2015; 59:2269-300. [PMID: 26486225 DOI: 10.1021/acs.jmedchem.5b00683] [Citation(s) in RCA: 273] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rho kinases (ROCKs) belong to the serine-threonine family, the inhibition of which affects the function of many downstream substrates. As such, ROCK inhibitors have potential therapeutic applicability in a wide variety of pathological conditions including asthma, cancer, erectile dysfunction, glaucoma, insulin resistance, kidney failure, neuronal degeneration, and osteoporosis. To date, two ROCK inhibitors have been approved for clinical use in Japan (fasudil and ripasudil) and one in China (fasudil). In 1995 fasudil was approved for the treatment of cerebral vasospasm, and more recently, ripasudil was approved for the treatment of glaucoma in 2014. In this Perspective, we present a comprehensive review of the physiological and biological functions for ROCK, the properties and development of over 170 ROCK inhibitors as well as their therapeutic potential, the current status, and future considerations.
Collapse
Affiliation(s)
| | | | - Olivier Defert
- Amakem Therapeutics , Agoralaan A bis, 3590 Diepenbeek, Belgium
| | - Rongshi Li
- Center for Drug Discovery and Department of Pharmaceutical Sciences, College of Pharmacy, Cancer Genes and Molecular Regulation Program, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center , 986805 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
20
|
Abstract
Chronic angina is a common manifestation of ischaemic heart disease. Medical treatments are the mainstay approach to reduce the occurrence of angina and improve patients' quality of life. This Series paper focuses on commonly used standard treatments (eg, nitrates, β blockers, and calcium-channel blockers), emerging anti-angina treatments (which are not available in all parts of the world), and experimental treatments. Although many emerging treatments are available, evidence is scarce about their ability to reduce angina and ischaemia.
Collapse
Affiliation(s)
- Steen E Husted
- Department of Medicine, Hospital Unit West, Herning, Denmark; Department of Clinical Pharmacology, Institute of Biomedicine, Aarhus University, Aarhus, Denmark
| | - E Magnus Ohman
- The Program for Advanced Coronary Disease, Division of Cardiology, Duke University and Duke Clinical Research Institute, Durham, NC, USA.
| |
Collapse
|
21
|
Piperazine scaffold: A remarkable tool in generation of diverse pharmacological agents. Eur J Med Chem 2015; 102:487-529. [PMID: 26310894 DOI: 10.1016/j.ejmech.2015.07.026] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 12/21/2022]
Abstract
Piperazine is one of the most sought heterocyclics for the development of new drug candidates. This ring can be traced in a number of well established, commercially available drugs. Wide array of pharmacological activities exhibited by piperazine derivatives have made them indispensable anchors for the development of novel therapeutic agents. The review herein highlights the therapeutic significance of piperazine derivatives. Various therapeutically active piperazine derivatives developed by several chemists are reported here.
Collapse
|
22
|
Abstract
This review summarizes recent reports on s-triazine and its respective analogs from the medicinal chemistry angle. Due to its high reactivity and binding characteristic towards various enzymes, s-triazine has attracted attention. This is combined with facile synthesis and interesting pharmacology. The triazine class demonstrates wide biological applications - including antimicrobial, antituberculosis, anticancer, antiviral and antimalarial. In this article the library of s-triazine-based molecular designs has been collated with respective bioactivity. Compounds are further compared with other heterocyclic/nontriazine moieties to correlate the efficiency of privileged s-triazine. We hope this article may assist chemists in their drug design and discovery efforts.
Collapse
|
23
|
|
24
|
Abstract
Rho kinase (ROCK) is a major downstream effector of the small GTPase RhoA. ROCK family, consisting of ROCK1 and ROCK2, plays central roles in the organization of actin cytoskeleton and is involved in a wide range of fundamental cellular functions, such as contraction, adhesion, migration, proliferation, and apoptosis. Due to the discovery of effective inhibitors, such as fasudil and Y27632, the biological roles of ROCK have been extensively explored with particular attention on the cardiovascular system. In many preclinical models of cardiovascular diseases, including vasospasm, arteriosclerosis, hypertension, pulmonary hypertension, stroke, ischemia-reperfusion injury, and heart failure, ROCK inhibitors have shown a remarkable efficacy in reducing vascular smooth muscle cell hypercontraction, endothelial dysfunction, inflammatory cell recruitment, vascular remodeling, and cardiac remodeling. Moreover, fasudil has been used in the clinical trials of several cardiovascular diseases. The continuing utilization of available pharmacological inhibitors and the development of more potent or isoform-selective inhibitors in ROCK signaling research and in treating human diseases are escalating. In this review, we discuss the recent molecular, cellular, animal, and clinical studies with a focus on the current understanding of ROCK signaling in cardiovascular physiology and diseases. We particularly note that emerging evidence suggests that selective targeting ROCK isoform based on the disease pathophysiology may represent a novel therapeutic approach for the disease treatment including cardiovascular diseases.
Collapse
|
25
|
Abstract
INTRODUCTION Management of chronic angina has evolved dramatically in the last few decades with several options for pharmacotherapy outlined in various evidence-based guidelines. AREAS COVERED There is a growing list of drugs that are currently being investigated for treatment of chronic angina. These also include several herbal medications, which are now being scientifically evaluated as potential alternative or even adjunctive therapy for angina. Gene- and cell-based therapies have opened yet another avenue for management of chronic refractory angina in 'no-option' patients who are not candidates for either percutaneous or surgical revascularization and are on optimal medical therapy. An extensive review of literature using PUBMED, Cochrane database, clinical trial databases of the USA and European Union was done and summarized in this review. This review will attempt to discuss the traditional as well as novel therapeutic agents for angina. EXPERT OPINION Several pharmacological and non-pharmacological therapeutic options are now available for treatment and management of chronic refractory angina. Renewed interest in traditional therapies and cell- and gene-based modalities with targeted drug delivery systems will open the doors for personalized therapy for patients with chronic refractory angina.
Collapse
Affiliation(s)
- Ashish K Gupta
- University of Florida, Division of Cardiovascular Medicine , 1600 SW Archer Road, P.O. Box 100277, Gainesville, FL 32610-0277 , USA
| | | | | |
Collapse
|
26
|
Indazoles: a new top seed structure in the search of efficient drugs against Trypanosoma cruzi. Future Med Chem 2013; 5:1843-59. [DOI: 10.4155/fmc.13.144] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
For years, Chagas disease treatment has been limited to only two drugs of highly questionable and controversial use (Nifurtimox® and Benznidazole®). In the search of effective drugs, many efforts have been made, but only a few structures have emerged as actual candidates. Heading into this, the multitarget-directed approach appears as the best choice. In this framework, indazoles were shown to be potent Trypanosoma cruzi growth inhibitors, being able to lead both the formation of reactive oxygen species and the inhibition of trypanothione reductase. Herein, we discuss the main structural factors that rule the anti-T. cruzi properties of indazoles, and how they would be involved in the biological properties as well as in the action mechanisms, attempting to make parallels between the old paradigms and current evidences in order to outline what could be the next steps to follow in regard to the future drug design for Chagas disease treatment.
Collapse
|