1
|
Xue X, Liu R, Cai Y, Gong L, Fan G, Wu J, Li X, Li X. Hyodeoxycholic acid ameliorates cholestatic liver fibrosis by facilitating m 6A-regulated expression of a novel anti-fibrotic target ETV4. J Hepatol 2025:S0168-8278(25)00055-8. [PMID: 39914744 DOI: 10.1016/j.jhep.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/31/2024] [Accepted: 01/20/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND & AIMS Cholestatic liver fibrosis is a common pathological feature of various biliary tract diseases. The underlying pathological mechanisms are not fully understood, posing significant obstacles to the discovery of new drug targets. The aims of the current study were to evaluate protective effects of hyodeoxycholic acid (HDCA) against cholestatic liver fibrosis and to ascertain whether ETV4 is a novel anti-fibrotic target involved in the therapeutic effects of HDCA. METHODS The therapeutic effect of HDCA was verified using bile duct ligation and Abcb4-/- mouse models. Etv4-/- mice were subjected to bile duct ligation to investigate the role of ETV4 in liver fibrogenesis and the therapeutic effects of HDCA. The N6-methyladenosine (m6A) modification was investigated using methylated m6A RNA immunoprecipitation-qPCR and immunofluorescence/fluorescence in situ hybridization techniques. RESULTS HDCA levels were decreased in both cholestatic patients and mice, while HDCA supplementation significantly ameliorated cholestatic liver fibrosis. By inducing ETV4 expression in cholangiocytes, HDCA induced MMP9 secretion, facilitating extracellular matrix degradation. Findings in patients with cholestatic fibrosis and Etv4-/- mice further revealed a promising role of ETV4 in improving liver fibrosis and in mediating the therapeutic effects of HDCA. Mechanistically, HDCA promoted m6A modification of ETV4 mRNA, which thereby promotes IGF2BP1 recognition and PABPC1 recruitment to inhibit ETV4 mRNA deadenylation, leading to increased mRNA stability, storage in P-bodies, and prolonged translation. Mutation of the m6A site on ETV4 mRNA or knockdown of critical genes involved in m6A modification significantly abolished the therapeutic effects of HDCA. CONCLUSIONS The present study underscores ETV4 as a novel anti-fibrotic target and demonstrates that HDCA remodels extracellular matrix by facilitating m6A-regulated ETV4 expression, offering potential therapeutic approaches for cholestatic liver fibrosis. IMPACT AND IMPLICATIONS This study delves into the underlying mechanisms of cholestatic liver fibrosis and reveals potential therapeutic targets. The research highlights ETV4 as a novel anti-fibrotic target that is essential for the therapeutic effects of hyodeoxycholic acid against cholestatic liver fibrosis. These findings are important for both the scientific community and patients with cholestatic liver diseases, offering valuable insights for future therapeutic strategies that focus on regulating m6A-dependent epigenetic modifications of anti-fibrotic targets like ETV4 and developing new interventions utilizing hyodeoxycholic acid.
Collapse
Affiliation(s)
- Xiaoyong Xue
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
| | - Yajie Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Liping Gong
- The Second Hospital of Shandong University, Shan Dong University, 247 Bei Yuan Da Jie, Jinan, 250033, China
| | - Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Jianzhi Wu
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Xin Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
| |
Collapse
|
2
|
Li J, Luo T, Li X, Liu X, Deng ZY. Comparison of fresh and browning lotus roots ( Nelumbo nucifera Gaertn.) on modulating cholesterol metabolism via decreasing hepatic cholesterol deposition and increasing fecal bile acid excretion. Curr Res Food Sci 2023; 7:100630. [PMID: 38021260 PMCID: PMC10654003 DOI: 10.1016/j.crfs.2023.100630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/23/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Lotus root (LR) is prone to browning after harvest due to the oxidation of phenolic compounds by polyphenol oxidase (PPO). This study compared the effects of LR extract and BLR extract on cholesterol metabolism in high-fat diet (HFD) mice. Our findings highlighted the innovative potentiality of BLR extract in effectively regulating cholesterol metabolism via inhibiting the intestinal FXR-FGF15 signaling pathway and boosting probiotics in gut microbiota, offering valuable insights for hypercholesterolemia and metabolic disorders. In detail, catechin was the main phenolic compound in LR, while after browning, theaflavin was the main oxidation product of phenolic compounds in BLR. Both the intake of LR extract and BLR extract regulated the disorder of cholesterol metabolism induced by HFD. In particular, BLR extract intake exhibited more robust effects on increasing the BAs contents synthesized in the liver and excreted in feces compared with LR extract intake. Furthermore, the consumption of BLR extract was more effective than that of LR extract in reducing the ileal protein expressions of FXR and FGF15 and shifting BAs biosynthesis from the classical pathway to the alternative pathway. Moreover, LR extract and BLR extract had distinct effects on the gut microbiota in HFD-fed mice: BLR extract significantly elevated probiotics Akkermansia abundance, while LR extract increased Lactobacillus abundance. Therefore, both LR extract and BLR extract improved the cholesterol deposition effectively and BLR extract even showed a stronger effect on regulating key gene and protein expressions of cholesterol metabolism.
Collapse
Affiliation(s)
- Jingfang Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, 117542, Singapore
| | - Ting Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Xiaoping Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Xiaoru Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Ze-yuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
- Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, 330031, China
| |
Collapse
|
3
|
Zhang Y, Yan T, Mo W, Song B, Zhang Y, Geng F, Hu Z, Yu D, Zhang S. Altered bile acid metabolism in skin tissues in response to ionizing radiation: deoxycholic acid (DCA) as a novel treatment for radiogenic skin injury. Int J Radiat Biol 2023; 100:87-98. [PMID: 37540505 DOI: 10.1080/09553002.2023.2245461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 07/19/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
OBJECTIVE Radiogenic skin injury (RSI) is a common complication during cancer radiotherapy or accidental exposure to radiation. The aim of this study is to investigate the metabolism of bile acids (BAs) and their derivatives during RSI. METHODS Rat skin tissues were irradiated by an X-ray linear accelerator. The quantification of BAs and their derivatives were performed by liquid chromatography-mass spectrometry (LC-MS)-based quantitative analysis. Key enzymes in BA biosynthesis were analyzed from single-cell RNA sequencing (scRNA-Seq) data of RSI in the human patient and animal models. The in vivo radioprotective effect of deoxycholic acid (DCA) was detected in irradiated SD rats. RESULTS Twelve BA metabolites showed significant differences during the progression of RSI. Among them, the levels of cholic acid (CA), DCA, muricholic acid (MCA), chenodeoxycholic acid (CDCA), glycocholic acid (GCA), glycohyodeoxycholic acid (GHCA), 12-ketolithocholic acid (12-ketoLCA) and ursodeoxycholic acid (UDCA) were significantly elevated in irradiated skin, whereas lithocholic acid (LCA), tauro-β-muricholic acid (Tβ-MCA) and taurocholic acid (TCA) were significantly decreased. Additionally, the results of scRNA-Seq indicated that genes involved in 7a-hydroxylation process, the first step in BA synthesis, showed pronounced alterations in skin fibroblasts or keratinocytes. The alternative pathway of BA synthesis is more actively altered than the classical pathway after ionizing radiation. In the model of rat radiogenic skin damage, DCA promoted wound healing and attenuated epidermal hyperplasia. CONCLUSIONS Ionizing radiation modulates the metabolism of BAs. DCA is a prospective therapeutic agent for the treatment of RSI.
Collapse
Affiliation(s)
- Yining Zhang
- Department of Radiation Medicine, Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Tao Yan
- Department of Radiation Medicine, Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Wei Mo
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, China
| | - Bin Song
- Department of Radiation Medicine, Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yuehua Zhang
- Department of Radiation Medicine, Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Fenghao Geng
- Department of Radiation Medicine, Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhimin Hu
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, China
| | - Daojiang Yu
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Shuyu Zhang
- Department of Radiation Medicine, Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang, China
| |
Collapse
|
4
|
Gaikwad NW. Bileome: The bile acid metabolome of rat. Biochem Biophys Res Commun 2020; 533:458-466. [PMID: 32977942 DOI: 10.1016/j.bbrc.2020.06.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/10/2020] [Indexed: 02/08/2023]
Abstract
Bile acids (BA) play a vital physiological role in vivo. They are not only detergent of dietary lipids and nutrients, but also important hormones or nutrient signaling molecules in metabolic regulation process. Recent studies have also shown BA involvement in various cancers and diseases such as Parkinson's and Alzheimer's and liver diseases. However, majority of the reported literature about BA is restricted to enterohepatic circulation. Hitherto, there has been no comprehensive study of the BA profile in all the major tissue and biofluids in rat has been reported. In this first bileomics study, BA profile of 14 different rat biological specimens (liver, serum, kidney, heart, stomach, ovary, mammary, uterus, small intestine, big intestine, spleen, brain, feces and urine) were studied by ultra-performance liquid chromatography (UPLC)-tandem mass spectrometry (MS/MS). Here I report the comprehensive identification and measurements of bile acids, the bileome, in rat. PCA analysis show distinct separate clusters of tissues as well as biofluids based on BA composition profile. Furthermore, we found that BA profiles of the organs that are involved in enterohepatic circulation were different than the other organs. Most of BA in brain, spleen, heart, ovary, urine, feces and uterus were in the unamidated form, and LCA and MOCA are the most abundant BAs in these organs. Whereas, most of BAs in liver, serum, mammary, large intestine, small intestine, stomach and kidney existed in amidated form, and TCA and T-β-MCA are primary BAs. Finally, first time, BAs are found and measured in kidney, heart, stomach, ovary, mammary, uterus, and spleen of rats.
Collapse
|
5
|
Yang N, Dong YQ, Jia GX, Fan SM, Li SZ, Yang SS, Li YB. ASBT(SLC10A2): A promising target for treatment of diseases and drug discovery. Biomed Pharmacother 2020; 132:110835. [PMID: 33035828 DOI: 10.1016/j.biopha.2020.110835] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/17/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Bile acids has gradually become a new focus in various diseases, and ASBT as a transporter responsible for the reabsorption of ileal bile acids, is a key hinge associated to the bile acids-cholesterol balance and bile acids of enterohepatic circulation. The cumulative studies have also shown that ASBT is a promising target for treatment of liver, gallbladder, intestinal and metabolic diseases. This article briefly reviewed the process of bile acids enterohepatic circulation, as well as the regulations of ASBT expression, covering transcription factors, nuclear receptors and gut microbiota. In addition, the relationship between ASBT and various diseases were discussed in this paper. According to the structural classification of ASBT inhibitors, the research status of ASBT inhibitors and potential ASBT inhibitors of traditional Chinese medicine (such resveratrol, jatrorrhizine in Coptis chinensis) were summarized. This review provides a basis for the development of ASBT inhibitors and the treatment strategy of related diseases.
Collapse
Affiliation(s)
- Na Yang
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Ya-Qian Dong
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Guo-Xiang Jia
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Si-Miao Fan
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Shan-Ze Li
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Shen-Shen Yang
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China.
| | - Yu-Bo Li
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China.
| |
Collapse
|
6
|
Abrigo J, Gonzalez F, Aguirre F, Tacchi F, Gonzalez A, Meza MP, Simon F, Cabrera D, Arrese M, Karpen S, Cabello-Verrugio C. Cholic acid and deoxycholic acid induce skeletal muscle atrophy through a mechanism dependent on TGR5 receptor. J Cell Physiol 2020; 236:260-272. [PMID: 32506638 DOI: 10.1002/jcp.29839] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/04/2020] [Accepted: 05/21/2020] [Indexed: 12/15/2022]
Abstract
Skeletal muscle atrophy is characterized by the degradation of myofibrillar proteins, such as myosin heavy chain or troponin. An increase in the expression of two muscle-specific E3 ligases, atrogin-1 and MuRF-1, and oxidative stress are involved in muscle atrophy. Patients with chronic liver diseases (CLD) develop muscle wasting. Several bile acids increase in plasma during cholestatic CLD, among them, cholic acid (CA) and deoxycholic acid (DCA). The receptor for bile acids, TGR5, is expressed in healthy skeletal muscles. TGR5 is involved in the regulation of muscle differentiation and metabolic changes. In this paper, we evaluated the participation of DCA and CA in the generation of an atrophic condition in myotubes and isolated fibers from the muscle extracted from wild-type (WT) and TGR5-deficient (TGR5-/- ) male mice. The results show that DCA and CA induce a decrease in diameter, and myosin heavy chain (MHC) protein levels, two typical atrophic features in C2 C12 myotubes. We also observed similar results when INT-777 agonists activated the TGR5 receptor. To evaluate the participation of TGR5 in muscle atrophy induced by DCA and CA, we used a culture of muscle fiber isolated from WT and TGR5-/- mice. Our results show that DCA and CA decrease the fiber diameter and MHC protein levels, and there is an increase in atrogin-1, MuRF-1, and oxidative stress in WT fibers. The absence of TGR5 in fibers abolished all these effects induced by DCA and CA. Thus, we demonstrated that CS and deoxycholic acid induce skeletal muscle atrophy through TGR5 receptor.
Collapse
Affiliation(s)
- Johanna Abrigo
- Laboratory of Muscle Pathology, Fragility suand Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Francisco Gonzalez
- Laboratory of Muscle Pathology, Fragility suand Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Francisco Aguirre
- Laboratory of Muscle Pathology, Fragility suand Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Franco Tacchi
- Laboratory of Muscle Pathology, Fragility suand Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Andrea Gonzalez
- Laboratory of Muscle Pathology, Fragility suand Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - María Paz Meza
- Laboratory of Muscle Pathology, Fragility suand Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Chile, Chile.,Laboratory of Integrative Physiopathology, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello Universidad Andres Bello, Santiago, Chile
| | - Daniel Cabrera
- Departamento de Gastroenterología, Escuela de Medicina-Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontifica Universidad Católica de Chile, Santiago, Chile.,Facultad de Ciencias Médicas, Universidad Bernardo OHiggins, Santiago, Chile
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina-Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontifica Universidad Católica de Chile, Santiago, Chile
| | - Saul Karpen
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility suand Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
7
|
Ticho AL, Malhotra P, Manzella CR, Dudeja PK, Saksena S, Gill RK, Alrefai WA. S-acylation modulates the function of the apical sodium-dependent bile acid transporter in human cells. J Biol Chem 2020; 295:4488-4497. [PMID: 32071081 DOI: 10.1074/jbc.ra119.011032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/06/2020] [Indexed: 01/16/2023] Open
Abstract
The ileal apical sodium-dependent bile acid transporter (ASBT) is crucial for the enterohepatic circulation of bile acids. ASBT function is rapidly regulated by several posttranslational modifications. One reversible posttranslational modification is S-acylation, involving the covalent attachment of fatty acids to cysteine residues in proteins. However, whether S-acylation affects ASBT function and membrane expression has not been determined. Using the acyl resin-assisted capture method, we found that the majority of ASBT (∼80%) was S-acylated in ileal brush border membrane vesicles from human organ donors, as well as in HEK293 cells stably transfected with ASBT (2BT cells). Metabolic labeling with alkyne-palmitic acid (100 μm for 15 h) also showed that ASBT is S-acylated in 2BT cells. Incubation with the acyltransferase inhibitor 2-bromopalmitate (25 μm for 15 h) significantly reduced ASBT S-acylation, function, and levels on the plasma membrane. Treatment of 2BT cells with saturated palmitic acid (100 μm for 15 h) increased ASBT function, whereas treatment with unsaturated oleic acid significantly reduced ASBT function. Metabolic labeling with alkyne-oleic acid (100 μm for 15 h) revealed that oleic acid attaches to ASBT, suggesting that unsaturated fatty acids may decrease ASBT's function via a direct covalent interaction with ASBT. We also identified Cys-314 as a potential S-acylation site. In conclusion, these results provide evidence that S-acylation is involved in the modulation of ASBT function. These findings underscore the potential for unsaturated fatty acids to reduce ASBT function, which may be useful in disorders in which bile acid toxicity is implicated.
Collapse
Affiliation(s)
- Alexander L Ticho
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Illinois 60612-7332
| | - Pooja Malhotra
- Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Illinois 60612-7332
| | - Christopher R Manzella
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Illinois 60612-7332
| | - Pradeep K Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Illinois 60612-7332.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | - Seema Saksena
- Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Illinois 60612-7332.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | - Ravinder K Gill
- Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Illinois 60612-7332
| | - Waddah A Alrefai
- Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Illinois 60612-7332 .,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| |
Collapse
|
8
|
Ticho AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. Intestinal Absorption of Bile Acids in Health and Disease. Compr Physiol 2019; 10:21-56. [PMID: 31853951 PMCID: PMC7171925 DOI: 10.1002/cphy.c190007] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intestinal reclamation of bile acids is crucial for the maintenance of their enterohepatic circulation. The majority of bile acids are actively absorbed via specific transport proteins that are highly expressed in the distal ileum. The uptake of bile acids by intestinal epithelial cells modulates the activation of cytosolic and membrane receptors such as the farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 1 (GPBAR1), which has a profound effect on hepatic synthesis of bile acids as well as glucose and lipid metabolism. Extensive research has focused on delineating the processes of bile acid absorption and determining the contribution of dysregulated ileal signaling in the development of intestinal and hepatic disorders. For example, a decrease in the levels of the bile acid-induced ileal hormone FGF15/19 is implicated in bile acid-induced diarrhea (BAD). Conversely, the increase in bile acid absorption with subsequent overload of bile acids could be involved in the pathophysiology of liver and metabolic disorders such as fatty liver diseases and type 2 diabetes mellitus. This review article will attempt to provide a comprehensive overview of the mechanisms involved in the intestinal handling of bile acids, the pathological implications of disrupted intestinal bile acid homeostasis, and the potential therapeutic targets for the treatment of bile acid-related disorders. Published 2020. Compr Physiol 10:21-56, 2020.
Collapse
Affiliation(s)
- Alexander L. Ticho
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pooja Malhotra
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pradeep K. Dudeja
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Ravinder K. Gill
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Waddah A. Alrefai
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
9
|
Ala S, Alvandipour M, Saeedi M, Seyedein S, Monajati M, Koulaeinejad N. Evaluation of Cholestyramine 15% Ointment in Relieving Pruritus and Burning After Ileostomy: A Rrandomized, Double-Blind Placebo-Controlled Clinical Trial. J INVEST SURG 2019; 33:795-802. [PMID: 30892108 DOI: 10.1080/08941939.2019.1578442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Purpose/Aims: Skin irritation is a common ileostomy problem that causes burning and pruritus among patients due to the leakage of intestinal discharge around the stoma. This clinical trial was performed to evaluate the efficacy of topical cholestyramine (15%) on the reduction of the levels of burning and pruritus after an ileostomy. Material and methods: The patients were randomly divided into two groups of treatment and control (n = 15). The intervention group was subjected to one fingertip of cholestyramine, whereas the other group received the placebo ointment (approximately 0.5 g) on the skin immediately after the surgery and twice a day for 2 months. The primary outcome measure was the severity of burning and pruritus measured by a visual analog scale at different times after an ileostomy. Results: Out of 34 patients, four cases were excluded due to the inappropriate completion of the questionnaire (n = 2) and unwillingness to attend the follow-up visits (n = 2). Therefore, 30 patients were included in the study. The levels of burning among patients in the cholestyramine were lower in weeks 3, 4, and 8 compared to the placebo group. Moreover, lower levels of pruritus were observed among patients in the treatment group in weeks 4 and 8 after an ileostomy. No side effects were reported among the patients. Conclusions: Topical cholestyramine was found to be effective in the management of burning and pruritus resulting from an ileostomy among the population under study.
Collapse
Affiliation(s)
- Shahram Ala
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mina Alvandipour
- Department of Surgery, Imam Khomeini General Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Majid Saeedi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sarvenaz Seyedein
- Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahila Monajati
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Neda Koulaeinejad
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
10
|
Khan TJ, Hasan MN, Azhar EI, Yasir M. Association of gut dysbiosis with intestinal metabolites in response to antibiotic treatment. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.humic.2018.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Stipanuk MH, Jurkowska H, Niewiadomski J, Mazor KM, Roman HB, Hirschberger LL. Identification of Taurine-Responsive Genes in Murine Liver Using the Cdo1-Null Mouse Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:475-495. [PMID: 28849476 DOI: 10.1007/978-94-024-1079-2_38] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The cysteine dioxygenase (Cdo1)-null mouse is unable to synthesize hypotaurine and taurine by the cysteine/cysteine sulfinate pathway and has very low taurine levels in all tissues. The lack of taurine is associated with a lack of taurine conjugation of bile acids, a dramatic increase in the total and unconjugated hepatic bile acid pools, and an increase in betaine and other molecules that serve as organic osmolytes. We used the Cdo1-mouse model to determine the effects of taurine deficiency on expression of proteins involved in sulfur amino acid and bile acid metabolism. We identified cysteine sulfinic acid decarboxylase (Csad), betaine:homocysteine methytransferase (Bhmt), cholesterol 7α-hydroxylase (Cyp7a1), and cytochrome P450 3A11 (Cyp3a11) as genes whose hepatic expression is strongly regulated in response to taurine depletion in the Cdo1-null mouse. Dietary taurine supplementation of Cdo1-null mice restored hepatic levels of these four proteins and their respective mRNAs to wild-type levels, whereas dietary taurine supplementation had no effect on abundance of these proteins or mRNAs in wild-type mice.
Collapse
Affiliation(s)
- Martha H Stipanuk
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.
| | - Halina Jurkowska
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | | | - Kevin M Mazor
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Heather B Roman
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
12
|
Hegyi P, Maléth J, Walters JR, Hofmann AF, Keely SJ. Guts and Gall: Bile Acids in Regulation of Intestinal Epithelial Function in Health and Disease. Physiol Rev 2018; 98:1983-2023. [PMID: 30067158 DOI: 10.1152/physrev.00054.2017] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epithelial cells line the entire surface of the gastrointestinal tract and its accessory organs where they primarily function in transporting digestive enzymes, nutrients, electrolytes, and fluid to and from the luminal contents. At the same time, epithelial cells are responsible for forming a physical and biochemical barrier that prevents the entry into the body of harmful agents, such as bacteria and their toxins. Dysregulation of epithelial transport and barrier function is associated with the pathogenesis of a number of conditions throughout the intestine, such as inflammatory bowel disease, chronic diarrhea, pancreatitis, reflux esophagitis, and cancer. Driven by discovery of specific receptors on intestinal epithelial cells, new insights into mechanisms that control their synthesis and enterohepatic circulation, and a growing appreciation of their roles as bioactive bacterial metabolites, bile acids are currently receiving a great deal of interest as critical regulators of epithelial function in health and disease. This review aims to summarize recent advances in this field and to highlight how bile acids are now emerging as exciting new targets for disease intervention.
Collapse
Affiliation(s)
- Peter Hegyi
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Joszef Maléth
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Julian R Walters
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Alan F Hofmann
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Stephen J Keely
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| |
Collapse
|
13
|
Xu D, You G. Loops and layers of post-translational modifications of drug transporters. Adv Drug Deliv Rev 2017; 116:37-44. [PMID: 27174152 DOI: 10.1016/j.addr.2016.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/03/2016] [Indexed: 12/19/2022]
Abstract
Drug transporters encoded by solute carrier (SLC) family are distributed in multiple organs including kidney, liver, placenta, brain, and intestine, where they mediate the absorption, distribution, and excretion of a diverse array of environmental toxins and clinically important drugs. Alterations in the expression and function of these transporters play important roles in intra- and inter-individual variability of the therapeutic efficacy and the toxicity of many drugs. Consequently, the activity of these transporters must be highly regulated to carry out their normal functions. While it is clear that the regulation of these transporters tightly depends on genetic mechanisms, many studies have demonstrated that these transporters are the target of various post-translational modifications. This review article summarizes the recent advances in identifying the posttranslational modifications underlying the regulation of the drug transporters of SLC family. Such mechanisms are pivotal not only in physiological conditions, but also in diseases.
Collapse
|
14
|
Wang J, Ji J, Song Z, Zhang W, He X, Li F, Zhang C, Guo C, Wang C, Yuan C. Hypocholesterolemic effect of emodin by simultaneous determination of in vitro and in vivo bile salts binding. Fitoterapia 2016; 110:116-22. [PMID: 26964768 DOI: 10.1016/j.fitote.2016.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/02/2016] [Accepted: 03/05/2016] [Indexed: 12/13/2022]
Abstract
Emodin is an active anthraquinone derivative from Rheum palmatum and some other Chinese herbs and it is traditionally used for treating a variety of diseases. In this study, we investigated the hypocholesterolemic effects and mechanism of emodin on hypercholesterolemia rats. In vitro, capability of emodin binding to sodium deoxycholate which is one kind of bile salts (BAs) was evaluated by detection of surplus content of sodium deoxycholate. In vivo, hypocholesterolemic effects were assessed by determining total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C) and high density lipoprotein cholesterol (HDL-C) level of serum and TC, TG level of the liver. Oil red O staining was employed to determine lipid droplet of the liver. The mechanism was explored by BAs in feces, the liver and small intestine. Furthermore, cholesterol 7α-hydroxylase (CYP7A1) activity was measured to evaluate cholesterol's transforming to BAs. The results indicated that TC level of emodin group apparently decreased comparing with model group (p<0.05). Emodin could bind to BAs both in vivo (p<0.05) and in vitro. CYP7A1 activity in emodin group apparently increased comparing with model group (p<0.05). Data suggested that emodin had the potential value for treatment of hypercholesterolemia. The underlying mechanism is probably associated with binding capability to BAs and subsequent increasing expression of CYP7A1.
Collapse
Affiliation(s)
- Jiaoying Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Jun Ji
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Zijing Song
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Wenjun Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Xin He
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Fei Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Chunfeng Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA.
| | - Changrun Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Chongzhi Wang
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chunsu Yuan
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
15
|
PXR stimulates growth factor-mediated hepatocyte proliferation by cross-talk with the FOXO transcription factor. Biochem J 2015; 473:257-66. [PMID: 26574435 DOI: 10.1042/bj20150734] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/16/2015] [Indexed: 11/17/2022]
Abstract
Growth factor-mediated hepatocyte proliferation is crucial in liver regeneration and the recovery of liver function after injury. The nuclear receptor, pregnane X receptor (PXR), is a key transcription factor for the xenobiotic-induced expression of genes associated with various liver functions. Recently, we reported that PXR activation stimulates xenobiotic-induced hepatocyte proliferation. In the present study, we investigated whether PXR activation also stimulates growth factor-mediated hepatocyte proliferation. In G0 phase-synchronized, immortalized mouse hepatocytes, serum or epidermal growth factor treatment increased cell growth and this growth was augmented by the expression of mouse PXR and co-treatment with pregnenolone 16α-carbonitrile (PCN), a PXR ligand. In a liver regeneration model using carbon tetrachloride, PCN treatment enhanced the injury-induced increase in the number of Ki-67-positive nuclei as well as Ccna2 and Ccnb1 mRNA levels in wild-type (WT) but not Pxr-null mice. Chronological analysis of this model demonstrated that PCN treatment shifted the maximum cell proliferation to an earlier time point and increased the number of M-phase cells at those time points. In WT but not Pxr-null mice, PCN treatment reduced hepatic mRNA levels of genes involved in the suppression of G0/G1- and G1/S-phase transition, e.g. Rbl2, Cdkn1a and Cdkn1b. Analysis of the Rbl2 promoter revealed that PXR activation inhibited its Forkhead box O3 (FOXO3)-mediated transcription. Finally, the PXR-mediated enhancement of hepatocyte proliferation was inhibited by the expression of dominant active FOXO3 in vitro. The results of the present study suggest that PXR activation stimulates growth factor-mediated hepatocyte proliferation in mice, at least in part, through inhibiting FOXO3 from accelerating cell-cycle progression.
Collapse
|
16
|
Out C, Patankar JV, Doktorova M, Boesjes M, Bos T, de Boer S, Havinga R, Wolters H, Boverhof R, van Dijk TH, Smoczek A, Bleich A, Sachdev V, Kratky D, Kuipers F, Verkade HJ, Groen AK. Gut microbiota inhibit Asbt-dependent intestinal bile acid reabsorption via Gata4. J Hepatol 2015; 63:697-704. [PMID: 26022694 PMCID: PMC5293168 DOI: 10.1016/j.jhep.2015.04.030] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 04/28/2015] [Accepted: 04/28/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Regulation of bile acid homeostasis in mammals is a complex process regulated via extensive cross-talk between liver, intestine and intestinal microbiota. Here we studied the effects of gut microbiota on bile acid homeostasis in mice. METHODS Bile acid homeostasis was assessed in four mouse models. Germfree mice, conventionally-raised mice, Asbt-KO mice and intestinal-specific Gata4-iKO mice were treated with antibiotics (bacitracin, neomycin and vancomycin; 100 mg/kg) for five days and subsequently compared with untreated mice. RESULTS Attenuation of the bacterial flora by antibiotics strongly reduced fecal excretion and synthesis of bile acids, but increased the expression of the bile acid synthesis enzyme CYP7A1. Similar effects were seen in germfree mice. Intestinal bile acid absorption was increased and accompanied by increases in plasma bile acid levels, biliary bile acid secretion and enterohepatic cycling of bile acids. In the absence of microbiota, the expression of the intestinal bile salt transporter Asbt was strongly increased in the ileum and was also expressed in more proximal parts of the small intestine. Most of the effects of antibiotic treatment on bile acid homeostasis could be prevented by genetic inactivation of either Asbt or the transcription factor Gata4. CONCLUSIONS Attenuation of gut microbiota alters Gata4-controlled expression of Asbt, increasing absorption and decreasing synthesis of bile acids. Our data support the concept that under physiological conditions microbiota stimulate Gata4, which suppresses Asbt expression, limiting the expression of this transporter to the terminal ileum. Our studies expand current knowledge on the bacterial control of bile acid homeostasis.
Collapse
Affiliation(s)
- Carolien Out
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jay V. Patankar
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Marcela Doktorova
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marije Boesjes
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Trijnie Bos
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sanna de Boer
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rick Havinga
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Henk Wolters
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Renze Boverhof
- Department of Laboratory Medicine, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Theo H. van Dijk
- Department of Laboratory Medicine, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anna Smoczek
- Zentrales Tierlaboratorium und Institut für Versuchstierkunde, Medizinische Hochschule Hannover, Hannover, Germany
| | - André Bleich
- Zentrales Tierlaboratorium und Institut für Versuchstierkunde, Medizinische Hochschule Hannover, Hannover, Germany
| | - Vinay Sachdev
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Folkert Kuipers
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Henkjan J. Verkade
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Albert K. Groen
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands,Department of Laboratory Medicine, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands,Corresponding author. Address: Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands. Tel.: +31 50 3613156. (A.K. Groen)
| |
Collapse
|
17
|
Miyata M, Hayashi K, Yamakawa H, Yamazoe Y, Yoshinari K. Antibacterial drug treatment increases intestinal bile acid absorption via elevated levels of ileal apical sodium-dependent bile acid transporter but not organic solute transporter α protein. Biol Pharm Bull 2014; 38:493-6. [PMID: 25757934 DOI: 10.1248/bpb.b14-00640] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antibacterial drug treatment increases the bile acid pool size and hepatic bile acid concentration through the elevation of hepatic bile acid synthesis. However, the involvement of intestinal bile acid absorption in the increased bile acid pool size remains unclear. To determine whether intestinal bile acid absorption contributes to the increased bile acid pool in mice treated with antibacterial drugs, we evaluated the levels of bile acid transporter proteins and the capacity of intestinal bile acid absorption. Ileal apical sodium-dependent bile acid transporter (ASBT) mRNA and protein levels were significantly increased in ampicillin (ABPC)-treated mice, whereas organic solute transporter α (OSTα) mRNA levels, but not protein levels, significantly decreased in mice. Similar alterations in the expression levels of bile acid transporters were observed in mice treated with bacitracin/neomycin/streptomycin. The capacity for intestinal bile acid absorption was evaluated by an in situ loop method. Increased ileal absorption of taurochenodeoxycholic acid was observed in mice treated with ABPC. These results suggest that intestinal bile acid absorption is elevated in an ASBT-dependent manner in mice treated with antibacterial drugs.
Collapse
Affiliation(s)
- Masaaki Miyata
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578; Department of Food Science and Technology, National Fisheries University, 2-7-1 Nagatahonmachi, Shimonoseki, Yamaguchi 759-6595, Japan.
| | | | | | | | | |
Collapse
|
18
|
Tsuei J, Chau T, Mills D, Wan YJY. Bile acid dysregulation, gut dysbiosis, and gastrointestinal cancer. Exp Biol Med (Maywood) 2014; 239:1489-504. [PMID: 24951470 DOI: 10.1177/1535370214538743] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Because of increasingly widespread sedentary lifestyles and diets high in fat and sugar, the global diabetes and obesity epidemic continues to grow unabated. A substantial body of evidence has been accumulated which associates diabetes and obesity to dramatically higher risk of cancer development, particularly in the liver and gastrointestinal tract. Additionally, diabetic and obese individuals have been shown to suffer from dysregulation of bile acid (BA) homeostasis and dysbiosis of the intestinal microbiome. Abnormally elevated levels of cytotoxic secondary BAs and a pro-inflammatory shift in gut microbial profile have individually been linked to numerous enterohepatic diseases including cancer. However, recent findings have implicated a detrimental interplay between BA dysregulation and intestinal dysbiosis that promotes carcinogenesis along the gut-liver axis. This review seeks to examine the currently investigated interactions between the regulation of BA metabolism and activity of the intestinal microbiota and how these interactions can drive cancer formation in the context of diabesity. The precarcinogenic effects of BA dysregulation and gut dysbiosis including excessive inflammation, heightened oxidative DNA damage, and increased cell proliferation are discussed. Furthermore, by focusing on the mediatory roles of BA nuclear receptor farnesoid x receptor, ileal transporter apical sodium dependent BA transporter, and G-coupled protein receptor TGR5, this review attempts to connect BA dysregulation, gut dysbiosis, and enterohepatic carcinogenesis at a mechanistic level. A better understanding of the intricate interplay between BA homeostasis and gut microbiome can yield novel avenues to combat the impending rise in diabesity-related cancers.
Collapse
Affiliation(s)
- Jessica Tsuei
- Department of Pathology and Laboratory Medicine, University of California at Davis Medical Center, Sacramento, CA 95831, USA
| | - Thinh Chau
- Department of Pathology and Laboratory Medicine, University of California at Davis Medical Center, Sacramento, CA 95831, USA
| | - David Mills
- Department of Food Science and Technology, Department of Viticulture and Enology, Foods for Health Institute, University of California, Davis, CA 95616, USA
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California at Davis Medical Center, Sacramento, CA 95831, USA
| |
Collapse
|