1
|
Xiao L, Ping Y, Sun S, Xu R, Zhou X, Wu H, Qi L. TMT-based quantitative proteomics unveils the protective mechanism of Polygonatum sibiricum polysaccharides on septic acute liver injury. J Proteomics 2025; 310:105331. [PMID: 39427987 DOI: 10.1016/j.jprot.2024.105331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
Polygonatum sibiricum polysaccharides (PSP) has been shown to possess multiple pharmacological functions. Our previous study found that PSP could protect against acute liver injury during sepsis via inhibiting inflammatory response. However, the underlying molecular mechanism by which PSP alleviates septic acute liver injury (SALI) remains unknown. Herein, TMT-based quantitative proteomics was utilized to explore the essential pathways and proteins involved in the protective effects of PSP on SALI. The results revealed that 632 and 176 differentially expressed proteins (DEPs) were identified in Model_vs_Control and PSP_vs_Model, respectively. GO annotation showed similar trends, suggesting that these DEPs were primarily involved in the cellular anatomical entity in Cellular Component, the cellular processe and the biological regulation in Biological Process, the binding and the catalytic activity in Molecular Function. Meanwhile, KEGG enrichment analysis implied that four common pathways, including the NF-κB signaling pathway, the IL-17 signaling pathway, the TNF signaling pathway and the Toll-like receptor signaling pathway, were closely associated with the pathogenesis of sepsis among the top 20 remarkably enriched pathways in Model_vs_Control_up and PSP_vs_Model_down. Moreover, the levels of several common DEPs, including TLR2, IKKi, JunB and CXCL9, were validated by WB, which was in line with the results of proteomics. Therefore, the protective effects of PSP on SALI might exert via blocking the above-mentioned inflammation pathways. Significance: PSP, recognized as a key component of Polygonatum sibiricum, exhibits a range of pharmacological functions. Our previous study found that PSP could protect against SALI, yet failing to clarify the mechanism of action. To reveal the underlying molecular mechanism involved in the protective effects of PSP on SALI, a TMT-based quantitative proteomic analysis was performed to detect and analyse the DEPs in liver tissue among the control group, the model group and the PSP group in this study. The results provide theoretical references for exploring the action mechanism of drugs and facilitate the comprehensive utilization of PSP. SIGNIFICANCE: PSP have been identified as the most crucial components of Polygonatum sibiricum with various pharmacological functions. Our previous study found that PSP could protect against SALI, but the mechanism of action remains unknown. To reveal the underlying molecular mechanism involved in the protective effects of PSP on SALI, a TMT-based quantitative proteomic analysis was performed to detect and analyse the DEPs in liver tissue among the control group, the model group and the PSP group in this study. The results provide theoretical references for exploring the action mechanism of drugs and facilitate the comprehensive utilization of PSP.
Collapse
Affiliation(s)
- Linxia Xiao
- School of Pharmacology, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Yinuo Ping
- School of Pharmacology, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Shangshang Sun
- School of Pharmacology, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Ran Xu
- School of Pharmacology, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Xinru Zhou
- School of Pharmacology, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Hongyan Wu
- School of Pharmacology, Jiangsu Vocational College of Medicine, Yancheng 224005, China; Institute of Biomedical Technology, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Liang Qi
- School of Pharmacology, Jiangsu Vocational College of Medicine, Yancheng 224005, China.
| |
Collapse
|
2
|
Zheng Z, Song X, Shi Y, Long X, Li J, Zhang M. Recent Advances in Biologically Active Ingredients from Natural Drugs for Sepsis Treatment. Comb Chem High Throughput Screen 2024; 27:688-700. [PMID: 37254548 DOI: 10.2174/1386207326666230529101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
Sepsis refers to the dysregulated host response to infection; its incidence and mortality rates are high. It is a worldwide medical problem but there is no specific drug for it. In recent years, clinical and experimental studies have found that many monomer components of traditional Chinese medicine have certain effects on the treatment of sepsis. This paper reviews the advances in research on the active ingredients of traditional Chinese medicine involved in the treatment of sepsis in recent years according to their chemical structure; it could provide ideas and references for further research and development in Chinese materia medica for the treatment of sepsis.
Collapse
Affiliation(s)
- Zhenzhen Zheng
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Xiayinan Song
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yanmei Shi
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaofeng Long
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Jie Li
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Min Zhang
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| |
Collapse
|
3
|
Zhu L, Dou Z, Wu W, Hou Q, Wang S, Yuan Z, Li B, Liu J. Ghrelin/GHSR Axis Induced M2 Macrophage and Alleviated Intestinal Barrier Dysfunction in a Sepsis Rat Model by Inactivating E2F1/NF- κB Signaling. Can J Gastroenterol Hepatol 2023; 2023:1629777. [PMID: 38187112 PMCID: PMC10769719 DOI: 10.1155/2023/1629777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 10/20/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Sepsis is an inflammatory reaction disorder state that is induced by infection. The activation and regulation of the immune system play an essential role in the development of sepsis. Our previous studies have shown that ghrelin ameliorates intestinal dysfunction in sepsis. Very little is known about the mechanism of ghrelin and its receptor (GHSR) on the intestinal barrier and the immune function of macrophage regulation. Our research is to investigate the regulatory effect and molecular mechanism of the ghrelin/GHSR axis on intestinal dysfunction and macrophage polarization in septic rats. A rat model of sepsis was established by cecal ligation and puncture (CLP) operation. Then, the sepsis rats were treated with a ghrelin receptor agonist (TZP-101) or ghrelin inhibitor (obestatin). The results suggested that TZP-101 further enhanced ghrelin and GHSR expressions in the colon and spleen of septic rats and obestatin showed the opposite results. Ghrelin/GHSR axis ameliorated colonic structural destruction and intestinal epithelial tight junction injury in septic rats. In addition, the ghrelin/GHSR axis promoted M2-type polarization of macrophages, which was characterized by the decreases of IL-1β, IL-6, and TNF-α, as well as the increase of IL-10. Mechanistically, the ghrelin/GHSR axis promoted E2F2 expression and suppressed the activation of the NF-κB signaling pathway in septic rats. Collectively, targeting ghrelin/GHSR during sepsis may represent a novel therapeutic approach for the treatment of intestinal barrier injury.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Zhimin Dou
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Wei Wu
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Qiliang Hou
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Sen Wang
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Ziqian Yuan
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Bin Li
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jian Liu
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Marques C, Fernandes MH, Lima SAC. Elucidating Berberine's Therapeutic and Photosensitizer Potential through Nanomedicine Tools. Pharmaceutics 2023; 15:2282. [PMID: 37765251 PMCID: PMC10535601 DOI: 10.3390/pharmaceutics15092282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Berberine, an isoquinoline alkaloid extracted from plants of the Berberidaceae family, has been gaining interest due to anti-inflammatory and antioxidant activities, as well as neuro and cardiovascular protective effects in animal models. Recently, photodynamic therapy demonstrated successful application in many fields of medicine. This innovative, non-invasive treatment modality requires a photosensitizer, light, and oxygen. In particular, the photosensitizer can selectively accumulate in diseased tissues without damaging healthy cells. Berberine's physicochemical properties allow its use as a photosensitising agent for photodynamic therapy, enabling reactive oxygen species production and thus potentiating treatment efficacy. However, berberine exhibits poor aqueous solubility, low oral bioavailability, poor cellular permeability, and poor gastrointestinal absorption that hamper its therapeutic and photodynamic efficacy. Nanotechnology has been used to minimize berberine's limitations with the design of drug delivery systems. Different nanoparticulate delivery systems for berberine have been used, as lipid-, inorganic- and polymeric-based nanoparticles. These berberine nanocarriers improve its therapeutic properties and photodynamic potential. More specifically, they extend its half-life, increase solubility, and allow a high permeation and targeted delivery. This review describes different nano strategies designed for berberine delivery as well as berberine's potential as a photosensitizer for photodynamic therapy. To benefit from berberine's overall potential, nanotechnology has been applied for berberine-mediated photodynamic therapy.
Collapse
Affiliation(s)
- Célia Marques
- IUCS-CESPU, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal;
- LAQV, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Maria Helena Fernandes
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, LAQV, REQUIMTE, U. Porto, 4200-393 Porto, Portugal
| | - Sofia A. Costa Lima
- IUCS-CESPU, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal;
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
5
|
Li X, Bai Y, Ma Y, Li Y. Ameliorating effects of berberine on sepsis-associated lung inflammation induced by lipopolysaccharide: molecular mechanisms and preclinical evidence. Pharmacol Rep 2023:10.1007/s43440-023-00492-2. [PMID: 37184743 DOI: 10.1007/s43440-023-00492-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
As a life-threatening disorder, sepsis-associated lung injury is a dysregulated inflammatory response to microbial infection, characterized by the infiltration of inflammatory cells into lung tissues and excessive production of pro-inflammatory mediators. Therefore, immunomodulatory/anti-inflammatory agents are a potential treatment for sepsis-associated lung injury. Berberine, one of the well-studied medicinal plant-derived compounds, has shown promising anti-inflammatory potential in inflammatory conditions, through modulating excessive immune responses induced by various immune cells. A systematic literature search in electronic databases indicated several publications that studied the effect of berberine on lipopolysaccharide (LPS)-induced sepsis in preclinical investigations. The current review article aims to provide evidence on the effects of berberine against LPS-induced acute lung injury (ALI), together with underlying molecular mechanisms. The findings reveal that berberine through inhibiting the excessive production of multiple pro-inflammatory cytokines, suppressing the infiltration of immune cells into lung tissues, as well as preventing pulmonary edema and coagulation, can relieve pulmonary histopathological changes from LPS-mediated inflammation, thereby attenuating sepsis-associated lung injury and lethality in the experimental models. In conclusion, berberine shows great potential as a preventing and therapeutic agent for sepsis-associated lung injury, however, further proof-of-concept studies and clinical investigations are warranted for translating these preclinical findings into clinical practices.
Collapse
Affiliation(s)
- Xiaojuan Li
- Department of Critical Care Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Yi Bai
- Department of Critical Care Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Yulong Ma
- Department of Critical Care Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Yan Li
- Department of Critical Care Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China.
| |
Collapse
|
6
|
Berberine in Sepsis: Effects, Mechanisms, and Therapeutic Strategies. J Immunol Res 2023; 2023:4452414. [PMID: 36741234 PMCID: PMC9891819 DOI: 10.1155/2023/4452414] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/10/2022] [Accepted: 10/10/2022] [Indexed: 01/26/2023] Open
Abstract
Sepsis is defined as a dysregulated immune response to infection that leads to multiple organ dysfunction. To date, though a growing body of knowledge has gained insight into the clinical risk factors, pathobiology, treatment response, and recovery methods, sepsis remains a significant concern and clinical burden. Therefore, further study is urgently needed to alleviate the acute and chronic outcomes. Berberine (BBR), a traditional Chinese medicine with multiple actions and mechanisms, has been investigated in cellular and rodent animal models of sepsis mainly based on its anti-inflammatory effect. However, the practical application of BBR in sepsis is still lacking, and it is imperative to systematically summarize the study of BBR in sepsis. This review summarized its pharmacological activities and mechanisms in septic-related organ injuries and the potential BBR-based therapeutic strategies for sepsis, which will provide comprehensive references for scientific research and clinical application.
Collapse
|
7
|
Zhao Y, Huang J, Li T, Zhang S, Wen C, Wang L. Berberine ameliorates aGVHD by gut microbiota remodelling, TLR4 signalling suppression and colonic barrier repairment for NLRP3 inflammasome inhibition. J Cell Mol Med 2022; 26:1060-1070. [PMID: 34984827 PMCID: PMC8831946 DOI: 10.1111/jcmm.17158] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/22/2021] [Accepted: 12/17/2021] [Indexed: 02/05/2023] Open
Abstract
Berberine (BBR), an isoquinoline alkaloid, is used to treat gastrointestinal disorders as an herbal medicine in China. The aim of this study was to investigate the anti-inflammatory activities of BBR in a mouse model with acute graft-versus-host disease (aGVHD). Mice were intravenously injected with bone marrow cells from donors combined with splenocytes to develop aGVHD. The body weight, survival rate and clinical scores were monitored. Then the levels of inflammatory cytokines, histological changes (lung, liver and colon), colonic mucosal barrier and gut microbiota were analysed. Moreover, the toll-like receptor 4 (TLR4)/myeloid differentiation primary response gene 88 (Myd88)/nuclear factor-κB signalling pathway, NLRP3 inflammasome and its cytokines' expressions were determined. The results showed that the gavage of BBR lessened GVHD-induced weight loss, high mortality and clinical scores, inhibited inflammation and target organs damages and prevented GVHD-indued colonic barrier damage. Additionally, BBR modulated gut microbiota, suppressed the activation of the TLR4 signaling pathway and inhibited NLRP3 inflammasome and its cytokine release. This study indicated that BBR might be a potential therapy for aGVHD through NLRP3 inflammasome inhibition.
Collapse
Affiliation(s)
- Yanna Zhao
- College of Basic Medical ScienceZhejiang Chinese Medical UniversityHangzhouChina
- Institute of Hematology ResearchThe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Jiefeng Huang
- Institute of Hematology ResearchThe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Tianyi Li
- College of Basic Medical ScienceZhejiang Chinese Medical UniversityHangzhouChina
| | - Shuijuan Zhang
- College of Basic Medical ScienceZhejiang Chinese Medical UniversityHangzhouChina
| | - Chengping Wen
- College of Basic Medical ScienceZhejiang Chinese Medical UniversityHangzhouChina
| | - Lipei Wang
- College of Basic Medical ScienceZhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
8
|
Xiao L, Ma XX, Luo J, Chung HK, Kwon MS, Yu TX, Rao JN, Kozar R, Gorospe M, Wang JY. Circular RNA CircHIPK3 Promotes Homeostasis of the Intestinal Epithelium by Reducing MicroRNA 29b Function. Gastroenterology 2021; 161:1303-1317.e3. [PMID: 34116030 PMCID: PMC8463477 DOI: 10.1053/j.gastro.2021.05.060] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 05/04/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Circular RNAs (circRNAs) are a class of endogenous noncoding RNAs that form covalently closed circles. Although circRNAs influence many biological processes, little is known about their role in intestinal epithelium homeostasis. We surveyed circRNAs required to maintain intestinal epithelial integrity and identified circular homeodomain-interacting protein kinase 3 (circHIPK3) as a major regulator of intestinal epithelial repair after acute injury. METHODS Intestinal mucosal tissues were collected from mice exposed to cecal ligation and puncture for 48 hours and patients with inflammatory bowel diseases and sepsis. We isolated primary enterocytes from the small intestine of mice and derived intestinal organoids. The levels of circHIPK3 were silenced in intestinal epithelial cells (IECs) by transfection with small interfering RNAs targeting the circularization junction of circHIPK3 or elevated using a plasmid vector that overexpressed circHIPK3. Intestinal epithelial repair was examined in an in vitro injury model by removing part of the monolayer. The association of circHIPK3 with microRNA 29b (miR-29b) was determined by biotinylated RNA pull-down assays. RESULTS Genome-wide profile analyses identified ∼300 circRNAs, including circHIPK3, differentially expressed in the intestinal mucosa of mice after cecal ligation and puncture relative to sham mice. Intestinal mucosa from patients with inflammatory bowel diseases and sepsis had reduced levels of circHIPK3. Increasing the levels of circHIPK3 enhanced intestinal epithelium repair after wounding, whereas circHIPK3 silencing repressed epithelial recovery. CircHIPK3 silencing also inhibited growth of IECs and intestinal organoids, and circHIPK3 overexpression promoted intestinal epithelium renewal in mice. Mechanistic studies revealed that circHIPK3 directly bound to miR-29b and inhibited miR-29 activity, thus increasing expression of Rac1, Cdc42, and cyclin B1 in IECs after wounding. CONCLUSIONS In studies of mice, IECs, and human tissues, our results indicate that circHIPK3 improves repair of the intestinal epithelium at least in part by reducing miR-29b availability.
Collapse
Affiliation(s)
- Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Xiang-Xue Ma
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jason Luo
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Hee K Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Min S Kwon
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ting-Xi Yu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Rosemary Kozar
- Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland; Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
9
|
Cao YY, Wang ZH, Xu QC, Chen Q, Wang Z, Lu WH. Sepsis induces variation of intestinal barrier function in different phase through nuclear factor kappa B signaling. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:375-383. [PMID: 34187954 PMCID: PMC8255122 DOI: 10.4196/kjpp.2021.25.4.375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/15/2022]
Abstract
The intestinal barrier function disrupted in sepsis, while little is known about the variation in different phases of sepsis. In this study, mouse models of sepsis were established by caecal ligation and puncture (CLP). The H&E staining of sections and serum diamine oxidase concentration were evaluated at different timepoint after CLP. TUNEL assay and EdU staining were performed to evaluate the apoptosis and proliferation of intestinal epithelium. Relative protein expression was assessed by Western blotting and serum concentrations of pro-inflammatory cytokines was measured by ELISA. The disruption of intestinal barrier worsened in the first 24 h after the onset of sepsis and gradually recovered over the next 24 h. The percentage of apoptotic cell increased in the first 24 h and dropped at 48 h, accompanied with the proliferative rate of intestinal epithelium inhibited in the first 6 h and regained in the later period. Furthermore, the activity of nuclear factor kappa B (NF-κB) presented similar trend with the intestinal barrier function, shared positive correction with apoptosis of intestinal epithelium. These findings reveal the conversion process of intestinal barrier function in sepsis and this process is closely correlated with the activity of NF-κB signaling.
Collapse
Affiliation(s)
- Ying-Ya Cao
- Department of Intensive Care Unit, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - Zhong-Han Wang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - Qian-Cheng Xu
- Department of Intensive Care Unit, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - Qun Chen
- Department of Intensive Care Unit, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - Zhen Wang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - Wei-Hua Lu
- Department of Intensive Care Unit, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| |
Collapse
|
10
|
Yang Y, Vong CT, Zeng S, Gao C, Chen Z, Fu C, Wang S, Zou L, Wang A, Wang Y. Tracking evidences of Coptis chinensis for the treatment of inflammatory bowel disease from pharmacological, pharmacokinetic to clinical studies. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113573. [PMID: 33181286 DOI: 10.1016/j.jep.2020.113573] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/20/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coptis chinensis (C. chinensis, Huanglian in Chinese), a famous traditional herbal medicine used for clearing heat and detoxification since thousands of years ago, is widely and traditionally used for clinical treatment of stomach inflammation, duodenum and digestive tract ulcers alone or through combing with other herbs in compound formulations. AIM OF THE REVIEW Through literature reviews of C. chinensis and berberine (one of the most important bioactive compounds derived from this plant) for the treatment of inflammatory bowel disease (IBD), this review aims to provide beneficial information for further exploration of the potent bioactive constituents from C. chinensis, deep investigation on the molecular mechanisms for the treatment of IBD, as well as further research and development of brand new products from C. chinensis for clinical therapy of IBD. METHODS "C. chinensis" and "IBD" were selected as the main keywords, and various online search engines, such as Google Scholar, PubMed, Web of Science, China National Knowledge Infrastructure database (CNKI) and other publication resources, were used for searching literatures. RESULTS To present, C. chinensis together with other herbs are involved in plenty of Chinese herbal prescriptions for the treatment of IBD, but little research focused on the single therapeutic effects of C. chinensis or extracts from this herb for the treatment of this disease. Berberine, one of important and representative bioactive compound isolated from C. chinensis, was reported to treat IBD effectively at a big arising speed in recent years. However, systematically and comprehensively reviews on the research of C. chinensis and berberine for the treatment of IBD from the aspects of chemical constituents, pharmacological effects, pharmacokinetics as well as clinical studies are seldom accomplished by researchers. Bioactive components from C. chinensis exert therapeutic effects for the treatment of IBD mainly through the inhibition of oxidative stress, antinociception, protection of intestinal mucosal epithelial barrier, regulation of T helper cells, as well as antibacterial activity. Although numerous studies on bioactive compounds from C. chinense have been performed by clinical investigators in recent years, most of them should be performed in a more strict and standard way to ensure the safety and efficacy of these compounds. CONCLUSIONS Berberine is considered as the representative and effective component from C. chinensis, but many other chemical components isolated from C. chinensis also have therapeutic effects for the treatment of IBD, which need deep research and further exploration. To accelerate research and development of C. chinensis and its bioactive components for the treatment of IBD, clinical trials are needed to clarify the effectiveness and safety of these chemical components from C. chinensis, as well as their molecular mechanisms for IBD treatment in vitro and in vivo. It is believed that continuous research and exploration on C. chinensis together with its bioactive compounds will bring great hope to the treatment of IBD.
Collapse
Affiliation(s)
- Yuhan Yang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, 611137, China.
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Shan Zeng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610052, China.
| | - Caifang Gao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Chaomei Fu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, 611137, China.
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, 610106, China.
| | - Anqi Wang
- School of Medicine, Chengdu University, Chengdu, 610106, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
11
|
Abstract
Background The gut is hypothesized to be the “motor” of critical illness. Under basal conditions, the gut plays a crucial role in the maintenance of health. However, in critical illness, all elements of the gut are injured, potentially worsening multiple organ dysfunction syndrome. Main body Under basal conditions, the intestinal epithelium absorbs nutrients and plays a critical role as the first-line protection against pathogenic microbes and as the central coordinator of mucosal immunity. In contrast, each element of the gut is impacted in critical illness. In the epithelium, apoptosis increases, proliferation decreases, and migration slows. In addition, gut barrier function is worsened via alterations to the tight junction, resulting in intestinal hyperpermeability. This is associated with damage to the mucus that separates the contents of the intestinal lumen from the epithelium. Finally, the microbiome of the intestine is converted into a pathobiome, with an increase in disease-promoting bacteria and induction of virulence factors in commensal bacteria. Toxic factors can then leave the intestine via both portal blood flow and mesenteric lymph to cause distant organ damage. Conclusion The gut plays a complex role in both health and critical illness. Here, we review gut integrity in both health and illness and highlight potential strategies for targeting the intestine for therapeutic gain in the intensive care unit.
Collapse
Affiliation(s)
- Shunsuke Otani
- 1Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, 101 Woodruff Circle, Suite WMB 5105, Atlanta, GA 30322 USA.,2Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan.,3Department of General Medical Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8670 Japan
| | - Craig M Coopersmith
- 1Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, 101 Woodruff Circle, Suite WMB 5105, Atlanta, GA 30322 USA
| |
Collapse
|
12
|
Pathak R, Shah SK, Hauer-Jensen M. Therapeutic potential of natural plant products and their metabolites in preventing radiation enteropathy resulting from abdominal or pelvic irradiation. Int J Radiat Biol 2019; 95:493-505. [PMID: 30526224 DOI: 10.1080/09553002.2018.1552374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Radiation-induced gastrointestinal injury or radiation enteropathy is an imminent risk during radiation therapy of abdominal or pelvic tumors. Despite remarkable technological advancements in image-guided radiation delivery techniques, the risk of intestinal injury after radiotherapy for abdominal or pelvic cancers has not been completely eliminated. The irradiated intestine undergoes varying degrees of adverse structural and functional changes, which can result in transient or long-term complications. The risk of development of enteropathy depends on dose, fractionation, and quality of radiation. Moreover, the patients' medical condition, age, inter-individual sensitivity to radiation and size of the treatment area are also risk factors of radiation enteropathy. Therefore, strategies are needed to prevent radiotherapy-induced undesirable alteration in the gastrointestinal tract. Many natural plant products, by virtue of their plethora of biological activities, alleviate the adverse effects of radiation-induced injury. The current review discusses potential roles and possible mechanisms of natural plant products in suppressing radiation enteropathy. Natural plant products have the potential to suppress intestinal radiation toxicity.
Collapse
Affiliation(s)
- Rupak Pathak
- a Division of Radiation Health Department of Pharmaceutical Sciences College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Sumit K Shah
- b College of Medicine Department of Pathology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Martin Hauer-Jensen
- a Division of Radiation Health Department of Pharmaceutical Sciences College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| |
Collapse
|
13
|
Huang L, Zhang X, Ma X, Zhang D, Li D, Feng J, Pan X, Lü J, Wang X, Liu X. Berberine alleviates endothelial glycocalyx degradation and promotes glycocalyx restoration in LPS-induced ARDS. Int Immunopharmacol 2018; 65:96-107. [PMID: 30308440 DOI: 10.1016/j.intimp.2018.10.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/30/2018] [Accepted: 10/02/2018] [Indexed: 02/08/2023]
Abstract
In the pathogenesis of acute respiratory distress syndrome (ARDS), an increase in vascular endothelial permeability may trigger pulmonary edema and ultimately lead to respiratory failure. Endothelial glycocalyx damage is an important factor that causes an increase in vascular endothelial permeability. Berberine (BBR) is an isoquinoline alkaloid extracted from Coptis chinensis, a plant used in traditional Chinese medicine that exerts multiple pharmacological effects. In this study, pretreatment with BBR inhibited the increase in vascular endothelial permeability in mice with lipopolysaccharide (LPS)-induced ARDS. BBR pretreatment inhibited the shedding of syndecan-1 (SDC-1) and heparan sulfate (HS), which are important components of the endothelial glycocalyx that lessen endothelial glycocalyx damage. BBR further significantly inhibited increases in important endothelial glycocalyx damage factors, including reactive oxygen species (ROS), heparanase (HPA), and matrix metalloproteinase 9 (MMP9) in LPS-induced ARDS mice and in LPS-stimulated human umbilical vein endothelial cells. BBR pretreatment also decreased the production of pro-inflammatory cytokines TNF-α, IL-1β, IL-6, and inhibited NF-κB signaling pathway activation in LPS-induced ARDS. In addition, BBR promoted the recovery of SDC-1 and HS content in injured endothelial glycocalyx after LPS treatment and accelerated its restoration. This is the first report of BBR maintaining the integrity of endothelial glycocalyx. These results provide a new theoretical basis for the use of BBR in the treatment of ARDS and other diseases related to endothelial glycocalyx damage.
Collapse
Affiliation(s)
- Lina Huang
- Department of Cell Biology, Binzhou Medical University, Yantai 264003, Shandong Province, China
| | - Xiaohua Zhang
- Department of Biotechnology, Binzhou Medical University, Yantai 264003, Shandong Province, China
| | - Xiaohong Ma
- Department of Respirator Medicine, Affiliated Hospital of Binzhou Medical University Binzhou, Binzhou 256603, Shandong Province, China
| | - Dong Zhang
- Department of Respirator Medicine, Affiliated Hospital of Binzhou Medical University Binzhou, Binzhou 256603, Shandong Province, China
| | - Dongxiao Li
- Department of Respirator Medicine, Affiliated Hospital of Binzhou Medical University Binzhou, Binzhou 256603, Shandong Province, China
| | - Jiali Feng
- Department of Respirator Medicine, Affiliated Hospital of Binzhou Medical University Binzhou, Binzhou 256603, Shandong Province, China
| | - Xinjie Pan
- Department of Cell Biology, Binzhou Medical University, Yantai 264003, Shandong Province, China
| | - Junhong Lü
- Division of Physical Biology and CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiaozhi Wang
- Department of Respirator Medicine, Affiliated Hospital of Binzhou Medical University Binzhou, Binzhou 256603, Shandong Province, China
| | - Xiangyong Liu
- Department of Cell Biology, Binzhou Medical University, Yantai 264003, Shandong Province, China.
| |
Collapse
|
14
|
Abstract
Intestinal barrier dysfunction is thought to contribute to the development of multiple organ dysfunction syndrome in sepsis. Although there are similarities in clinical course following sepsis, there are significant differences in the host response depending on the initiating organism and time course of the disease, and pathways of gut injury vary widely in different preclinical models of sepsis. The purpose of this study was to determine whether the timecourse and mechanisms of intestinal barrier dysfunction are similar in disparate mouse models of sepsis with similar mortalities. FVB/N mice were randomized to receive cecal ligation and puncture (CLP) or sham laparotomy, and permeability was measured to fluoresceinisothiocyanate conjugated-dextran (FD-4) six to 48 h later. Intestinal permeability was elevated following CLP at all timepoints measured, peaking at 6 to 12 h. Tight junction proteins claudin 1, 2, 3, 4, 5, 7, 8, 13, and 15, Junctional Adhesion Molecule-A (JAM-A), occludin, and ZO-1 were than assayed by Western blot, real-time polymerase chain reaction, and immunohistochemistry 12 h after CLP to determine potential mechanisms underlying increases in intestinal permeability. Claudin 2 and JAM-A were increased by sepsis, whereas claudin-5 and occludin were decreased by sepsis. All other tight junction proteins were unchanged. A further timecourse experiment demonstrated that alterations in claudin-2 and occludin were detectable as early as 1 h after the onset of sepsis. Similar experiments were then performed in a different group of mice subjected to Pseudomonas aeruginosa pneumonia. Mice with pneumonia had an increase in intestinal permeability similar in timecourse and magnitude to that seen in CLP. Similar changes in tight junction proteins were seen in both models of sepsis although mice subjected to pneumonia also had a marked decrease in ZO-1 not seen in CLP. These results indicate that two disparate, clinically relevant models of sepsis induce a significant increase in intestinal permeability mediated through a common pathway involving alterations in claudin 2, claudin 5, JAM-A, and occludin although model-specific differences in ZO-1 were also identified.
Collapse
|
15
|
Intra-abdominal infection combined with intra-abdominal hypertension aggravates the intestinal mucosal barrier dysfunction. Biosci Rep 2018; 38:BSR20170931. [PMID: 29196339 PMCID: PMC6435463 DOI: 10.1042/bsr20170931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 01/06/2023] Open
Abstract
Some patients with intra-abdominal infection (IAI) may develop intra-abdominal hypertension (IAH) during treatment. The present study investigated the impact of IAI combined with IAH on the intestinal mucosal barrier in a rabbit model. Forty-eight New Zealand white rabbits were randomly divided into four groups: (i) IAI and IAH; (ii) IAI alone; (iii) IAH alone; and (iv) Control group. IAI model: cecal ligation and puncture for 48 h; IAH model: raised intra-abdominal pressure (IAP) of 20 mmHg for 4 h. Pathological changes in intestinal mucosa were confirmed by light and scanning electron microscopy. FITC-conjugated dextran (FITC-dextran) by gavage was used to measure intestinal mucosal permeability in plasma. Endotoxin, d-Lactate, and diamine oxidase (DAO) in plasma were measured to determine intestinal mucosal damage. Malonaldehyde (MDA), superoxide dismutase (SOD), and GSH in ileum tissues were measured to evaluate intestinal mucosal oxidation and reducing state. Histopathologic scores were significantly higher in the IAI and IAH group, followed by IAI alone, IAH alone, and the control group. FITC-dextran, d-Lactate, DAO, and endotoxin in plasma and MDA in ileum tissues had similar trends. GSH and SOD were significantly lowest the in IAI and IAH group. Occludin levels were lowest in the ileums of the IAI and IAH group. All differences were statistically significant (P-values <0.001). IAI combined with IAH aggravates damage of the intestinal mucosal barrier in a rabbit model. The combined effects were significantly more severe compared with a single factor. IAI combined with IAH should be prevented and treated effectively.
Collapse
|
16
|
Evaluation of gut-blood barrier dysfunction in various models of trauma, hemorrhagic shock, and burn injury. J Trauma Acute Care Surg 2017; 83:944-953. [DOI: 10.1097/ta.0000000000001654] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Effect of Jiaotai Pill (交泰丸) on intestinal damage in partially sleep deprived rats. Chin J Integr Med 2017; 23:901-907. [PMID: 28986813 DOI: 10.1007/s11655-017-2969-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Indexed: 12/29/2022]
|
18
|
Gong J, Hu M, Huang Z, Fang K, Wang D, Chen Q, Li J, Yang D, Zou X, Xu L, Wang K, Dong H, Lu F. Berberine Attenuates Intestinal Mucosal Barrier Dysfunction in Type 2 Diabetic Rats. Front Pharmacol 2017; 8:42. [PMID: 28217099 PMCID: PMC5290458 DOI: 10.3389/fphar.2017.00042] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 01/19/2017] [Indexed: 01/19/2023] Open
Abstract
Background: Intestinal mucosal barrier dysfunction plays an important role in the development of diabetes mellitus (DM). Berberine (BBR), a kind of isoquinoline alkaloid, is widely known to be effective for both DM and diarrhea. Here, we explored whether the anti-diabetic effect of BBR was related to the intestine mucosal barrier. Methods and Results: The rat model of T2DM was established by high glucose and fat diet feeding and intravenous injection of streptozocin. Then, those diabetic rats were treated with BBR at different concentrations for 9 weeks. The results showed, in addition to hyperglycemia and hyperlipidemia, diabetic rats were also characterized by proinflammatory intestinal changes, altered gut-derived hormones, and 2.77-fold increase in intestinal permeability. However, the treatment with BBR significantly reversed the above changes in diabetic rats, presenting as the improvement of the high glucose and triglyceride levels, the relief of the inflammatory changes of intestinal immune system, and the attenuation of the intestinal barrier damage. BBR treatment at a high concentration also decreased the intestinal permeability by 27.5% in diabetic rats. Furthermore, BBR regulated the expressions of the molecules involved in TLR4/MyD88/NF-κB signaling pathways in intestinal tissue of diabetic rats. Conclusion: The hypoglycemic effects of BBR might be related to the improvement in gut-derived hormones and the attenuation of intestinal mucosal mechanic and immune barrier damages.
Collapse
Affiliation(s)
- Jing Gong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Meilin Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Zhaoyi Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Ke Fang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Dingkun Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Qingjie Chen
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Jingbin Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Desen Yang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China; Department of Pharmacy, Hubei University of Traditional Chinese MedicineWuhan, China
| | - Xin Zou
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Lijun Xu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Kaifu Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|
19
|
Li CG, Yan L, Jing YY, Xu LH, Liang YD, Wei HX, Hu B, Pan H, Zha QB, Ouyang DY, He XH. Berberine augments ATP-induced inflammasome activation in macrophages by enhancing AMPK signaling. Oncotarget 2017; 8:95-109. [PMID: 27980220 PMCID: PMC5352208 DOI: 10.18632/oncotarget.13921] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/01/2016] [Indexed: 12/14/2022] Open
Abstract
The isoquinoline alkaloid berberine possesses many pharmacological activities including antibacterial infection. Although the direct bactericidal effect of berberine has been documented, its influence on the antibacterial functions of macrophages is largely unknown. As inflammasome activation in macrophages is important for the defense against bacterial infection, we aimed to investigate the influence of berberine on inflammasome activation in murine macrophages. Our results showed that berberine significantly increased ATP-induced inflammasome activation as reflected by enhanced pyroptosis as well as increased release of caspase-1p10 and mature interleukin-1β (IL-1β) in macrophages. Such effects of berberine could be suppressed by AMP-activated protein kinase (AMPK) inhibitor compound C or by knockdown of AMPKα expression, indicating the involvement of AMPK signaling in this process. In line with increased IL-1β release, the ability of macrophages to kill engulfed bacteria was also intensified by berberine. This was corroborated by the in vivo finding that the peritoneal live bacterial load was decreased by berberine treatment. Moreover, berberine administration significantly improved survival of bacterial infected mice, concomitant with increased IL-1β levels and elevated neutrophil recruitment in the peritoneal cavity. Collectively, these data suggested that berberine could enhance bacterial killing by augmenting inflammasome activation in macrophages through AMPK signaling.
Collapse
Affiliation(s)
- Chen-Guang Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Liang Yan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yan-Yun Jing
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Li-Hui Xu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yi-Dan Liang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Hong-Xia Wei
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Bo Hu
- Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hao Pan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qing-Bing Zha
- Department of Fetal Medicine, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dong-Yun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
20
|
Berberine and inflammatory bowel disease: A concise review. Pharmacol Res 2016; 113:592-599. [PMID: 27697643 DOI: 10.1016/j.phrs.2016.09.041] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/27/2016] [Accepted: 09/29/2016] [Indexed: 12/14/2022]
|
21
|
Yu C, Tan S, Zhou C, Zhu C, Kang X, Liu S, Zhao S, Fan S, Yu Z, Peng A, Wang Z. Berberine Reduces Uremia-Associated Intestinal Mucosal Barrier Damage. Biol Pharm Bull 2016; 39:1787-1792. [PMID: 27506986 DOI: 10.1248/bpb.b16-00280] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Berberine is one of the main active constituents of Rhizoma coptidis, a traditional Chinese medicine, and has long been used for the treatment of gastrointestinal disorders. The present study was designed to investigate the effects of berberine on the intestinal mucosal barrier damage in a rat uremia model induced by the 5/6 kidney resection. Beginning at postoperative week 4, the uremia rats were treated with daily 150 mg/kg berberine by oral gavage for 6 weeks. To assess the intestinal mucosal barrier changes, blood samples were collected for measuring the serum D-lactate level, and terminal ileum tissue samples were used for analyses of intestinal permeability, myeloperoxidase activity, histopathology, malondialdehyde (MDA) level, and superoxide dismutase (SOD) activity. Berberine treatment resulted in significant decreases in the serum D-lactate level, intestinal permeability, intestinal myeloperoxidase activity, and intestinal mucosal and submucosal edema and inflammation, and the Chiu's scores assessed for intestinal mucosal injury. The intestinal MDA level was reduced and the intestinal SOD activity was increased following berberine treatment. In conclusion, berberine reduces intestinal mucosal barrier damage induced by uremia, which is most likely due to its anti-oxidative activity. It may be developed as a potential treatment for preserving intestinal mucosal barrier function in patients with uremia.
Collapse
Affiliation(s)
- Chao Yu
- Department of Nephrology & Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Li GX, Wang XM, Jiang T, Gong JF, Niu LY, Li N. Berberine Prevents Intestinal Mucosal Barrier Damage During Early Phase of Sepsis in Rat through the Toll-Like Receptors Signaling Pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 19:1-7. [PMID: 25605990 PMCID: PMC4297756 DOI: 10.4196/kjpp.2015.19.1.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/17/2014] [Accepted: 11/13/2014] [Indexed: 02/07/2023]
Abstract
Our previous study has shown berberine prevents damage to the intestinal mucosal barrier during early phase of sepsis in rat through mechanisms independent of the NOD-like receptors signaling pathway. In this study, we explored the regulatory effects of berberine on Toll-like receptors during the intestinal mucosal damaging process in rats. Male Sprague-Dawlay (SD) rats were treated with berberine for 5 d before undergoing cecal ligation and puncture (CLP) to induce polymicrobial sepsis. The expression of Toll-like receptor 2 (TLR 2), TLR 4, TLR 9, the activity of nuclear factor-kappa B (NF-κB), the levels of selected cytokines and chemokines, percentage of cell death in intestinal epithelial cells, and mucosal permeability were investigated at 0, 2, 6, 12 and 24 h after CLP. Results showed that the tumor necrosis factor-α (TNF-α ) and interleukin-6 (IL-6) level were significantly lower in berberine-treated rats compared to the control animals. Conversely, the expression level of tight junction proteins, percentage of cell death in intestinal epithelial cells and the mucosal permeability were significantly higher in berberine-treated rats. The mRNA expression of TLR 2, TLR 4, and TLR 9 were significantly affected by berberine treatment. Our results indicate that pretreatment with berberine attenuates tissue injury and protects the intestinal mucosal barrier in early phase of sepsis and this may possibly have been mediated through the TLRs pathway.
Collapse
Affiliation(s)
- Guo-Xun Li
- Department of General Surgery, Tianjin Union Medical Center, The Affiliated Hospital of Nankai University, Tianjin 300121, P.R. China
| | - Xi-Mo Wang
- Department of General Surgery, Tianjin Union Medical Center, The Affiliated Hospital of Nankai University, Tianjin 300121, P.R. China
| | - Tao Jiang
- Department of General Surgery, Tianjin Union Medical Center, The Affiliated Hospital of Nankai University, Tianjin 300121, P.R. China
| | - Jian-Feng Gong
- Department of General Surgery, Nanjing Jinling Hospital, Nanjing University, Nanjing 210002, P.R. China
| | - Ling-Ying Niu
- Department of General Surgery, Nanjing Jinling Hospital, Nanjing University, Nanjing 210002, P.R. China
| | - Ning Li
- Department of General Surgery, Nanjing Jinling Hospital, Nanjing University, Nanjing 210002, P.R. China
| |
Collapse
|
23
|
Delivery of berberine using chitosan/fucoidan-taurine conjugate nanoparticles for treatment of defective intestinal epithelial tight junction barrier. Mar Drugs 2014; 12:5677-97. [PMID: 25421323 PMCID: PMC4245551 DOI: 10.3390/md12115677] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/31/2014] [Accepted: 11/13/2014] [Indexed: 02/07/2023] Open
Abstract
Bacterial-derived lipopolysaccharides (LPS) can cause defective intestinal barrier function and play an important role in the development of inflammatory bowel disease. In this study, a nanocarrier based on chitosan and fucoidan was developed for oral delivery of berberine (Ber). A sulfonated fucoidan, fucoidan-taurine (FD-Tau) conjugate, was synthesized and characterized by Fourier transform infrared (FTIR) spectroscopy. The FD-Tau conjugate was self-assembled with berberine and chitosan (CS) to form Ber-loaded CS/FD-Tau complex nanoparticles with high drug loading efficiency. Berberine release from the nanoparticles had fast release in simulated intestinal fluid (SIF, pH 7.4), while the release was slow in simulated gastric fluid (SGF, pH 2.0). The effect of the berberine-loaded nanoparticles in protecting intestinal tight-junction barrier function against nitric oxide and inflammatory cytokines released from LPS-stimulated macrophage was evaluated by determining the transepithelial electrical resistance (TEER) and paracellular permeability of a model macromolecule fluorescein isothiocyanate-dextran (FITC-dextran) in a Caco-2 cells/RAW264.7 cells co-culture system. Inhibition of redistribution of tight junction ZO-1 protein by the nanoparticles was visualized using confocal laser scanning microscopy (CLSM). The results suggest that the nanoparticles may be useful for local delivery of berberine to ameliorate LPS-induced intestinal epithelia tight junction disruption, and that the released berberine can restore barrier function in inflammatory and injured intestinal epithelial.
Collapse
|