1
|
Li M, Pagare PP, Ma H, St Onge CM, Mendez RE, Gillespie JC, Stevens DL, Dewey WL, Selley DE, Zhang Y. Molecular Pharmacology Profiling of Phenylfentanil and Its Analogues to Understand the Putative Involvement of an Adrenergic Mechanism in Fentanyl-Induced Respiratory Depression. J Med Chem 2024; 67:603-619. [PMID: 38156970 DOI: 10.1021/acs.jmedchem.3c01801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
While there are approved therapeutics to treat opioid overdoses, the need for treatments to reverse overdoses due to ultrapotent fentanyls remains unmet. This may be due in part to an adrenergic mechanism of fentanyls in addition to their stereotypical mu-opioid receptor (MOR) effects. Herein, we report our efforts to further understanding of the functions these distinct mechanisms impart. Employing the known MOR neutral antagonist phenylfentanil as a lead, 17 analogues were designed based on the concept of isosteric replacement. To probe mechanisms of action, these analogues were pharmacologically evaluated in vitro and in vivo, while in silico modeling studies were also conducted on phenylfentanil. While it did not indicate MOR involvement in vivo, phenylfentanil yielded respiratory minute volumes similar to those caused by fentanyl. Taken together with molecular modeling studies, these results indicated that respiratory effects of fentanyls may also correlate to inhibition of both α1A- and α1B-adrenergic receptors.
Collapse
Affiliation(s)
- Mengchu Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, Virginia 23298, United States
| | - Piyusha P Pagare
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, Virginia 23298, United States
| | - Hongguang Ma
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, Virginia 23298, United States
| | - Celsey M St Onge
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, Virginia 23298, United States
| | - Rolando E Mendez
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - James C Gillespie
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - David L Stevens
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - William L Dewey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Dana E Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, Virginia 23298, United States
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
- Institute for Drug and Alcohol Studies, 203 East Cary Street, Richmond, Virginia 23298, United States
| |
Collapse
|
2
|
Deluigi M, Morstein L, Schuster M, Klenk C, Merklinger L, Cridge RR, de Zhang LA, Klipp A, Vacca S, Vaid TM, Mittl PRE, Egloff P, Eberle SA, Zerbe O, Chalmers DK, Scott DJ, Plückthun A. Crystal structure of the α 1B-adrenergic receptor reveals molecular determinants of selective ligand recognition. Nat Commun 2022; 13:382. [PMID: 35046410 PMCID: PMC8770593 DOI: 10.1038/s41467-021-27911-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/21/2021] [Indexed: 11/25/2022] Open
Abstract
α-adrenergic receptors (αARs) are G protein-coupled receptors that regulate vital functions of the cardiovascular and nervous systems. The therapeutic potential of αARs, however, is largely unexploited and hampered by the scarcity of subtype-selective ligands. Moreover, several aminergic drugs either show off-target binding to αARs or fail to interact with the desired subtype. Here, we report the crystal structure of human α1BAR bound to the inverse agonist (+)-cyclazosin, enabled by the fusion to a DARPin crystallization chaperone. The α1BAR structure allows the identification of two unique secondary binding pockets. By structural comparison of α1BAR with α2ARs, and by constructing α1BAR-α2CAR chimeras, we identify residues 3.29 and 6.55 as key determinants of ligand selectivity. Our findings provide a basis for discovery of α1BAR-selective ligands and may guide the optimization of aminergic drugs to prevent off-target binding to αARs, or to elicit a selective interaction with the desired subtype. This study reports the X-ray structure of the α1B-adrenergic G protein-coupled receptor bound to an inverse agonist, and unveils key determinants of subtype-selective ligand binding that may help the design of aminergic drugs with fewer side-effects.
Collapse
Affiliation(s)
- Mattia Deluigi
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Lena Morstein
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Matthias Schuster
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Christoph Klenk
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Lisa Merklinger
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs, Lyngby, Denmark
| | - Riley R Cridge
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Lazarus A de Zhang
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia.,Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alexander Klipp
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, CH-8093, Zurich, Switzerland
| | - Santiago Vacca
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Tasneem M Vaid
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Peer R E Mittl
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Pascal Egloff
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Stefanie A Eberle
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Oliver Zerbe
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - David K Chalmers
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Daniel J Scott
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia. .,Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
3
|
Chen J, Campbell AP, Wakelin LPG, Finch AM. Characterisation of bis(4-aminoquinoline)s as α 1A adrenoceptor allosteric modulators. Eur J Pharmacol 2021; 916:174659. [PMID: 34871559 DOI: 10.1016/j.ejphar.2021.174659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022]
Abstract
The development of sub-type selective α1 adrenoceptor ligands has been hampered by the high sequence similarity of the amino acids forming the orthosteric binding pocket of the three α1 adrenoceptor subtypes, along with other biogenic amine receptors. One possible approach to overcome this issue is to target allosteric sites on the α1 adrenoceptors. Previous docking studies suggested that one of the quinoline moieties of a bis(4-aminoquinoline), comprising a 9-carbon methylene linker attached via the amine groups, could interact with residues outside of the orthosteric binding site while, simultaneously, the other quinoline moiety bound within the orthosteric site. We therefore hypothesized that this compound could act in a bitopic manner, displaying both orthosteric and allosteric binding properties. To test this proposition, we investigated the allosteric activity of a series of bis(4-aminoquinoline)s with linker lengths ranging from 2 to 12 methylene units (designated C2-C12). A linear trend of increasing [3H]prazosin dissociation rate with increasing linker length between C7 and C11 was observed, confirming their action as allosteric modulators. These data suggest that the optimal linker length for the bis(4-aminoquinoline)s to occupy the allosteric site of the α1A adrenoceptor is between 7 and 11 methylene units. In addition, the ability of C9 bis(4-aminoquinoline) to modulate the activation of the α1A adrenoceptor by norepinephrine was subsequently examined, showing that C9 acted as a non-competitive antagonist. Our findings indicate that the bis(4-aminoquinolines) are acting as allosteric modulators of orthosteric ligand binding, but not efficacy, in a bitopic manner.
Collapse
Affiliation(s)
- Junli Chen
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Adrian P Campbell
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Laurence P G Wakelin
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Angela M Finch
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia.
| |
Collapse
|
4
|
Jang JH, Wei JD, Kim M, Kim JY, Cho AE, Kim JH. Leukotriene B 4 receptor 2 gene polymorphism (rs1950504, Asp196Gly) leads to enhanced cell motility under low-dose ligand stimulation. Exp Mol Med 2017; 49:e402. [PMID: 29170475 PMCID: PMC5704194 DOI: 10.1038/emm.2017.192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 05/17/2017] [Accepted: 05/29/2017] [Indexed: 12/17/2022] Open
Abstract
Recently, single-nucleotide polymorphisms (SNPs) in G-protein-coupled receptors (GPCRs) have been suggested to contribute to physiopathology and therapeutic effects. Leukotriene B4 receptor 2 (BLT2), a member of the GPCR family, plays a critical role in the pathogenesis of several inflammatory diseases, including cancer and asthma. However, no studies on BLT2 SNP effects have been reported to date. In this study, we demonstrate that the BLT2 SNP (rs1950504, Asp196Gly), a Gly-196 variant of BLT2 (BLT2 D196G), causes enhanced cell motility under low-dose stimulation of its ligands. In addition, we demonstrated that Akt activation and subsequent production of reactive oxygen species (ROS), both of which act downstream of BLT2, are also increased by BLT2 D196G in response to low-dose ligand stimulation. Furthermore, we observed that the ligand binding affinity of BLT2 D196G was enhanced compared with that of BLT2. Through homology modeling analysis, it was predicted that BLT2 D196G loses ionic interaction with R197, potentially resulting in increased agonist-receptor interaction. To the best of our knowledge, this report is the first to describe a SNP study on BLT2 and shows that BLT2 D196G enhances ligand sensitivity, thereby increasing cell motility in response to low-dose ligand stimulation.
Collapse
Affiliation(s)
- Jae-Hyun Jang
- Department of Biotechnology, College of Life Sciences, Korea University, Seoul, Korea
| | - Jun-Dong Wei
- Department of Biotechnology, College of Life Sciences, Korea University, Seoul, Korea
| | - Minsup Kim
- Department of Bioinformatics, Korea University, Sejong, Korea
| | - Joo-Young Kim
- Department of Crime-Scene DNA Section, Gwangju Institute, National Forensic Service, Gwangju, Korea
| | - Art E Cho
- Department of Bioinformatics, Korea University, Sejong, Korea
| | - Jae-Hong Kim
- Department of Biotechnology, College of Life Sciences, Korea University, Seoul, Korea
| |
Collapse
|
5
|
Synthesis, crystal structure, biological evaluation, and molecular docking studies of quinoline-arylpiperazine derivative as potent α1A-adrenoceptor antagonist. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.10.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Campbell AP, Wakelin LPG, Denny WA, Finch AM. Homobivalent Conjugation Increases the Allosteric Effect of 9-aminoacridine at the α1-Adrenergic Receptors. Mol Pharmacol 2017; 91:135-144. [PMID: 27903755 DOI: 10.1124/mol.116.105874] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 11/28/2016] [Indexed: 12/14/2022] Open
Abstract
The α1-adrenergic receptors are targets for a number of cardiovascular and central nervous system conditions, but the current drugs for these receptors lack specificity to be of optimal clinical value. Allosteric modulators offer an alternative mechanism of action to traditional α1-adrenergic ligands, yet there is little information describing this drug class at the α1-adrenergic receptors. We have identified a series of 9-aminoacridine compounds that demonstrate allosteric modulation of the α1A- and α1B-adrenergic receptors. The 9-aminoacridines increase the rate of [3H]prazosin dissociation from the α1A- and α1B-adrenergic receptors and noncompetitively inhibit receptor activation by the endogenous agonist norepinephrine. The structurally similar compound, tacrine, which is a known allosteric modulator of the muscarinic receptors, is also shown to be a modulator of the α1-adrenergic receptors, which suggests a general lack of selectivity for allosteric binding sites across aminergic G protein-coupled receptor. Conjugation of two 9-aminoacridine pharmacophores, using linkers of varying length, increases the potency and efficacy of the allosteric effects of this ligand, likely through optimization of bitopic engagement of the allosteric and orthosteric binding sites of the receptor. Such a bivalent approach may provide a mechanism for fine tuning the efficacy of allosteric compounds in future drug design efforts.
Collapse
Affiliation(s)
- Adrian P Campbell
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, Australia (A.P.C., L.P.G.W., A.M.F.); Auckland Cancer Society Research Centre, Faculty of Medicine and Health Science, University of Auckland, Auckland, New Zealand (W.A.D.)
| | - Laurence P G Wakelin
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, Australia (A.P.C., L.P.G.W., A.M.F.); Auckland Cancer Society Research Centre, Faculty of Medicine and Health Science, University of Auckland, Auckland, New Zealand (W.A.D.)
| | - William A Denny
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, Australia (A.P.C., L.P.G.W., A.M.F.); Auckland Cancer Society Research Centre, Faculty of Medicine and Health Science, University of Auckland, Auckland, New Zealand (W.A.D.)
| | - Angela M Finch
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, Australia (A.P.C., L.P.G.W., A.M.F.); Auckland Cancer Society Research Centre, Faculty of Medicine and Health Science, University of Auckland, Auckland, New Zealand (W.A.D.)
| |
Collapse
|
7
|
Xu W, Huang JJ, Shao BH, Xu XJ, Jiang RW, Yuan M. X-ray Crystallography, DFT Calculations and Molecular Docking of Indole-Arylpiperazine Derivatives as α1A-Adrenoceptor Antagonists. Molecules 2015; 20:19674-89. [PMID: 26528963 PMCID: PMC6332402 DOI: 10.3390/molecules201119651] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/16/2015] [Indexed: 01/22/2023] Open
Abstract
Indole-arylpiperazine derivatives have exhibited good selectivity for the α1A-adrenoceptor, but the structure-activity-binding mechanism relationship remains unclear. In the current study, three compounds (1, 2 and 3) were investigated through single-crystal X-ray diffraction analysis, density functional theory (DFT) calculations and molecular docking using a homology model of the α1A receptor. Compounds 1 and 3 form H-bonds networks to stabilize their three-dimensional structures, while C–H···π interactions play a significant role in the packing of 2. Based on DFT-optimized conformations, the HOMO-LUMO energy gaps and molecular electrostatic potential (MEP) were theoretically calculated at the B3LYP/6-311G (d, p) level of theory. Chemical reactivity increases in the order of 3 < 2 < 1, and the maximum positive region of the MEP maps is mainly localized over the NH group. The binding mechanisms of ligand-α1A-adrenoceptor complexes were illustrated by molecular docking. Binding to Gln177 of the second extracellular loop region via hydrogen bonds is likely to be essential for α1A-selective antagonists. The present work sheds light on the studies of structure-activity-binding mechanism and aids in the design of α1A antagonists with high selectivity.
Collapse
Affiliation(s)
- Wei Xu
- Pharmaceutical Research Center, Guangzhou Medical University, 195# Dongfengxi Road, Guangzhou 510182, China.
| | - Jun-Jun Huang
- Pharmaceutical Research Center, Guangzhou Medical University, 195# Dongfengxi Road, Guangzhou 510182, China.
| | - Bin-Hao Shao
- Pharmaceutical Research Center, Guangzhou Medical University, 195# Dongfengxi Road, Guangzhou 510182, China.
| | - Xing-Jie Xu
- Pharmaceutical Research Center, Guangzhou Medical University, 195# Dongfengxi Road, Guangzhou 510182, China.
| | - Ren-Wang Jiang
- School of Pharmaceutical Sciences, Jinan University, Guangzhou 510632, China.
| | - Mu Yuan
- Pharmaceutical Research Center, Guangzhou Medical University, 195# Dongfengxi Road, Guangzhou 510182, China.
| |
Collapse
|